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ABSTRACT  

This study was conducted with the aim of determining the effects of Ultraflex tyres operating at 

low and standard tyre inflation pressure modes on soil properties, crop growth and yield in a 

maize (Zea mays L.) / soybean (Glycine max L.) rotation for three tillage systems (deep tillage, 

450mm; shallow tillage, 100mm and no-till) in Champaign County, Illinois, USA, from 2016 to 

2018. The experimental design was a split-plot, factorial randomized complete block, with five 

blocks. Tyre inflation pressure and tillage systems were the main treatment plots and the 8 crop 

rows/plot, and a central non-trafficked inter-row/zone were considered as sub-plots. Data on soil 

physical properties, crop growth and yield were recorded. A novel tool X-Ray Computed 

Tomography (CT) was used to determine the effects on soil porosity with high resolution (98 

µm) of undisturbed soil (soil core, 300 mm length) collected from the maize field in 2017.  

The results revealed that reducing tyre inflation pressure had shown significant benefits of 

managing soil conditions by maintaining soil porosity following tillage, together with lower 

penetrometer resistances. The penetrometer resistance in the upper soil layers was significantly 

higher in no-till than deep tillage and shallow tillage while in the lower soil layers the PR of soil 

was in the order of deep tillage > shallow tillage > no-till. The non-trafficked inter-row zone had 

significantly higher soil moisture content (P = <0.001) in maize plots in 2017 and 2018 and in 

the soybean field in 2017 (P = <0.001) and lower penetrometer resistance (P = <0.001) than the 

trafficked crop row in maize (P = <0.001) and soybean (P = <0.001) plots, respectively. In 

general, the heavily trafficked zone and crop row had significantly lower soil moisture content 

(%) and higher penetrometer resistance than the non-trafficked and reduced trafficked zones.  

The results showed that the use of low tyre inflation pressure had a positive effect on increased 

crop growth; for examples, plant height in 2017 and 2018 (P = 0.04 and 0.004, respectively), 

plant establishment (%) and the number of plants ha-1 of maize (P = 0.007 and 0.005, 

respectively) and soybean (P = <0.001 and 0.001, respectively) in 2018 were greater than those 

of the standard tyre inflation pressure. The depth of tillage had a significant effect on the growth 

of maize and soybean. No-till had a significantly greater number of plants ha-1 in 2017 (P = 

<0.001) while deep tillage had a significantly greater plant and ear heights of maize in 2018 (P = 

0.004 and 0.05, respectively). Where for soybean, no-till and deep tillage systems increased the 

plant establishment in 2017 (P = 0.009) while deep tillage had a significantly greater plant 

establishment in 2018 (P = <0.001), number of plants ha-1 in 2017 (P = 0.01) and plant height in 
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2017 and 2018 (P = 0.001 and 0.032). Less trafficked and non-trafficked crop rows resulted in 

significantly greater crop growth in comparison to the heavily trafficked crop rows.  

The yield data revealed that reducing tyre inflation pressure increased the grain yield of maize 

by 4.31% in 2017 (15.02 Mg ha-1) and 2.70% in 2018 (14.76 Mg ha-1) compared to the standard 

tyre inflation pressure treatments (14.40 Mg ha-1 and 13.76 Mg ha-1, respectively). While for 

soybean, reducing tyre inflation pressure had a 3.70% greater yield benefit (4.25 Mg ha-1) in 

comparison to the standard tyre inflation pressure system (4.10 Mg ha-1) in 2018 (P = 0.021). 

Deep tillage and shallow tillage systems resulted in significant yield advantages over no-till for 

soybean in 2017 (P = 0.001) and maize in 2018 (P = <0.001). The grain yield of maize in 2018 

for both deep (15.11 Mg ha-1) and shallow tillage systems (13.98 Mg ha-1) was 18.69 % and 

9.82 % greater than that of no-till (12.73 Mg ha-1). The grain yield of soybean in 2017 for both 

deep (4.86 Mg ha-1) and shallow tillage systems (4.73 Mg ha-1) was 4.52 % and 1.72 % greater 

than no-till (4.65 Mg ha-1). Compared to heavily trafficked crop rows the less and non-trafficked 

crop rows had a significantly greater hand harvest yield of maize in 2016 and 2018 (P = 0.03 

and <0.001) and soybean in 2018 (P = <0.001).The X-ray CT data of soil showed that the low 

inflation pressure tyre system in HT location resulted in a significant increase in the CT 

measured macro-porosity (4.66%) (P = 0.004) compared to standard inflation pressure tyre with 

CT measured macro-porosity of 2.87%. Adding the CT measured macro-porosity to the field 

capacity porosity of silty clay loam soil (39%) results in a total porosity similar to that derived by 

classical soil physics.  

The economic analysis of the maize/soybean farming system showed that the annual benefit of 

the use of low inflation pressure tyres after discounting the additional tyre costs was of 

approximately $7357 and $32969 over the standard inflation pressure tyres for 200 and 800 ha 

farms, respectively. The payback period of the use of Ultraflex tyre was less than two years, 

ranging from 0.31 years for the deep tillage system on the bigger farm to 1.27 years for the 

shallow tillage system on the smaller farm.  

Hence, the study confirms the hypothesis that reducing tyre inflation pressure improves crop 

growth and yield by reducing soil compaction in a maize - soybean rotation in silty clay loam soil 

in Central Illinois of the United States.   
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GLOSSARY OF TERMINOLOGY 

A 

Agricultural mechanization: Agricultural mechanization is the process whereby equipment, 

machineries and implements are utilized to boost agricultural and food production. 

Agricultural productivity: The efficiency with which inputs are transformed into outputs in the 

agricultural sector. It is driven by innovations in on farm tasks, changes in the organization and 

structure of the farm sector, research aimed at improvements in farm production, and/or random 

events like weather. 

Agricultural sustainability: It considers the concept of the economic, environmental and social 

aspects of farming, while also promoting the resilience and persistence of productive farming 

landscapes (Garibaldi et al., 2017).  

Agricultural systems: An agricultural system is an assemblage of components which are 

united by some form of interaction and interdependence and which operate within a prescribed 

boundary to achieve a specified agricultural objective on behalf of the beneficiaries of the 

system. 

Agroecosystems: A system where communities of plants, microbes and animals inhabiting 

farmed land, pastures, grasslands or rangelands, interact with each other and their physical 

environment. 

Air filled porosity: It is the voids in soil at any point of time, which is not filled with water. Air-

filled porosity varies with soil moisture content and can be determined by subtracting the 

volumetric water content (cm3 of water cm-3 of soil) from the total porosity of the soil. 

B 

Biodiversity: According to Ecological Society of America, it is defined as the range of variation 

found among microorganisms, plants, fungi, and animals.  Also, the richness of species of living 

organisms. 

Biological/ bio-drilling tillage tools: Roots of tap-rooted crops penetrate compacted soils, 

ameliorate the subsoil compaction, may help the succeeding crop roots referred the role of plant 

roots in soil as “biological tillage tools” (Chen and Weil, 2010) and bio-drilling tillage (Cresswell 

and Kirkegaard, 1995). 
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Bulk density: The bulk density of a soil sample, generally represented by ρb, is a physical 

property defined as the ratio of the total mass of solids to the total volume of the sample. 

C 

Carbon sequestration: Carbon sequestration is the process by which atmospheric carbon 

dioxide (CO2), the most important greenhouse gas, is removed from the atmosphere and stored 

in the ocean, on the land surface, or in geological formations. 

Climate smart agriculture: It is an approach that calls for integration of the need for adaptation 

and the possibility of mitigation in agricultural growth strategies to support food security.  

Compaction: It is the reduction of the volume of a given mass of soil, i.e. decrease in void ratio 

and porosity and, conversely, increase in bulk density  (Keller, 2004). The modification of the 

pore volume and pore structure of the soil in which the size and number of macropores are 

reduced and shape and continuity of pores are changed (Soane, Blackwell, Dickson, & Painter, 

1980). 

Compression: Decreases or densifies of soil volume through the expulsion of soil air (Koolen, 

1994). 

Computed tomography: It is an imaging procedure that uses special X-ray equipment to 

create detailed pictures, or scans, of areas inside an object. It is sometimes called computerized 

tomography or computerized axial tomography (CAT). 

Cone index: The cone index of a soil is the degree of its strength which has been shown to be 

affected by its water content and bulk density.  

Conservation agriculture: Conservation agriculture is a farming system that promotes 

maintenance of a permanent soil cover, minimum soil disturbance (i.e. no-till), and 

diversification of plant species. 

Conservation tillage: Agricultural sustainability Institute, UC Davis, defines conservation tillage 

as an agricultural management approach that aims to minimize the frequency or intensity of 

tillage operations in an effort to promote certain economic and environmental benefits. 

Controlled traffic farming: It is the term used for a field traffic system that confines agricultural 

machinery to permanent wheel or traffic lanes that are separate from distinct crop zones (Gasso 

et al., 2014).  
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Conventional field traffic: It is the extensive use of tractors, combines and other farm 

machinery “randomly” in the field for producing crops. Consequently, leads to compaction of 

soil, the most recognized problem in agriculture.  

Conventional tillage: It consists of primary cultivation using a mouldboard plough that inverts 

the soil and secondary cultivation using tine, disc or rotary cultivator to prepare the field for 

planting (Hallett & Bengough, 2013; Morris et al., 2010).  

Cover crops: Crops grown to provide soil cover during seasons when an annual grain crop is 

absent.  

Crop productivity: Crop productivity is the quantitative measure of crop yield in given 

measured area of field. 

Crop rotation: Practice of growing two or more annual crops in a given field in a planned 

pattern or sequence in successive crop years. 

Cropping systems: The term cropping system refers to the crops, crop sequences and 

management techniques used on a particular agricultural field over a period of years. It includes 

all spatial and temporal aspects of managing an agricultural system. 

D 

Drawbar pull: Drawbar power is the power transferred through the drive wheels or tracks to 

move the tractor and implement. It is a function of velocity, and in general decreases as the 

speed of the vehicle increases (due both to increasing resistance and decreasing transmission 

gear ratios). 

Denitrification: The loss or removal of nitrogen or nitrogen compounds specifically, reduction of 

nitrates or nitrites commonly by bacteria (as in soil) that usually results in the escape of nitrogen 

into the air. 

Draught forces: The force required to pull a plough or other implement. 

Dynamic loads: Dynamic loads are typically motor loads comprising either single-phase or 

three-phase motors driving mechanical loads applying fixed or varying torque on the motor. 

E 

Ecological sustainability: A capacity of ecosystems to maintain their essential functions and 

processes and retain their biodiversity in full measure over the long-term. 
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Edaphology: Edaphology is one of the two main divisions of soil science that encompasses the 

study of the effect of soil on living organisms, mainly plants. 

Electrical conductivity of soil: Electrical conductivity is the ability of a material to conduct 

(transmit) an electrical current and it is commonly expressed in units (mS/m). Soil electrical 

conductivity is an indirect measurement that correlates very well with several soil physical and 

chemical properties. 

F 

Farming system: A farming system is defined as a population of individual farm systems that 

have broadly similar resource bases, enterprise patterns, household livelihoods and constraints, 

and for which similar development strategies and interventions would be appropriate. 

Field capacity: The moisture content of soil in the field as measured two or three days after a 

thorough wetting of a well-drained soil by rain or irrigation water. 

Food security: According to FAO, food security exists when all people at all times have 

physical and economic access to adequate amounts of nutritious, safe, and culturally 

appropriate food to maintain a healthy and active life.  

G 

Global warming: A gradual increase in the overall temperature of the earth's atmosphere 

generally attributed to the greenhouse effect caused by increased levels of carbon dioxide, 

chlorofluorocarbons, and other pollutants. 

Growth of plants: It is the irreversible increase in size primarily associated with capture and 

allocation of resources e.g. water, nutrients, CO2.  

H 

Hydraulic conductivity: Saturated hydraulic conductivity is a quantitative measure of a 

saturated soil's ability to transmit water when subjected to a hydraulic gradient. It can be thought 

of as the ease with which pores of a saturated soil permit water movement. 

I 

Integrated crop management: It is a holistic approach to sustainable agriculture. It considers 

the situation across the whole farm, including socioeconomic and environmental factors to 

deliver the most suitable and safe approach for long-term benefit. 
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Integrated soil management: Soil management encompasses a number of strategies used by 

farmers and ranchers to protect soil resources, one of their most valuable assets. By practicing 

soil conservation, including appropriate soil preparation methods, they reduce soil erosion and 

increase soil stabilization. 

L 

Low tyre inflation pressure: It is a conventional traffic system that can facilitate random 

trafficking where low inflation pressure tyres are used instead of conventional inflation pressure 

tyres.  

M 

Macropores: Equivalent diameters is >30 μm. Plant root growth mostly occur in macropores. It 

allows water flow during infiltration and drainage and have the significance influence on soil 

aeration. 

Mesopores: Equivalent diameters is 0.2–30 μm. while mesopores and micropores are 

important for the water retention and storage of water in soils although water in micropores is 

generally unavailable to plants and impede microbiological activity in soil (Kay and 

Vandenbygaart, 2002). 

Micropores: Equivalent diameters is <0.2 μm. Micropores are fine soil pores, typically a fraction 

of a millimeter in diameter. They are responsible for the water holding capacity of soil.  

Minimum (and zero) tillage: Minimum tillage as defined here is generally a one-pass tillage 

operation at sowing synchronous with seed placement, typically achieved using full cut-out 

points, or full cut-out one-way or offset discs to break up the entire soil surface. It may include a 

shallow cultivation between seasons to control weeds when it may be called reduced tillage. 

No-till farming: No-till farming is a way of growing crops or pasture from year to year without 

disturbing the soil through tillage. 

Nutrient cycling: A nutrient cycle is the movement and exchange of organic and inorganic 

matter back into the production of matter. Energy flow is a unidirectional and noncyclic pathway, 

whereas the movement of mineral nutrients is cyclic. 

O 

Organic agriculture: The USDA defines organic agriculture as "a production system that is 

managed to respond to site-specific conditions by integrating cultural, biological, and 
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mechanical practices that foster cycling of resources, promote ecological balance, and conserve 

biodiversity." 

P 

Penetration resistance: It is a soil attribute that allows identifies areas with restrictions due to 

compaction, which results in mechanical impedance for root growth and reduced crop yield. 

Permanent wilting point: That point at which a plant is dried so badly that even though put into 

a humid atmosphere and watered, it will no longer recover. 

Plant development: It is the continuous change in plant form and function with characteristic 

transition stages and mostly related to environmental response such as temperature, 

photoperiod and light quality (Sadras et al., 2016). 

Plant available water: It is the amount of water above the wilting point soil water, the lower limit 

of water at which plants can uptake water. 

Pore circularity: It is a measure of how circular pores are in the scanned. The circularity value 

lies between 0-1. A circularity value of 1.0 indicates a perfect circle (Kim et al., 2010) while 

value approaches 0.0 indicates an increasingly elongated polygon (Ferreira and Rasband, 

2012).  

Pore connectivity: It is quantified as a function of the minimum pore diameter considered 

leading to a connectivity function of the pore space. 

Pore size: It is generally the distance between two opposite walls of the pore (diameter of 

cylindrical pores, width of slip-shaped pores). 

Pore size distribution: The pore size distribution is defined as the statistical distribution of the 

radius of the largest sphere that can be fitted inside a pore at a given point. 

Pore solidity: It is the area of a blob (a common term used in image processing) divided by its 

convex area (the imaginary convex hull around it).  

Pre-compression stress: It is is typically used as a factor to assess the mechanical strength 

and stability of soil against compaction (Horn and Fleige, 2003).  

R 

Random traffic farming: The random nature of field trafficking is a conventional traffic farming, 

covering 80-90% of the field area, is a typical commercial practice and inevitably leads to 

negative impacts on soil, water and crop (Kroulík et al., 2009),  
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S 

Shallow tillage: It refers to soil tillage four inches deep or shallower. The term “shallow” 

indicates the tillage equipment is designed to stir or ridge the soil without inverting the soil. 

Shear strength: It is a term used in soil mechanics to describe the magnitude of the shear 

stress that a soil can sustain 

Shear stress: Shear deform of soil through the rearrangement of soil microaggregates or 

particles (Koolen, 1994). 

Soil aggregate stability: Aggregate stability refers to the ability of soil aggregates to resist 

disruption when exposed to external forces such as water erosion and wind erosion, shrinking 

and swelling processes, and tillage. 

Soil aggregate: Soil aggregates are groups of soil particles that bind to each other more 

strongly than to adjacent particles. 

Soil aggregation: It occurs due to interactions of primary particles through the rearrangement, 

flocculation and cementation (Duiker et al., 2003), enhance the soil organic matter (SOM) 

against degradation and aggregate stability of soil is used as an indicator of soil structure (Six et 

al., 2000).  

Soil biodiversity: Soil biodiversity reflects the mix of living organisms in the soil. These 

organisms interact with one another and with plants and small animals forming a web of 

biological activity. 

Soil biota: Soil biota consist of the micro-organisms (bacteria, fungi, archaea and algae), soil 

animals (protozoa, nematodes, mites, springtails, spiders, insects, and earthworms) and plants 

(Soil Quality Institute 2001) living all or part of their lives in or on the soil or pedosphere. 

Soil bulk density: Bulk density of soil is the ratio of the oven dry weight mass of the soil to the 

bulk volume expressed in g cm-3 or Mg m-3.  

Soil degradation: It is the decline in soil condition that diminishes the capacity of soil and its 

ecosystems. 

Soil erosion: Soil erosion is the displacement of the upper layer of soil, it is one form of soil 

degradation. 

Soil fertility: Soil fertility refers to the ability of soil to sustain agricultural plant growth, i.e. to 

provide plant habitat and result in sustained and consistent yields of high quality. 
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Soil health: Soil health, also referred to as soil quality, is defined as the continued capacity of 

soil to function as a vital living ecosystem that sustains plants, animals, and humans (USDA 

NRCS, 2019a).  

Soil morphology: The branch of soil science that deals with the description, using standard 

terminology, of in situ spatial organization and physical properties of soil regardless of potential 

use. 

Soil particle density: It is the ratio of the mass of oven dry weight of the soil particles to the 

volume of solid particles not pore space, expressed in grams per cubic cm (g cm-3) or 

megagram per cubic meter (Mg m-3).  

Soil porosity: Refers to the amount of pore or open space between soil particles. 

Soil productivity: Soil productivity is defined as the capacity of soil, in its normal environment, 

to support plant growth. 

Soil quality: Soil Science Society of America define in simplest terms, soil quality is "the 

capacity (of soil) to function". Soil quality can be conceptualized as a three-legged stool, the 

function and balance of which requires an integration of three major components - sustained 

biological productivity, environmental quality, and plant and animal health. 

Soil resource: Soil resources form a fundamental part of the environment. They provide the 

physical base to support the productivity and cycling of biological resources, provide the source 

of nutrients and water for agricultural and forestry systems and fulfil a complex buffering role 

against environmental variability etc. 

Soil stability index: It is described as the relative stability of aggregated soil material when a) it 

is subjected to a test that usually involves either rapid immersion in water, raindrop impact or 

disruption with ultra-sound or b) a test that reveals a decrease in permeability or a change in the 

soil pore volume.  

Soil strength: It is defined as the resistance to deformation by the action of tangential (shear) 

stress. 

Soil stress: It is primarily a function of the applied surface load that is given by mechanical 

loading such as wheeled, tracked vehicles and other agricultural machinery.  

Soil structure: Soil structure refers to the arrangement of soil separates into units called soil 

aggregates. 
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Soil texture: Soil texture refers to the proportion of sand, silt and clay sized particles that make 

up the mineral fraction of the soil. 

Soil water retention: Soil water retention is the soil's ability to hold water inside its pores and 

hold onto moisture rather than allowing it simply to obey gravity and pour through the earth's 

surface 

Soil water: Soil water is the term for water found in naturally occurring soil. There are three 

main types of soil water - gravitational water, capillary water, and hygroscopic water - and these 

terms are defined based on the function of the water in the soil. 

Subsoil compaction: This subsoil compaction results in an increased damage of soil 

ecological functionality as these layers are less resilient due to less intense swelling and 

shrinkage, thawing and freezing as well as lower content of organic matter, less biological 

activity and other aggregating agents (Horn et al., 2000). 

Sustainable agriculture:  It is a farming in sustainable ways, which means meeting society's 

food and textile present needs, without compromising the ability of future generations to meet 

their needs. 

T 

Tillage pans: A plough pan/tillage pan is a subsurface horizon or soil layer having a high bulk 

density and a lower total porosity than the soil directly above or below it as a result of pressure 

applied by normal tillage operations, such as plows, discs, and other tillage implements. 

Total pore space and porosity: Porosity is the fraction of the total soil volume that is taken up 

by the pore space. Percent pore space (PS) is the ratio of the volume of voids in the soil to the 

total volume of the soil that is expressed by percentage.  

Tyre inflation pressure: Tyre is a flexible structure filled with compressed air. Inflation pressure 

plays an important role in carrying the vehicle load. Inflation pressure is vital to safe use of tyres.  

W 

Water infiltration: Infiltration is the process by which water on the ground surface enters the 

soil. The infiltration rate is the velocity or speed at which water enters into the soil. 

Water run-off: Runoff can be described as the part of the water cycle that flows over land as 

surface water instead of being absorbed into groundwater or evaporating. 
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Water use efficiency: It is the ratio between effective water use and actual water withdrawal. In 

another word, it is defined as the amount of carbon assimilated as biomass or grain produced 

per unit of water used by the crop. 

X 

X-ray Computed Tomography: It is a non-invasive imaging technique and a powerful tool to 

investigate possible modifications in soil structure and other physical properties of soil (Pires et 

al., 2005). The technique greatly helps in studies of pore geometry, pore shape, orientation and 

connectivity, pore size distribution, and improving overall understanding of soil hydrodynamic 

behaviour (Beckers et al., 2014).  
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CHAPTER 1: INTRODUCTION 

The United Nations has declared the 2030 Agenda for Sustainable Development in 2015 for 

peace and prosperity for people and the planet at present and the future. Among the 17 iconic 

Sustainable Development Goals (SDGs), goal 2: End hunger, focuses on food security, nutrition 

and sustainable agriculture (United Nations, 2018). Conventional modern agriculture is currently 

dependent on heavy machinery, which reduces the time of field operations and labour costs and 

helps to promote economically sustainable production. However, the effect of the heavier 

machinery on soil structure and land degradation and on crop development due to soil 

compaction is a growing concern (Soane and van Ouwerkerk, 1994a; b; Hamza and Anderson, 

2005; Ansorge and Godwin, 2007; Billman et al., 2012) and is the main cornerstone of the 

present study.   

1.1. Background and Motivation 

Global food production needs to increase by 70-100% to feed a > 9 billion world population in 

2050 (Alexandratos and Bruinsma, 2012). Food habits and growing of crops are also changing 

across landscapes and societies. Although agricultural production and intensification have 

increased globally, it is necessary to ensure that the production systems are sustainable to 

ensure food security for the global population (Pretty, 2008; Godfray et al., 2010; Bommarco et 

al., 2013; Shen et al., 2013; Shaheb et al., 2016; FAO, 2017a; Bunemann et al., 2018). The 

Green Revolution that occurred in the 1960’s, increased agricultural production worldwide, 

particularly in the developing world (Hazell, 2009) and saved over a billion people from 

starvation. Adoption of new technologies, high-yielding varieties of cereals, use of fertilizers and 

agro-chemicals and irrigation together with improved management techniques and 

mechanization were the keys that made the Green Revolution successful. However, the 

depletion of soil fertility, soil erosion, soil toxicity, diminishing water resources, pollution and 

salinity of underground water, increased incidence of diseases and global warming are some of 

the negative impacts of over adoption of technologies during these periods (Rahman, 2015). 

Furthermore, the ability to produce food is being affected due to growing competition for land, 

water, and energy and overexploitation of fisheries and thus, it is urgent to reduce the impact of 

the food system on the environment (Godfray et al., 2010).  

The question is how can the world adequately feed more than 9 billion people by 2050? What 

are the measures that the world could implement to ensure economic and social development 
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and minimize pressure on the environment? Potential solutions and strategies are needed to 

close the food gap between today and by 2050 while contributing to economic opportunities and 

social development and reducing environmental impacts (Searchinger et al., 2013). The current 

paradigm of productivity enhancement while reducing environmental impacts should translate 

into a paradigm where ecological sustainability will constitute the entry point for all agricultural 

development (McKenzie & Williams, 2015).  

The soil is a vital natural component of primary importance for food production and global food 

security and is considered as a non-renewable resource (Janvier et al., 2007; Stavi and Lal, 

2015). The intensity of land use for food production often results in negative impacts on soil 

quality, such as; reduction in OM, decrease in soil fertility, soil structural damage, increase in 

erosion (Lal, 1997; Towers et al., 2006). Soil and crop management systems greatly influence 

the soil quality and may impact the microbial community, affecting long-term economic and 

environmental sustainability (Hungria et al., 2009; Silva et al., 2014). Advances in engineering 

and technological knowledge have revolutionized modern farming in the United States 

(Sassenrath et al., 2008). Technological innovations in agricultural tractors have transformed 

farming, increased labour productivity and reduced operator’s hazards (Cavallo et al., 2014). 

Sustainable agricultural mechanization reduces manual labour time, relieves labour shortages, 

improves the productivity and timeliness of agricultural operations and creates new employment 

opportunities (FAO, 2017b).  

However, the use of heavy machinery and field traffic can cause compaction that can change 

soil structure and reduce the productivity of crops. Soil compaction by machinery traffic in 

agriculture is a well-recognized problem in many parts of the world (Chan et al., 2006; 

Hakansson, 1990;  Hakansson et al., 1988; Horn & Fleige, 2003) while it is recognized as a 

serious threat to soil productivity and soil ecological functions in modern agriculture (Hamza and 

Anderson, 2005; Schjønning et al., 2015). More than one-third of European subsoils are highly 

susceptible to compaction (Jones, Spoor, & Thomasson, 2003), and a quarter of all European 

soils were found compacted (Schjønning et al., 2015). Total area compacted was reported to be 

68, 33 and 4 M ha worldwide, in Europe, and the Australian wheat belt, respectively (Hamza 

and Anderson, 2005). Reports show that these may have increased considerably in the past 2 

decades (Keller et al., 2017).  

Soil compaction is a physical form of soil degradation, which changes the soil structure and 

influences soil productivity and causes damage to the environment by increasing GHGs 
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emission, soil erosion and pollution (Raghavan et al., 1976; Tullberg, 2010; Mueller et al., 2011). 

Soil degradation due to compaction is also reported in many areas in the USA (Flowers and Lal, 

1998). In fact, soils in all regions of the United States are designated as susceptible to 

compaction (USDA NRCS, 2004a). Soil compaction concerns have been growing in the 

temperate region of North America (Lindstrom and Voorhees, 1994) and more recently in 

Minnesota (Dejong-Hughes, 2018).  

The size and continuous increase in the weight of heavier machinery and use, and number of 

passes in modern intense agricultural production systems have been impacted soil conditions. 

The average tractor weight has increased threefold from 1950 to 2000 (Soane and van 

Ouwerkerk, 1998; Sidhu and Duiker, 2006). Axle loads of 10 Mg are common in many countries 

(Hakansson & Reeder, 1994). The weight of grain cart (single-axle) in the U.S. are of 15 to 45 

Mg per axle (Schuler et al., 2000). The weight of tractors was < 3 tons in 1940, which has 

increased around 6 times for the big 4WD and is approximately 18 Mg (Dejong-Hughes, 2009). 

Ballasted tractor weight tested at the University of Nebraska-Lincoln showed that there is a 

persistent trend in increased tractor size and mass (0.41 Mg weight increment per year) over 

the last 100 years (Billman et al., 2012). A list of the agricultural equipment and their weight 

currently seen in the farmers’ field of the United States and other regions is given in Appendix 1. 

This increase in equipment size is considered one of the major threats to increase soil 

compaction (Chamen, 2011; Billman et al., 2012). Traffic and heavy machinery passes can 

create soil compaction: increasing bulk density, reducing porosity, soil hydraulic properties and 

soil stability (Alakukku, 1996a; b; Hula et al., 2009). Every passage causes damage to the soil 

structure (Raghavan et al., 1976). The first tyre pass in the soil increased the bulk density and 

cone index by an average of 7 and 6%, respectively (Canillas and Salokhe,  2002). The number 

of tyre passes when ploughing with conventional tillage, contacted more than 86% of the total 

field area in one cropping season (Kroulík et al., 2011). Increased traffic frequency and high 

ground pressure had detrimental effects on soil physical properties by increasing higher bulk 

density and strength, resulting in higher cone index values in soil (Solgi et al., 2016). Increasing 

both the dynamic load and inflation pressure increased the peak soil stresses and bulk density 

of soil (Bailey et al., 1996). Subsoil compaction increased with the increased loads to the soil, 

these increases are difficult or expensive to remove (Kroulík et al., 2009).   

Soil compaction due to heavy wheel traffic (multiple passes and higher wheel load), and number 

of passes and tyre pressure impacts on crop growth, development, and yield. Wheel traffic 

significantly reduced maize root growth as compared to the un-trafficked (UT) side of the crop 
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row (Kaspar et al., 2001). The resulting compaction creates physical (e.g. damages in soil 

structure), chemical (e.g. changes in plant water and nutrient availability) and biological change 

(e.g. decreases of soil biota) in the soil that negatively impact crop performance (Chyba, 2012; 

Horn et al., 2003). The immediate consequences of soil compaction are decreases in water and 

fertilizer efficiencies and increased soil erosion (Sudibyo, 2011). Repeated traffic and multiple 

passes with higher contact pressures and a zero traffic treatment caused maize yield reductions 

of 30–50% in Quebec (Raghavan et al., 1979) while in soybean, a yield reduction of 0.25-0.45 

Mg ha-1 was found under light to heavy equipment traffic (Botta et al., 2010).  

Soil compaction can prevent crop root systems penetrating through the compacted soil and 

extracting the soil-water that leads to losses of yield (Ball et al., 1999; Hula et al., 2009). 

Compaction strongly reduces plant growth as it limits root growth (Rosolem et al., 2002) and 

accessibility of nutrients due to an increase in bulk density and reduced pore size (Nawaz et al., 

2013). This may lead to extremely dry topsoil and eventually causes the soil to crack because 

the roots absorb water requiring for transpiration from the upper part of the soil where plants can 

penetrate with their restricted root depth (Batey, 2009). Soil compaction due to vehicular traffic 

caused a 9 and 19% yield reduction of soybean on poorly drained heavy textured soil with the 

axle loads of 10 and 20 Mg, respectively (Flowers and Lal, 1998). Up to a 38% reduction in 

grain yield of wheat was reported when subsoil compaction was present at 0.15 m depth to a 

bulk density of 1.93 Mg m-3 (Ishaq et al., 2001).  

Tillage helps to loosen and aerate the soil that facilitates crop production. It’s effect on crop 

yields in a maize and soybean rotation vary considerably. Higher crop yields have been 

obtained in conventional tillage using mouldboard plough or chisel plough treatments than in no-

till systems, particularly for soils with root-restricting tillage pans (Camp et al., 1984; Busscher et 

al., 2006). Although the benefit of reduced tillage has also found as it promotes the soil to hold 

organic matter, soil moisture, and potentially more soil carbon while reducing costs and fuel use 

(USDA ERS, 2016, 2017). Tillage and traffic enhance soil erosion and soil degradation process 

(Tullberg et al., 2007). Conventional deep tillage improves soil structure by loosening the 

compaction and helps to improve soil aeration and water infiltration (Sommer and Zach, 1992). 

However, extensive cultivation is highly vulnerable to soil erosion. The historic ‘Dust Bowl’ 

incidence in the USA is one of the best examples in this regards (Huggins and Reganold, 2008). 

The 15 years trend of typical tillage systems in the United States showed that 40% of the area is 

covered by the conventional tillage systems that are characterized by deep tillage with chisel 
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plough followed by shallow tillage while the no-till systems covered only 17% (Simmons and 

Nafziger, 2009) (Fig. 1.1). According to US Census of Agriculture, conventional tillage, reduced 

tillage and no-till farmland areas in the US national were 37%, 35% and 28% respectively and 

Illinois 28%, 43%, 29% respectively (Zulauf and Brown, 2019) (Appendix 2.1).   

 

Figure 1.1. Trends of typical tillage systems in the United States. Adapted from Simmons and 

Nafziger (2009). 

Illinois has about 71,000 farms, which covered 10.93 million hectares (27 million acres), which is 

75% of the state's total land area. The average size of a farm in Illinois and the United States 

are 152 and 180 hectares, respectively (USDA NASS, 2018a). The production of maize and 

soybean for the last 30 years data shows that yield of both maize and soybean are increasing, 

with average yields of 11.34 and 3.50 Mg ha-1 (180.7 and 52.1 bushels acres-1), respectively 

(USDA NASS, 2018b) (Fig. 1.2a-d). Most farm acreage in Illinois is devoted to grain production 

and Illinois is recognized as a leading producer of soybean (ranked 1st) and maize (2nd) in the 

United States of America (USDA NASS, 2018b; Illinois Department of Agriculture, 2019) (Fig. 

1.2e-f). 
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Figure 1.2. Grain yield and production of maize (a, b and e) and soybean (c, d and f) for the last 

30 years in the United States (Adapted from USDA NASS, 2018b). Note: 1 Mg grain weight is 

equivalent to 39.4 and 36.7 bushels for Maize and soybean, respectively. 
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Meanwhile, shreds of evidence suggest that farm enterprises of all scales due to compaction of 

agricultural soils could face not only crop yield penalties (Hula et al., 2009; Lamandé and 

Schjønning, 2018) but also wastage of energy and time required to alleviate compaction 

(Chamen et al., 1992; McPhee et al., 1995). Thus, to boost up the production and to maintain 

soil physical health, farmers need to consider viable production systems to deliver on the 

promise of a sustainable food future. Controlled traffic farming can reduce annual surface area 

trafficked but this requires: (i) all field machine widths to be matched for crop production 

(Chamen, 2011) and (ii) navigation and machine guidance systems to be available and reliable 

(Misiewicz, 2016). Low ground pressure systems with agricultural tracks or specially 

manufactured tyres that can operate at low inflation pressures have been shown to reduce 

ground contact stress transmitted during field operations (Ansorge & Godwin, 2007, 2008; 

Chamen, 2011; Trautner & Arvidsson, 2003). Controlled traffic farming with (30% area 

trafficked) showed significantly higher yields of winter wheat and spring oats followed by low 

tyre inflation pressures than random conventional pressure traffic treatment (Godwin et al., 

2017). Proper traffic management along with adaptable wheel track widths and operating 

systems innovation that can reduce soil compaction would help to improve water infiltration 

rates, reduce energy consumption and improve crop yields (Godwin et al., 2015). Low ground 

pressure tyre systems that best suit some farming enterprises could be an option as a viable 

traffic management system (Godwin et al., 2015). Both low-pressure tyres and wheel tracks 

were both beneficial at minimising soil compaction in a sandy loam soil (Smith et al., 2014a). 

Agricultural tyres based on “Ultraflex” technology can carry more load with less pressure 

resulting in a larger footprint and are aimed at reducing soil compaction and improving crop 

yield (Michelin, 2017). Apart from the earlier work at Harper Adams University (Smith et al., 

2014a; b; Millington, 2019), robust experimental results are not available and these are required 

to compare this technology with standard radial tyre systems for alternative tillage systems. 

Notwithstanding several researchers who have studied soil compaction and its effects on soil 

and crop yield; however, it is difficult to estimate an economic impact because fields vary in soil 

type, crop rotations, and weather conditions. Currently, no research has been conducted on the 

effect of Ultraflex low ground pressure tyres with different tillage practices in silty clay loam soils 

in mid-west farming operations in the United States. Drummer silty clay loam soil is the main 

productive soil of Illinois which covers more than 0.6 million hectares of land with significant 

areas in Indiana, Ohio and Wisconsin (USDA NRCS, 2019b) where maize and soybean are the 

dominant crops. The field-scale studies reported here would improve the understanding of the 
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effect of lower ground pressure systems on soil conditions and crop growth and yield for a 

typical maize/soybean rotation for three selected tillage systems in the Mid-western United 

States.  

1.2. Hypothesis  

It is possible to improve crop development and yield by reducing soil compaction using reduced 

tyre inflation pressure systems. 

1.3. Aim 

The aim of the field-scale studies is to improve the understanding of the effect of tyre inflation 

pressure systems on soil conditions and crop growth and yield for typical maize/soya bean 

rotation for 3 tillage systems namely: conventional deep tillage, shallow tillage and no-till.   

1.4. Objectives 

1) To determine the effects of tyre induced ground pressure, by comparing Ultraflex 

standard1 and low inflation tyre systems, on soil structure, crop development and yield 

for a typical maize/soybean rotation for three tillage systems (conventional deep tillage, 

shallow tillage and no-till) through field-scale studies in silty clay loam Midwest farming 

system in Illinois, United States. 

2) To investigate the effects of tyre inflation pressure on soil properties namely: number of 

pores, % porosity, pore size and distribution using X-ray Computed Tomography for 

three tillage systems. 

3) To determine the relationship between X-ray Computed Tomography derived porosities 

and physical soil porosities. 

4) To conduct an economic analysis of the farming systems over two cropping seasons. 

 
1 Standard pressure was used to simulate normal tyres without the need to change the tyres during 

the experiment as shown by  Smith et al. (2014b).  
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1.5. Structure of the Thesis 

The timeline of research works conducted at Champaign County, Illinois, USA from 2016 to 

2018 is given in Table 1.1. 

Table 1.1. Crop rotation in two adjacent fields in Champaign County, Illinois, USA. 

Season North Field South Field 

2016 2017 2018 2016 2017 2018 

Year Year 1 Year 2 Year 3 Year 1 Year 2 Year 3 
Season 1 2 3 1 2 3 
Crop Maize Soybean Maize Soybean Maize Soybean 

 
 

The thesis consists of ten chapters, an outline of which are given below: 

Chapter 1 Introduction 

The first chapter focuses on the background of the research study is related to the use of heavy 

machinery, tyre inflation pressure and different tillage systems effects on soil across the 

continent and crop development of maize and soybean farming in the Midwest Illinois has 

described. The main research hypothesis, aim and objectives, and thesis structure are also 

outlined. 

Chapter 2 Review of Literature 

This chapter is the review of literature related to soil compaction, the effect from the use of 

heavy machinery and field trafficking, ground pressure tyres, tracked agricultural vehicles, 

controlled traffic farming on soil conditions and growth and yield of crops. Moreover, the review 

investigated the study of soil compaction using X-ray Computed Tomography (CT). A long-term 

trial of the traffic and tillage systems conducted at Harper Adams University, the UK is also 

briefly discussed.  

Chapter 3 General Methodology 

This chapter focuses on the materials and general methodology of the present study. The brief 

description includes the location of study, materials, treatments, experimental design, and layout 



HARPER ADAMS UNIVERSITY 10 M. R. SHAHEB, 2020 

of plots. Data recording protocols of soil and crops including collection of soil cores for X-ray CT 

study and analysis of these data are discussed. 

Chapter 4 Study of Soil Properties using X-Ray Computed Tomography 

This chapter describes in detail an investigation of the effect of tyre inflation pressure on soil 

properties for three tillage systems using X-ray CT. Collection of soil cores, protocols and 

procedures of X-ray CT scanning, image processing, data collection and analysis are 

discussed. Finally, results and discussion, and conclusions are made. 

Chapter 5 Soil Properties and Crop Development of Maize 

This chapter focuses on the effect of tyre inflation pressure and tillage systems on soil 

properties and crop development of maize. Initial soil uniformity assessment, soil properties 

including compaction measurements, data on growth and yield of maize, and weather data are 

discussed. Finally, data analysis, results, discussion, and conclusions are made.   

Chapter 6 Soil Properties and Crop Development of Soybean 

This chapter focuses on the effect of tyre inflation pressure and tillage systems on soil 

properties and crop development of soybean. Data recording of the initial soil parameters, soil 

properties during crop growing seasons and crop growth and yield and analysis of these data 

are discussed. Finally, interpretation of results and discussion, and conclusions are made.   

Chapter 7 Economic Analysis of Alternate Tyre Systems in Maize-Soybean Rotation  

This chapter focuses on the economic analysis especially tyre costs, annual and total earnings, 

the payback period of the effect of tyre inflation pressure and tillage systems for maize and 

soybean farming systems in the Midwestern United States are discussed. 

Chapter 8 Discussion 

This chapter describes the assessment of the uniformity of experimental fields. Interpretations of 

the effect of tyre inflation pressure and tillage systems on soil using novel X-ray computed 

tomography are discussed. The effect on soil properties, growth, and development of maize and 

soybean, and economic analysis of the farming systems are discussed. 
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Chapter 9 Conclusions 

This chapter focuses on the drawing of conclusions of the study based on the three years of 

field experimentation and overall findings. Key take-home messages for the farmers and 

stakeholders are clearly outlined. 

Chapter 10 Recommendation for Further Work 

This chapter describes the recommendations made from the study of the effect of tyre inflation 

pressure and tillage systems on soil and crops. Limitations and scopes of a couple of other 

research areas have addressed for further research. 

The References provide the list of reference documents and research articles that have been 

reviewed. 
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CHAPTER 2: REVIEW OF LITERATURE 

Use of agricultural machinery helps agriculture production systems worldwide to be effective 

and viable. Notwithstanding the benefit of timeliness of operations and covering the substantial 

area under cultivation but their negative impact on soil and crops are noticeable. Negative 

effects on the soil aggregate structure can result in decreased soil quality, increased erosion 

and decreased crop production (McKenzie, 2010). This chapter summarizes reported effects of 

soil compaction and it’s causes, the effect of heavy machinery, field trafficking on soil properties 

and crop growth and development and their consequences for crop productivity. 

2.1. Soil Resource and its Importance 

Soil is a natural non-renewable resource on the surface of the earth that has four components: 

minerals (45%), organic (5%) water (25%) and air (25%) (Brady and Weil, 1996). The diversity 

and productivity of plants and animals depend on the soil. Soil stores and regulates water from 

rain, irrigation etc., sustain plants and animals, and provides, stores, transforms and cycles of 

carbon (C), nitrogen (N), phosphorus (P), sulphur (S) and other nutrients in the soil. Soil and 

water are essential natural resources for our domesticated animal- and plant-based food 

production systems (Parikh and James, 2012).  Soil’s mineral components and soil biota play an 

important role as a filter and act as a buffer for potential organic and inorganic pollutants, 

industrial by-products, and atmospheric deposits. Soil also provides physical support to plant 

roots and acts as a medium for plant growth (Blum, 1993).  

2.2. Soil Health and Structure 

According to the USDA, soil health (also referred to as soil quality) is defined as “the continued 

capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans” 

(USDA NRCS, 2019a). The discussion between soil quality vs soil health was reported by 

Bunemann et al. (2018). The paper highlighted that soil quality is more focused on dynamic soil 

properties that can strongly be influenced by management. In contrast, soil health addresses 

the ecological attributes of the soil which have implications beyond its quality or capacity to 

produce a particular crop (Bunemann et al., 2018). Poor soil conditions due to poor soil 

structure, low organic matter, decreased soil fertility, and high soil compaction increase 

vulnerability to soil-borne diseases (Abawi and Widmer, 2000). Management practices have an 

impact on soil physical properties and can increase the diversity of soil microorganisms resulting 
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in improved soil health and reduced disease incidence in the soil in a sustainable manner 

(Abawi and Widmer, 2000).  

Soil health depends on the maintenance of four major functions, namely, C transformations, 

nutrient cycles, soil structure maintenance, and the regulation of pests and diseases 

(Kibblewhite et al., 2008). Mechanical tillage, especially intensive tillage, disrupts the spatial 

organization of soils, increases OM decomposition, and accelerates nutrient cycling, resulting in 

increased N mineralization and soil C loss as compared with reduced or no-till (Kibblewhite et 

al., 2008). Soil microorganisms exist in the soil depend on C source for energy. Soil contains 

about 8 to 15 tons of bacteria, fungi, protozoa, nematodes, earthworms, and arthropods 

(Hoorman and Islam, 2010). Some soil biota is hardy such as bacteria, actinomycetes, and 

protozoa and can tolerate more soil disturbance and dominate in tilled soils while others for an 

example fungal and nematode populations tend to dominate in no-till soils (Hoorman and Islam, 

2010). Soil organic matter (SOM) is composed of both living (microorganisms) and non-living 

dead fractions (fresh residues and humus). Microbes rely on SOM to survive and sustain in the 

soil.  

Organic farming, crop rotation, cover crops and no-till improve soil health. Long-term crop 

rotations studies were conducted in the US great plains (Anderson, 2015), where rotations 

included 3 years of a perennial legume and 6 years of annual crops and organized in 2-year 

intervals of the warm season or cool season crops. Results showed that crop rotations with no-

till systems enhanced total porosity and improved nutrient cycling and thus promoted soil 

restoration in addition to decreasing weed infestation 3 to 4-fold in some annual crops 

(Anderson, 2015).  

Soil structure is referred to as “the size,  shape, and  arrangement of solids and voids, and 

forces that affect these characteristics" (Lal, 1991). However, in contrast to agricultural 

production edaphologically, it is defined as "size, shape, arrangement, and continuity of pores 

and voids; their capacity to retain and transmit fluids and organic and inorganic substances, and 

ability to support vigorous root growth and development" (Lal, 1991). Soil with good structure 

typically has three types of pores macropores, mesopores, and micropores with equivalent 

diameters are >30, 0.2–30 and <0.2 μm, respectively (Kay and Vandenbygaart, 2002). Plant 

root growth mostly occurs in macropores that allow water flow during infiltration and drainage, 

and have a significant influence on soil aeration, while mesopores and micropores are important 

for water retention and storage of water in soils although water in micropores is generally 
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unavailable to plants and impede microbiological activity (Kay and Vandenbygaart, 2002). Well-

structured soils have optimal soil porosity and retain sufficient water and air permeability that 

create favourable conditions for crop root growth and development and eventually enhance the 

yield of crops (Kohnke, 1968). 

Soil texture is a stable physical property of soil while soil structure can change due to both 

natural and man-made conditions. Soil structure changes with the management and biological 

activity in soil (Hillel, 1971) and largely determines the nature of the different physical processes 

(Kooistra and Tovey, 1994). It is a key factor that enhances the ability of soil to support and 

sustain plant and animal life, and moderate water quality and soil C sequestration (Bronick and 

Lal, 2005).  

Soil aggregate influences the soil physical and biological processes while optimum conditions 

retain a large range of pore size distribution. Soil aggregate enhances the ability of soil to resist 

disruption against external forces such as water and wind erosion, shrinking and swelling and 

conventional tillage management (Papadopoulos et al., 2009; USDA NRCS, 1996). Soil 

aggregation occurs due to interactions between primary particles through rearrangement, 

flocculation and cementation (Duiker et al., 2003), enhance the SOM status against degradation 

and to improve aggregate stability is used as an indicator of soil structure (Six et al., 2000). Soil 

structure influences soil water movement and retention, erosion, crusting, nutrient recycling, root 

penetration and crop yield. The decline in soil structure is increasingly seen as a form of soil 

degradation (Chan et al., 2003) and is often related to land use and soil/crop management 

practices.  

Compression and shear are the two processes that can lead to deterioration of soil structure. 

Compression decreases or densifies soil volume through the expulsion of soil air while shear 

deforms soil through the rearrangement of soil microaggregates or particles (Koolen, 1994). 

Deep tillage is often used to remove soil compaction but studies suggest that that deep tillage 

practices might even worsen soil structure if there is no compaction especially if it is conducted 

in moist soil conditions (above field capacity) that results in hasten soil degradation process and 

causes double negative in conventional agriculture (McGarry and Sharp, 2003). Tillage 

encourages decomposition of organic matter, breaks down soil aggregates, and weakens soil 

structure, thus in the long-term, it may not be a potential solution for minimizing soil compaction 

(Brady and Weil, 2008). 



HARPER ADAMS UNIVERSITY 15 M. R. SHAHEB, 2020 

Compaction damages soil structure and reduces total pore space, and particularly affects the 

larger pores and voids between soil particles and aggregates. As a result, the continuity of the 

macropore system is reduced, leading to poor soil aeration, infiltration and transport of water 

(Hakansson, 2005) and impeded root growth. Macropores are relatively resistant to vertical 

compression and the structure and functions of macropores can be an effective measure of soil 

quality (Alakukku, 1996a).  

Besides the negative effect of soil structural damage due to imposition of higher stress than soil 

strength, the presence of a high biological agent (e.g. soil microbes) in the soil sometimes 

showed a positive response. For an example, soil responds to imposed stresses provided by 

traffic initially compact but soil when remains undisturbed, even under high loads, some porosity 

(and therefore reduction in density) is gained due to rooting, biological and fauna activity 

(Chamen, 2011). To sum up, soils having good structure and high aggregate stability play an 

important role in enhancing porosity and decreasing erodibility and improving soil health and 

thus increasing agronomic productivity (Bronick and Lal, 2005). 

2.3. Importance of Soil and Agricultural Sustainability 

Soil has multiple functions that are vital not only for agricultural and biomass production, natural 

and environmental resources protection but also to landscaping architecture and urban 

applications. International Soil Reference and Information Centre (ISRIC) and others reported 

below are six key soil functions (Blum, 1993; ISRIC, 2019) of which first three are mainly 

ecological while other three are rather linked to human activity/anthropogenic activates (Blum, 

1993). 

i) Food and biomass production (soil productivity for agricultural and forest cropping); 

ii) Environmental interaction, for an example, filtering water and storage or buffer and 

transportation of solute, toxic elements etc;  

iii) Biological habitat and gene pool; 

iv) Source of raw materials, supplying water, clay, sand, gravel, minerals and others; 
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v) Physical and cultural heritage (e.g. soil serves as the spatial base for technical and 

industrial structures, forming part of our cultural development, concealing paleontological 

and archaeological treasures); 

vi) Platform for man-made structures: e.g. housing construction, industrial development, 

transport, and traffic systems. 

Soil supports agriculture and is a critical part of sustainable agriculture. Soils provide and 

regulate a large number of ecosystem services and have a strong relationship with humans, the 

earth, and food sources (Bommarco et al., 2013; Sanjai and Resources, 2014; Bunemann et al., 

2018; Pereira et al., 2018). Soil provides water and nutrients to plants, thus the healthiest soils 

i.e. good structured and fertile soils produce the healthiest and most abundant food supplies 

(Sindelar, 2015).  

Despite the benefit of the intensification of agriculture, negative responses have emerged to the 

environment, soil and other natural resources (Pretty, 1997, 2008; Blanke et al., 2017). 

Decreasing soil fertility, productivity, negative impact on biological diversity, secondary pest 

outbreaks, agricultural impact on environment etc. are some examples of intensive agriculture 

(Pretty, 2008; Lichtfouse et al., 2009; Pereira et al., 2018). The concept of sustainable 

agriculture has become prominent in research, policy, and practice with aims to balance the 

economic, environmental, and social aspects of farming, creating a resilient farming system in 

the long-term (Rose et al., 2019).  

Agricultural sustainability considers the concept of the economic, environmental and social 

aspects of farming, while also promoting the resilience and persistence of productive farming 

landscapes (Garibaldi et al., 2017). The USDA has described the different terms, concepts and 

practices commonly associated with sustainable agricultural systems, of which some of them 

are conceptual, while others are strictly methodological. However, most approaches belong to 

the umbrella of sustainable agriculture (Gold, 2007). Agricultural sustainability can be achieved 

through several potential concepts. For examples; integrated pest management - an ecosystem 

based approach intended to grow healthy crops and minimizing the use of pesticides (e.g. FAO, 

2019), integrated crop management (e.g. Lançon et al., 2007), agroforestry (e.g. Leakey, 2014), 

and organic agriculture (e.g. Reganold & Wachter, 2016; Scialabba & Mller-Lindenlauf, 2010), 

conventional intensification (e.g. Cunningham et al., 2013; Pretty, 2008), diversified farming 
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(e.g. Garibaldi et al., 2017; Kremen et al., 2012), agro-ecological intensification/farming (e.g. 

Bommarco et al. 2013) are all currently practised. 

Researchers view to pursue the aim of the agricultural sustainability through precision farming 

(e.g. Blackmore, 1994), sustainable intensification (e.g. Garibaldi et al., 2017; Pretty, 2008), 

climate smart farming - increase the productivity, building resilience to climate change and 

reducing greenhouse gas emissions (FAO, 2013; Lipper et al., 2014), integrated soil 

management (e.g. Lal, 2008). 

Agricultural sustainability is a broad term that cannot be translated easily into the practical field; 

however, it is a concept that helps to maintain long-term agricultural productivity as well as 

protecting the environment (Gold, 2007). It can be understood as “the management and use of 

agroecosystems in a way that the biological diversity, productivity, regeneration capacity, vitality 

and functioning capacity are maintained” (Rose et al., 2019). Overall, it can be understood by 

the way of cumulative use of best management approaches and practices of our 

agroecosystems. Agricultural sustainability helps to increase agricultural productivity whereby 

optimum utilization of natural resources will be ensured, soil health and quality will be 

maintained; environment and social benefit will be guaranteed for the present without 

compromising the need of the future generations. 

2.4. Soil Degradation and its Impact on the Environment 

Degradation of soil diminishes the capacity of the soil and its ecosystems. Improper use and 

poor management of soil usually for agricultural, industrial, or urban purposes are the main 

causes of soil degradation.  Declining soil fertility, loss of organic matter, changes in soil 

structure (due to compaction), soil erosion, adverse changes in salinity, acidity and /or alkalinity 

are some of the examples of soil degradation (Oldeman et al., 1991; Soane and van Ouwerkerk, 

1995a; Lal, 1997; Eswaran et al., 2001). According to the UN Global Assessment of Land 

Degradation report, almost 38% of the global land area has been degraded by human-induced 

land degradation (Nkonya et al., 2011). Land degradation occurs through the physical (e.g. 

crusting, compaction, erosion), chemical (e.g. salinization, nutrient leaching, N volatilization), 

and biological processes (e.g. decrease in SOM, soil biodiversity) (Lal, 1993) that decrease in 

soil quality and reduces in biodiversity.   
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Soil biota and biological processes are important drivers of change of soil quality and play a 

significant role in improving soil structure (Russell, 1988). Improper management of soil causes 

a negative influence on biological soil health by affecting the number and distribution of 

microbial populations in soil (Chamen, 2011). Reduced root biomass, reduced infiltration, 

increased runoff, and increased soil temperature due to soil disturbance disrupt habitat for soil 

biota and eventually can diminish the soil food web (USDA NRCS, 2004b). Microbial biomass 

and C-mineralization deteriorated with the soil bulk densities of over 1.7 Mg m-3 and further 

burrowing of earthworms can be impeded due to soil compaction (Beylich et al., 2010). 

Although, field trial results reported that compaction had no significant effect on soil biota 

(Beylich et al., 2010), however, experiments were highly varied in conditions and situations. The 

distribution and numbers of microbes were reported to be reduced in the bulk density range 

1.32–1.49 Mg m-3 whilst both biomass and numbers were reduced drastically when bulk density 

reached 1.52 Mg m-3 (Söchtig and Larink, 1992). 

Soil compaction is a physical degradation of soil that reduces soil aeration and increases soil 

strength. There are three types of physical degradation of soil found in ISRIC’s report on the 

Global Extent of Soil Degradation (Oldeman, 1992). These are; i) compaction (e.g. due to heavy 

machinery), crusting and scaling of topsoil (e.g. due to raindrops), ii) waterlogging and iii) 

reduction in SOM that can decline in soil conditions. Soil strength elevated by the application of 

a loading stress increases bulk density (BD), penetration resistance (PR) or shear strength of 

soil (Whalley et al., 2008). This reduces the size of pores, pore area and percentage porosity of 

soil and thus results in degradation of soil structure. “The Thematic Strategy for Soil Protection” 

published by the European Commission in 2006 identified soil compaction as one of the five 

most frequent threats to soils in Europe (Houšková and Montanarella, 2008). Compaction 

causes tighter bonding between soil particles and aggregates, increases soil strength and 

decreases soil aeration that leads to poorer uptake of water and nutrients and lesser plant root 

growth (Hakansson, 2005). Increasing soil strength and decreasing storage and supply of water 

and nutrients results in poorer soil physical properties. This is exacerbated with the use of tillage 

or grazing at high soil moisture content and low organic matter soil (Hamza and Anderson, 

2005).  

2.5. Soil Management 

Soil management is fundamental to all agricultural systems due to the widespread degradation 

of agricultural soils (European Commission, 2002). The key challenge is to maintain and 
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conserve ecosystem functions and services while optimizing agricultural yields (Kibblewhite et 

al., 2008). The soil has both inherent and dynamic properties of which soil texture is the inherent 

soil quality that does not change easily while dynamic soil properties e.g. SOM, soil structure 

can be changed by management practices (USDA NRCS, 2019c). Simmons and Nafziger 

(2009) reported six essential practices involved in soil management: i) amount and type of 

tillage, ii) maintenance of SOM, iii) proper nutrient supply for plants, iv) soil acidity, v) avoidance 

of soil contamination and finally vi) control of soil erosion. A typical chart (Fig. 2.1) of soil 

management showed that adequate time is required for the gradual improvement of soil and 

environmental quality after initiation of improved management (USDA NRCS, 2018).  

 

Figure 2.1. Soil quality improvement over time after the start of soil management (USDA NRCS, 

2018).  

Several management options have been described for minimizing the effect of compaction of 

soil (Hamza and Anderson, 2005). These include minimum (and zero) tillage, controlled traffic, 

reduced traffic and number of passes, reduced intensity of grazing, vegetative soil cover, 

loosening compacted soil by deep ripping and using deep and strong rooting plants in rotation, 

machines with low axle loads and tyres with high contact area resulting in reduced ground 

pressure etc. However, the adoption of these practices can be considered depending on soil 

type, environmental conditions, and farming system perspective. 
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Reduced or no-till farming practices improve soil health by conserving SOM (Komatsuzaki and 

Ohta, 2007). Due to its benefit to soil, worldwide around 72 million ha of land mainly to Latin 

America, USA, Canada and Australia is covered by conservation agriculture (no-till, cover crops, 

retention of residues) while only 3% of land in the rest of the world are managed with 

conservation agriculture practices (Benites et al., 2003). Long term no-till soil contains higher 

amounts of active carbon, SOM and thus has a higher number of soil microbes than 

conventionally tilled soils (Hoorman and Islam, 2010). Soil is a non-renewable natural resource 

that provides ecosystem services essential for life (Kragt and Robertson, 2014; Pereira et al., 

2018). To feed-ever increasing world populations and provide food, fibre, fuel, and other 

medicinal products sustainable management of soil is crucial. 

2.6. Review of the Effect of Soil Compaction 

Definition of compaction and key issues related to compaction such as causes and factors, the 

effect of compaction on soil properties and crop growth, development and yield are given below.  

2.6.1. Soil Compaction 

Compaction takes place when soils are subjected to stresses that exceed its inherent strength. 

Compaction in physical terms can be defined as: “The modification of the pore volume and pore 

structure of the soil in which the size and number of macropores are reduced and shape and 

continuity of pores are changed (Soane et al., 1980)”. The Soil Science Society of America 

(SSSA) defines compaction as ‘‘the process by which the soil grains are rearranged to decrease 

void space and bring them into closer contact with one another, thereby increasing the bulk 

density’’ (SSSA, 2008). Compaction alters the spatial arrangement, size and shape of clods and 

eventually reduces the pore spaces of soil both inside and outside of clods and aggregates 

(Defossez and Richard, 2002). Compaction is the reduction of the volume of a given mass of 

soil, i.e. decrease in void ratio and porosity and, conversely, increase in BD  (Keller, 2004) 

which was considered as a working definition of the present study. Soil compaction is also 

defined as the “Densification and distortion of soil by which total and air-filled porosity are 

reduced, causing deterioration or loss of one or more soil functions (Huber et al., 2008)”.  

Research on compaction has increased with an increase in the mechanization of agriculture in 

the 1950s  (Schafer et al., 1992). Historical conferences organized by ASAE, ISTRO and others 

held between 1960 to 1988 on compaction concluded that soil compaction is a complex 
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phenomenon and it’s solutions are not easily obtainable, and thus the fundamental 

understanding of compaction is essential to develop sustainable crop production management 

systems (Schafer et al., 1992).  

2.6.2. Causes of Soil Compaction 

Soil compaction occurs when the application of a load or stress provided by a vehicle on the soil 

surface exceeds the soil strength (Sohne, 1958). Degradation of soil structure through the 

natural (Young et al., 1991) and human‐induced (Soane et al., 1980; Soane & van Ouwerkerk, 

1995) processes, enhances to incidences of serious erosion and decreases in crop yields. The 

main causes of soil compaction are overuse of heavy machinery, intensive cropping and 

inappropriate soil management which is aggravated by working in moist conditions (Hamza and 

Anderson, 2005). Natural characteristics of soil deformation cause a dense layer, shrinkage of 

soil owing to drying, trampling by draught and grazing animals, however, the main causes of soil 

compaction are related to wheels and tracks of machines and vehicles and soil-engaging tools 

(Canillas and Salokhe, 2002). 

Compaction of agricultural soils can be induced by human and natural process (Kirby, 2007; 

Houšková and Montanarella, 2008). Natural compaction can be referred as primary compaction, 

includes soil properties inherited from rock and minerals, environment and climate while, 

human-induced compaction also known as secondary compaction can be created by the type of 

soil use and soil management (Houšková and Montanarella, 2008). The compressive forces 

derived from vehicle wheels, tillage machinery and the trampling of animals, acting on 

compressible soil are the main causes of soil compaction (Batey, 2009). Human-induced 

compaction can be the result of using tillage equipment and heavy field machinery while natural 

soil forming processes can also cause compacted soils with high clay content, and the best 

example is the Solonetzic soils in Alberta Canada  (McKenzie, 2010).  

Soil stress is primarily a function of the applied surface load that is given by mechanical loading 

such as by wheeled, tracked vehicles and other agricultural machinery. Application of loads onto 

the soil via pneumatic tyred equipment is the major cause of compaction of agricultural soils, 

which causes damage to the soil-water-air-plant system (Misiewicz, 2010). Soil stresses 

resulting from a loaded wheel exhibit three types of behaviour: non-deforming, hardening and 

plastic flow (Koolen, 1994). The non-deforming behaviour occurs when the soil stresses under 

wheels are low in relation to soil strength. When soil stresses exceed soil strength, soil exhibits 
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hardening types of behaviour, resulted in deformed and more compacted soil until a new state 

of soil strength is reached. Plastic flow type, involving deformation when a loading induces soil 

flow at near-constant volume, also degrades soil qualities. However, the increased use of low 

tyre inflation pressures can help farmers’ gain access to soft terrains so that in future plastic flow 

type behaviour may occur more frequently (Koolen, 1994).  

Researchers use the term pre-compression stress to explain soil compaction. The pre-

compression stress ‘σpc’ is typically used as a factor to assess the mechanical strength and 

stability of soil against compaction (Horn and Fleige, 2003). Deformation of soil can be elastic or 

plastic. Soil loading inducing lower stresses than the soil pre-compression stress causes mainly 

elastic deformation while loading with greater than pre-compression stress causes soil 

compaction (Koolen and Kuipers, 1983). Soil under elastic deformation at any depth decreases 

the risk of soil compaction (Horn and Lebert, 1994). Deformation of soil due to elastic can be 

recoverable but soil under plastic deformation leads to permanent soil compaction (Horn and 

Fleige, 2003). The results highlighted that soil compaction could be avoided by restricting 

applied soil stress to <pre-compression stress (i.e. σ < σpc).  However, a number of tyre loading 

experiments also found that soil deformation occurred when measured stress was smaller than 

the pre-compression stress (Keller, 2004). A similar study also showed that stress provided by a 

tyre or track loading vehicle when it exceeded a value smaller than the pre-compression stress, 

compaction damage could become severe (Kirby, 1991). However, the value of pre-

compression stress is dependent upon several factors including the nature of the compression 

test and the method of its determination (Koolen, 1974; Lebert et al., 1989; Arvidsson and 

Keller, 2004; Keller et al., 2004). In Sweden, residual deformations of soil were reported despite 

the lower stress applied on the soil than the pre-compression stress which in turn confirm that 

reducing the applied load to a value of the pre-compression stress cannot help to fully avoid the 

soil become compact (Keller & Arvidsson, 2006). 

Soil structural deterioration can also be contributed by climate, fertilizers, and biological factors 

(Koolen, 1994). In areas where climatic and biological influences are strong, adoption of 

mechanization to minimize soil structural damage will decrease the possibility that field traffic 

may not be the main cause of such deterioration (Koolen, 1994). The deterioration of soil 

qualities is higher and becomes more adverse during wet compaction than dry, and hence, it 

can be avoided by restricting wheel traffic to periods when the soil is dry (Koolen, 1994). Heavy 

axle loads (> 10 Mg per axle) and wet soil conditions can increase the severity of compaction 

and up to 0.61 m (DeJong-Hughes et al., 2001) or even more (Billman et al., 2012). 



HARPER ADAMS UNIVERSITY 23 M. R. SHAHEB, 2020 

Subsoil compaction is a serious problem because it is expensive and difficult to alleviate. It has 

been acknowledged as a serious form of soil degradation by the European Union (Jones et al., 

2003). Subsoil compaction was also identified as a concern as early as the 1990s and giving the 

importance, a special issue of Soil and Tillage Research under the title “Subsoil compaction by 

high axle load traffic” was published (Hakansson, 1994). Subsoil compaction is considered a 

major problem in modern agriculture (Hamza and Anderson, 2005; Gut et al., 2015). Topsoil 

compaction is related to the stresses imposed by the tyre, track or hoof on the soil surface, 

while subsoil compaction associated with excessive stresses induced by the total load of the 

vehicle (Kirby, 2007). Several experiments conducted in North America and Europe (Fig. 2.2) 

confirmed that compaction of topsoil is caused by ground contact pressure while axle load is 

associated with the compaction in subsoil compaction (Duiker, 2004). 

 

 

Figure 2.2. A typical example of the effect of contact pressure and axle load on top and subsoil. 

Adapted from Duiker (2004). 

High contact pressure on soils (> 100 kPa) and conventional wheel systems with a weigh of 

120kN can cause appreciable compaction (Soane et al., 1981). In the Netherlands, a study was 

conducted to determine the effects of wheel load (32 kN) using low (80kPa) and high tyre 

inflation pressures (240 kPa) on two loosened topsoil layers with a thickness of 0.35 and 0.55 m 

(Van den Akker et al., 1994). Reducing tyre pressure resulted in lower deformations and 
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compactions than normal tyre and wheel stresses beneath the low pressure tyres were higher 

than expected. Although peak penetration resistances caused by both tyres were almost the 

same, the area involved was much smaller in the case of low tyre inflation pressure system than 

the high inflation pressure tyre systems. Thus, their recommendation is that use of low pressure 

tyre could be a good option to prevent soil degradation by excessive compactions and 

deformations (Van den Akker et al., 1994). 

The problem was investigated in the Netherlands and revealed that about 50% of the sandy and 

sandy loam soils having clay content <18% were found over compaction in the top 0.2 m of the 

subsoil (Van den Akker, 2006). It was later evident that axle load was responsible for subsoil 

compaction, not the tyre contact pressure (Botta et al., 2008). At field capacity, stresses applied 

on the surface of soil were influenced by tyre inflation pressure while vehicle wheel load was 

influenced in 0.9 m soil depth (Lamandé and Schjønning, 2010). It is hidden damage that affects 

soil ecosystem services including crop growth and yields, and a range of soil functions that, in 

turn, can impact on the environment (Lamandé and Schjønning, 2018).  

To summarize it can be said that soil compaction due to heavy machinery and wheel traffic is an 

undesirable condition that threatens the long-term productivity of soils (Soane et al., 1980; 

Koolen, 1994; Soane and van Ouwerkerk, 1995b; Jones et al., 2003; Hamza and Anderson, 

2005).  

2.6.3. Factors Affecting Soil Compaction 

Many, interacting factors that play a role in the soil compaction process and soil degradation. 

Factors influencing soil compaction include soil texture, soil moisture, type and weight of 

equipment, tyre type and pressure and number of traffic passes (Eliasson, 2005; Gerasimov & 

Katarov, 2010; Han et al., 2009; Labelle & Jaeger, 2012; Naghdi & Solgi, 2014; Sakai et al., 

2008). Studies showed that subsoil structure within coarse, medium and medium fine texture 

class soils are weak and found to be more susceptible to compaction (Spoor et al., 2003). 

Compaction of soil under conventional pneumatic tyres is related to load, tyre dimensions, 

contact pressure, wheel slip, carcass construction, inflation pressure including forwarding speed 

and the number of vehicles passes (Soane et al., 1981). Vehicle wheel load and tyre contact 

area (machine type), soil moisture condition during field operations (soil wetness) and the 

number of wheel pass (cumulative stresses) influence the extent of soil compaction (Alakukku et 
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al., 2003). However, the degree of soil compaction is largely influenced by the loads applied to 

the soil and the resulting surface and subsurface pressure (Misiewicz, 2010). 

Soil moisture is an important factor that largely influences the compaction process (Soane & van 

Ouwerkerk, 1994a). Soil structural deformation due to field trafficking increases with moisture 

content and the number of passes (Bakker and Davis, 1995; Hakansson and Lipiec, 2000). 

Water permits soil particles and aggregates to move and pack and reduces air spaces, 

however, Chamen et al. (2015) reported that wet soils are vulnerable and have a lower ability to 

resist vehicular compaction. Soil moisture content, number of passes and wheel equipment 

were found to have the greatest importance to the degree of compaction whilst tyre inflation 

pressure and weight of the machinery have intermediate importance and tractive power and 

vehicle speed had little influence on the degree of soil compactness (Arvidsson and Håkansson, 

1991). The degree of soil compaction due to the vehicle tyre loading stresses depends on soil 

strength which is associated with the mechanical strength of soil (determined by soil texture and 

SOM content), tillage layer and wetness of soil (Hamza and Anderson, 2005).  

Soil compactibility depends strongly on soil water content (O’Sullivan and Simota, 1995) which 

is the principal determinant of the severity and extent of soil structure degradation especially 

during travelling of vehicles at harvest and primary field cultivation (Kirby and Blunden, 1992; 

Berli et al., 2003). In wetter climates and when the conditions are wetter than average seasons, 

drainage becomes restricted, causing the adverse effects of compaction of the soil. Thus, soil 

moisture below the plastic limit is ideal for successful crop cultivation (Spoor and Godwin, 

1978). The most optimum soil moisture content for tillage is considered approximately 0.95 of 

plastic limit cited by Hamza and Anderson (2005) and 0.9–1.0 of plastic limit as discussed by 

(Dexter & Czyż, 2000; Mueller et al., 2003).  

2.6.4. Effect of Compaction on Soil Properties 

Soil compaction due to wheel traffic deteriorates soil structure, forms a fissured structure in the 

topsoil and massive structure just beneath this layer (Domżał et al., 1991). Compaction disrupts 

soil structure, accelerates the other threats such as water and wind erosion, water run-off and 

damages the soil balance with other components of the environment (Houšková and 

Montanarella, 2008). Soil compaction damages soil structure and changes soil porosity, the best 

indicator of soil structure quality (Pagliai and Vignozzi, 2002). They reported that quantification 

of pore spaces in terms of pore size, shape, connectivity, arrangement, and distribution can help 
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to perceive such changes and define the complexity of soil structure. The report showed that 

porosity of soil decreased with the increase of PR (Fig. 2.3). In Germany, researchers showed 

that repeated wheeling of heavy machinery and tillage system negatively affected PR of soil, 

macropore volume and air permeability of topsoil (0.05–0.1 m, 0.18–0.23 m) and subsoil (0.4–

0.45 m), resulting in a decrease in the yield of sugar beet (Koch et al., 2008). 

 
 

Figure 2.3. Relationship between porosity and penetration resistance at 0-10 cm depth for a 

clay loam soil (After Pagliai & Vignozzi, 2002). 

A recent 4-year study focused on heavy traffic-induced changes in soil structure conducted on a 

sandy loam soil in Denmark (Pulido-Moncada et al., 2019). Compaction treatments were no 

compaction, compaction with ∼3 Mg and ∼8 Mg wheel loads with 4 to 5 multiple wheel passes, 

and compaction with 12 Mg wheel loads with a single pass. Results showed that 8 Mg wheel 

loads plus multiple passes treatment significantly increased BD whilst reduced subsoil structural 

quality, air-filled pore space, air permeability, gas diffusivity and pore volume to >50 cm soil 

depth (Pulido-Moncada et al., 2019). However, there are divergences in opinion on the 

seriousness of compaction as a degrading process. Incidence of soil degradation and 

compaction are found in some agricultural soils in Scotland was there is no evidence of serious 

threats to soil quality rather the circumstances are recognized to be localized and readily 

reversed (Towers et al., 2006). Their statement is the opposite of others who found that the 

severity of incidences of compaction is associated with land use and heavy machinery, 

indicating that it is the most ubiquitous kind of soil degradation in Central and Eastern Europe 

(Van den Akker and Soane, 2004). Depending on soil types, a small degree of topsoil 
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compaction is found to be beneficial for root anchorage and crop growth (Bouwman and Arts, 

2000; Hamza and Anderson, 2005). Compaction confined to the sub-surface layer led the root 

growth and spread of soybean to be more in the superficial layer and decreased in the 

compacted layer; however, no pieces of evidence of decreasing crop yield were reported 

(Rosolem and Takahashi, 1998). 

Investigation of the effects of duals with high (0.17 MPa) and low pressures (0.040 MPa) tyres 

and tracks on soil compaction were conducted on a silty clay loam soil in Champaign, the USA 

(Duiker, 2004; Hoeft et al., 2000). The results showed that the total porosity as a measure of 

compaction was the lowest for the high inflation pressure tyre system as compared to the track 

and low tyre pressure systems  (Duiker, 2004; Hoeft et al., 2000) (Fig. 2.4). However, robust 

experimental results by incorporating typical tillage systems and quantification of pore 

characteristics were still scarce.  

The ground pressure of 200–250 kPa reduced water infiltration properties of a sandy loam soil 

by more than 80% in comparison to non–compacted soil (Chyba et al., 2014). To conclude, it 

can be said that compaction of soil reduces water infiltration rate, hydraulic conductivity, 

porosity and aeration whilst increases BD and PR and impede root growth and development 

(Liebig et al., 1993; Li et al., 2001; Radford et al., 2001; Hamza and Anderson, 2005; Raper and 

Kirby, 2006). A summary of the effect of compaction on soil conditions and the crop is also 

shown in Appendix 2.2. 

 

Figure 2.4. Effect of compaction due to high and low tyre inflation pressures and tracks on total 

porosity of soil. Adapted from Hoeft et al (2000).  
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2.6.5. Effect of Heavy Machinery and Field Trafficking 

Increase in machinery power, vehicle weight and implement size are ongoing and inevitable in 

industrial agriculture and the negative effect on soil properties due to compaction by the use of 

heavy machinery are documented (Batey, 2009; Çarman, 1994; McKenzie, 2010). Reports 

show that the popularity of the number of four-wheel drive tractor in Germany was increased 

from 33 to 89% between 1977 and 1992 (Renius, 1994) whilst combine harvesters and slurry 

tankers were more on 25 and 30 Mg, respectively (Hakansson and Petelkau, 1994). The weight 

of two-axle and three-axle sugar beet harvesters was about 35–40 and 50 Mg or even more 

(Alakukku et al., 2003). A gradual increment of the weight of farm machinery from 1930 to the 

present day is given in Fig. 2.5.  

 
 

Figure 2.5. Gradual increment of the weight of farm machinery since 1930. (After Chamen, 

2015). 

The increasing weight of agricultural machinery with a 4-fold mass over the past 30-40 years 

(Horn et al., 2006) and their effect especially on deep sub-soil compaction have become a great 

concern, where repeated wheeling has aggravated compaction effects (Kirby, 2007). The 

relationship between wheel traffic compaction and axle load and moisture content showed that 
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compaction of soil increases with the increase of equipment weight or moisture condition (Fig. 

2.6). 

 

   

Figure 2.6. Wheel traffic compaction responses to axle load and soil moisture condition. After 

Sohne (1958). 

According to the report of the European Commission published in 2006, 36% of European 

subsoils belong to the class of high or very high susceptibility to compaction (Van-camp et al., 

2004). Estimation by other source found that 33 million hectares of the European land (around 

4%, total) being affected by compaction (Van Ouwerkerk and Soane, 1995).  About 68 million 

ha of agricultural land worldwide was damaged due to soil compaction based on an estimation 

in 1991 and of which 50 % of land (33 million ha) was identified in Europe (Kroulík et al., 2009; 

Gasso et al., 2014). In Australia,  about 4 million hectares of the wheat belt was degraded by 

soil compaction which accounts for almost 30% of the area of land (Hamza and Anderson, 

2005). Wheel traffic accelerates direct cost that is associated with the energy requirements for 

managing wheeled soil, and reduces water availability to crops, enhances runoff and soil 

erosion, and hence impacts on the environment and long term agricultural productivity (Tullberg 

et al., 2007). Their report indicated that soil degradation alone caused approximately AUS$144 

million worth of damage of cost in the Murray-Darling Basin which is a large and important 

agricultural region in Australia (Tullberg et al., 2007). 

Salokhe and Ninh (1993) showed that the first tyre wheel pass caused the most soil 

compaction; compaction due to later passes decreased exponentially. A similar study also 
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confirmed that the first traffic pass caused up to 90% of compaction damages in soil 

(Badalıkova, 2010).  

 In Alabama, a study of the effect of wheeling on soil deformation and stress/strain distribution 

on a Hiwassee clay soil in a soil bin was conducted (Horn et al., 2003). Results showed that the 

more the tractor wheelings, the lower the hydraulic conductivity, the higher BD at all depths of 0-

0.35m were observed. The more rearrangement of soil aggregates or particles caused by 

repeated wheelings or higher soil stress resulted in deteriorating an existing soil structure (Horn 

et al., 2003).  

The summary of a series of 21 long term field trials investigating the compaction effects 

concentrated on plough layer was conducted from 1963 to 1999 in Sweden (Arvidsson and 

Håkansson, 1996; Hakansson, 2005). The experimental annual traffic before autumn ploughing 

was applied with a vehicle of 9 Mg and an axle load <4Mg. A traffic intensity of 350 Mg km ha-1 

which was 2 to 3 times more than annual traffic of 150 Mg km ha-1 in Swedish cereal fields was 

consistently applied across all sites. Results show that the effects of annual traffic were not 

remediated by ploughing and it took nearly 4 years to restore that yield to the non-treatment 

level, indicating that the effect was caused by the traffic intensity.  

Agricultural field traffic resulted in compaction and a significant increase in PR on coarse loamy 

sand in California while it’s absence on fragile soils on flood irrigated land and found a decrease 

in BD  and PR of soil where controlled traffic farming (CTF) system was used (Carter et al., 

1991). Effects of wheel loads (30 and 60 kN) for two tyre widths (560 and 800 mm) inflated to 

rated pressures was investigated by Lamandé and Schjønning, (2010). The results showed that 

stresses on the soil surface were influenced by tyre inflation pressure while wheel loads were 

stressed soil to a depth of 0.9 m (Lamandé and Schjønning, 2010). Canillas and Salokhe (2002) 

reported that the first tyre pass in the soil increased the BD and cone index at an average of 7 

and 6%, respectively compared to zero passes. Kaspar et al. (2001) reported increased bulk 

density values in all trafficked row centres which were opposite to the untracked row centres in 

Iowa, USA. Similar results were presented by Hamlett et al. (1990) who obtained values of soil 

BD of 1.10 and 1.40 Mg m-3 for UT and trafficked row centres, respectively. Heavy field traffic 

applying for multiple passes in agricultural fields with heavy tractor wheel loads (8 Mg) imposes 

a risk of severe soil structural damage deep into the subsoil (Pulido-Moncada et al., 2019). The 

critical values of soil PR that can restrict crop root growth were identified to be between 1.5 and 

3.0 MPa (Hakansson, 2005) and reported by (Chamen, 2011), however, the value is not 
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constant as the level of resistance is influenced by many variables such as soil structure, soil 

texture, moisture, clay content and SOM. Soil aeration and penetration resistance are the most 

critical factors in excessively compacted soils (e.g. Lipiec and Simota, 1994). As per literature, 

an air-filled porosity of 10% (v/v) and a PR to the soil of 3 MPa often represent critical limits of 

soil aeration and rootability of crops, respectively (e.g. Hakansson & Lipiec, 2000; Lipiec & 

Hatano, 2003). 

Results of an 8 year long-term study on a Ladysmith silty clay loam in Kansas (Blanco-Canqui 

et al., 2010) showed that wheel traffic had a more significant influence on soil conditions than 

intensive cropping systems resulted in increasing BD (from 1.16 to 1.38 Mg m−3), PR of soil 

(from 1.78 to 3.10 MPa), shear strength (from 23 to 61 kPa), and aggregate tensile strength 

(from 377 to 955 kPa) over non-trafficked locations at depths 0-75 mm. Moreover, water 

infiltration, saturated hydraulic conductivity, soil water retention, plant-available water, effective 

porosity, and volume of pores (>50-μm) were also decreased. 

2.7. Tillage Systems and Their Effect 

Tillage is used to produce a good seedbed, help to enhance contact with soil. allows good seed 

germination and reduced soil resistance for seedlings and root development (Hallett & 

Bengough, 2013). Tillage has both beneficial and harmful effect on soil depending on the 

methods followed. The positive effect includes controlling of weeds, incorporating manure and 

fertilizer and crop residue and herbicides and promoting soil aeration. However, it can degrade 

soil structure, enhance soil erosion, and disrupt soil biota. Tillage helps to remove biological, 

physical and chemical limitations for crops within soils and provide favourable conditions for 

their establishment, growth and development (Morris et al., 2010). It also incorporates crop 

residues and plant nutrients properly, and destroy weeds (Godwin, 2014).  

Conventional tillage consists of primary cultivation using a mouldboard plough that inverts the 

soil and secondary cultivation using tine, disc or rotary cultivator to prepare the field for 

cultivation (Hallett & Bengough, 2013; Morris et al., 2010). Field traffic associated with different 

tillage systems is shown in Fig. 2.7. 
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Figure 2.7. Field traffic associated with different tillage systems. After Hallett & Bengough 

(2013). 

It is worth noting that over 30% of ground area is trafficked by the tyres of farm machinery to 

plant the crop (one pass) in zero tillage systems (Tullberg et al., 2007). Studies found that in 

one cropping cycle, the percentage of trafficked area is likely to exceed 60% for 2–3 passes 

under minimum tillage while it would be almost 100% for conventional tillage with multiple 

passes (Soane et al., 1982). Tillage and traffic enhance soil erosion and soil degradation 

process and tillage sometimes has been considered a major problem in the agricultural field 

(Tullberg et al., 2007). Despite the advantage of reduced tillage for addressing such problems 

(Hallett & Bengough, 2013; Morris et al., 2010), the adoption rate of both reduced and zero 

tillage is still much lower and practices are seen in CTF farming systems (Tullberg et al., 2007). 

Conventional deep tillage improves soil structure by loosening the compaction and helps to 

improve soil aeration and water infiltration (Sommer and Zach, 1992). However, extensive 

cultivation is highly vulnerable to soil degradation and erosion. The historic ‘Dust Bowl’ 

incidence which occurred in the USA in the 1930s, is the best example ‘catastrophic wind 

erosion’ where severe drought blew away the cultivated loosen topsoil including nutrients, and 

polluted water bodies  (Huggins and Reganold, 2008). 

Routine ploughing in a cropping system can cause compaction of soil at depths of 0.2 – 0.35 m, 

known as a plough pan and this to remove the compaction periodical subsoiling is needed 

(Morris et al., 2010). Subsoiling can remove plough pan compaction but undertaking routine 

field operation without identifying the restricting soil pan or structural problem may increase the 
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risk and vulnerability of a subsoil to re-compaction (Spoor and Godwin, 1981) cited by Chamen 

et al. (2003). Ploughing deep loosened soils increases the risk of re-compaction of the subsoil 

and decreases the soil surface bearing capacity (Soane et al., 1986). Similar findings showed 

that subsoiling of compacted soil results in increased susceptibility to re-compaction from 

subsequent field traffic (Sommer and Zach, 1992). 

Conservation agriculture (CA) is now a well-recognized approach, practised in many parts of the 

world (Jones et al., 2006; Fonteyne et al., 2019). Minimize/reduce tillage, round the year soil 

cover, reducing agrochemical inputs and losses can enhance biological processes in soil are 

the key elements that allow CA to protect soil and water, and contribute to sustainable 

agriculture (Jones et al., 2006). Non-inversion tillage a form of reducing tillage can be used as 

an alternative to conventional mouldboard ploughing in a cropping system as this requires less 

energy and reduces fuel use (Warner et al., 2016). 

In the UK, approximately 40% of agricultural land is under a form of reduced tillage system while 

no-till farming is practised on only 5% of the land (Godwin, 2014). While in the USA, no-till 

farming is more widely practised and as per a report up to 20% of the total arable area was 

under no-till agriculture (Lal, 2004). Another report in 2012 indicated that over 20% of the total 

arable area is devoted to reduced tillage (Hallett et al., 2012).  

A 3-year study was conducted on a sandy loam soil in Denmark, where mouldboard ploughing 

was replaced with no-till farming. Results found that both BD and PR were increased in the no-

till farming soil, suggesting that a periodic non-inversion loosening on this soil is needed to 

sustain a profitable no-till production system (Munkholm et al., 2003). It has been also 

discussed that recently tilled soil does not have enough inherent strength to withstand the 

compressive forces exerted by vehicle and thus soil compaction risk is high (Raper, 2005).  

It is generally viewed that no-till farming possesses several benefits such as conserving soil and 

water as compared to conventional tillage practices. Research suggests that plant available 

water and water use efficiency in no-till soils is higher than conventional ploughing cropping 

systems (Grabski et al., 1995). It was also evident that no-till farming has some positive effects 

on soil such as soil porosity which is evident at depths of 0.12m to 0.35 m, increases in the 

percentage of pores > 50 μm, which improved water infiltration rates (Tebrugge and During, 

1999). A 14-year study of the effect of conventional (0.2m) and no-till farming on soil structure 

and crop development in a soybean and cereals rotations showed that soil properties such as 
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macroporosity and saturated hydraulic conductivity were higher in the no-till system (Cavalieria 

et al., 2009).  

A recent study showed that hydraulic properties in a silty clay soil under no-till, chisel plough, 

disk, and mouldboard plough systems after 35 years of management did not differ among tillage 

systems except for water infiltration which was found to be higher in the mouldboard plough 

tillage system (Blanco-Canqui et al., 2017). However, available reports e.g. Intergovernmental 

Panel on Climate Change (IPCC) show that intensive and continued tillage practices have an 

enormous contribution to the losses of soil organic carbon (SOC) and N pools (IPCC, 1996), 

leading to the production of GHGs emissions (e.g., CO2, CH4, N2O) into the atmosphere 

(Blanco-Canqui and Lal, 2008).  

Previous tillage history of a given field essentially needs to be taken into account to get the 

optimum effect when comparing the outcome of compaction with different traffic management 

practices and intensities (Botta et al., 2012). Although research from elsewhere found that sugar 

beet harvesting and ploughing representing contemporary heavy agricultural machinery (wheel 

load 7.8–11.7 Mg and mean ground contact pressure 100–145 kPa) did not show any significant 

responses in cereal yield (Koch et al., 2008). A similar study was conducted on a silty clay loam 

soil in Argentina (Botta et al., 2008). The results highlighted that tillage did not affect soil 

properties; however, conventional tillage had a greater susceptibility to cause subsoil 

compaction. Tractor wheel load was found to be the most dominating aspect in subsoil 

compaction and ground pressure was independent, however, topsoil compaction was affected 

by ground pressure and resulted in increased in BD and PR and rut depth of soil (Botta et al., 

2008).  

Soil compaction can be influenced by both climatic and soil conditions. An example was found 

in temperate climates in Northern Europe where the yields of winter crops recorded in no-till or 

reduced tillage systems were comparable to those of conventional tillage with ploughing, while 

for spring crops, yields were decreased (Soane et al., 2012). An experiment looking at the effect 

of 5 different tillage systems (conventional tillage-CT, reduced tillage-RT, conservation tillage I-

CP, conservation tillage II-CM and no-till-NT) on physical properties of a silty loam soil in a 

soybean/winter wheat rotation was conducted in Croatia from 1997-2000 (Husnjak et al., 2002). 

The results indicate that significant differences were observed between some tillage systems in-

terms of BD, total porosity, air capacity and soil moisture in the case of soybean seasons but no 

significant differences were found for wheat. The deterioration trend of physical properties of soil 
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was generally increasing in the following order CM, CT, CP, NT. In year 1, the yield of soybean 

was the highest under the CT system, while for the rest of the years the highest yield of winter 

wheat and soybean was recorded for the in CM tillage system (Husnjak et al., 2002). 

A long-term study of the effect of 4 and 7 years of conventional tillage (CT) and no-till (NT) 

systems on soil physical properties, root growth, and wheat yield was conducted in Central 

Chile (Martínez et al., 2008). The results showed that the effect of NT was more evident near 

the soil surface and the mean-weight diameter of soil aggregates and the PR were higher under 

NT as compared to CT. Root length density was also greater in NT than the CT system whilst 

macropores and soil water infiltration were higher under CT rather than under NT. They found 

enhanced aggregate stability in NT practised for a longer period, however, other soil physical 

properties were negatively affected. Tillage system did not significantly affect BD or yield 

(Martínez et al., 2008).  

2.8. Effect of Different Traffic System 

From field cultivation to harvest of crops, several traverses of tractors and combines are done in 

modern agriculture. With the advancement of agriculture, innovative and new traffic farming 

management systems, or techniques such as control traffic farming, traffic farming with tracked 

agricultural vehicles and use of low ground pressure tyres have been developed. These are 

discussed below:  

2.8.1. Random Traffic Farming (RTF) 

The random nature of field trafficking in a conventional traffic farming, covering 80-90% of the 

field area, is a typical commercial practice and inevitably leads to negative impacts on soil, 

water and crop (Kroulík et al., 2009) which is, in fact, RTF systems mostly used throughout the 

world. Study shows that that conventional tillage technologies with ploughing cover a high 

number of tyre passes and more than 86 % of the total field area trafficked during one season 

(Kroulík et al., 2011). Further, a high number of repeatedly run-over areas such as twice run-

over area 31%, three times run over area 15.6% were detected. The natural repair of the 

damage incurred due to the conventional traffic farming system on soil structure takes a number 

of years (McHugh et al., 2009). However, to make agricultural systems productive, cost-

effective, practical, and sustainable means of systems are necessary. It was suggested that 

field traffic in the agricultural field should be restricted to around 20% and a combination of 
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approaches including the judicious loosening of the soil with the use of low ground pressure tyre 

system might be helpful (Chamen, 2011). 

2.8.2. Controlled Traffic Farming (CTF) 

Controlled Traffic Farming (CTF) is the term used for a field traffic system that confines 

agricultural machinery to permanent wheel or traffic lanes that are separate from distinct crop 

zones (Gasso et al., 2014). Ideally, the CTF system requires all machinery to be capable of 

being guided by navigation systems (Galambošová et al., 2017). Controlled Traffic Farming 

emanates from Australia and the USA where, field traffic travels on permanent wheel-ways, 

significantly reducing total area trafficked to c. 30% depending on working widths used (Tullberg 

et al., 2007; Chamen, 2011; Antille et al., 2016).  

In Australia, the total area devoted to RTF and well-designed CTF systems are around 15% and 

over 85% respectively (Antille et al., 2016). Adoption of CTF technology as a technically and 

economically viable alternative enhances the productivity and sustainability benefits in arable 

and grassland cropping systems (Antille. et al., 2019). The finding of this study also highlighted 

that these benefits can also be triggered by no-till practices and expedited by adopting precision 

agriculture technologies. Chamen (2011) describes that the positive effects of CTF system are 

60% reduction in fuel use, greater reduction of tillage inputs and reduction in the areas become 

traffic. 

Comparing with RTF, non-organized traffic systems, a well-designed CTF system using 

commercially available agricultural machinery may reduce the area affected by traffic up to 50%, 

whereas converting the traffic farming from RTF to CTF can provide a 0.5 Mg ha-1 yield increase 

in cereal yield as compared to RTF (Galambošová et al., 2017). In the UK, CTF with a 30 and 

15% trafficked area had given 0.32 and 0.61 Mg higher yield benefit in winter wheat and spring 

oats as compared with RTF (Godwin et al., 2017). 

Despite the benefits, adoption of CTF systems is still relatively low, except for grain production 

systems in Australia. The main reason of non or less adoption of the CTF systems could be the 

incompatibilities of working widths between the different farm machinery and equipment used in 

the field (Tullberg, 2010), indicating the need to modify machinery to suit a specific system 

design that is often costly and may result in losses of product warranty to the farmers. The 
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ACTFA (Australian Controlled Traffic Farming Association) in Australia and CTF Europe Ltd. 

have organisation developed to work with farmers to assist them in the CTF process.  

2.8.3. Tracked Agricultural Vehicles 

Adoption of tracked tractors can be beneficial to soils as it can produce large contact areas and 

reduce compaction of soils. Studies show that compacted soil was found to be lower due to the 

lower loading stress provided by tracked vehicles compare to the similar mass of wheel tractors 

(Rusanov, 1991; Ansorge and Godwin, 2009a; Smith et al., 2014a). A review of the effect of 

track tractors over wheel tractors showed that under normal agricultural conditions tracks have 

some advantages over wheel tractors such as less slip, more tractive efficiency, less rut depth 

on wet soils and a compact vehicle design (Alakukku et al., 2003). Evidence shows that tracks 

have a positive effect on clay soil in Italy (Pagliai et al., 2003). However, this research showed 

that soil strength was lower under wheel tracks at depths of 0-0.35 m after a single pass that led 

to lower PR but was higher after multiple passes at depths of 0-0.15 m under tracked vehicles.   

In the UK, a  study of the effect of self-propelled wheels and a rubber track at high axle loads (9-

24 Mg) on soil compaction showed that rubber tracks significantly reduced the surface rut depth 

and lowered PR in the subsoil as compared to wheeled systems (Ansorge and Godwin, 2007, 

2008) whilst maintaining the productivity of the soil. The tracks can contribute to forming a hard 

strength at the soil surface to support subsoil to withstand and protect from further compaction 

(Ansorge and Godwin, 2008). Results showed that tracked vehicles cause smaller soil 

displacement and rut depths and found potential ability of the track to reduce compaction at 

depth while exhibiting similar surface deformation (Ansorge and Godwin, 2009b).  

However, opinion and findings are also varied. For example,  comparing two agricultural 

vehicles traffic on sandy soil in Australia, researchers showed that external stress provided by a 

tracked tractor (15 Mg, contact pressure 58 kPa) was lower on a sandy soil as compared to a 

wheel tractor (18 Mg, 74–81 kPa). However, the report showed that PR of soil at 0.40 m depth 

was lower in the wheel tractor (1.48 MPa) than tracked tractor (1.51 MPa) (Blunden et al., 

1994). 
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2.8.4. Low Tyre Inflation Pressure (LTP) 

Low tyre inflation pressure traffic system is a conventional traffic system that can facilitate 

random trafficking where low inflation pressure tyres are used instead of conventional inflation 

pressure tyres. Tyre contact area and tyre inflation or ground pressure can influence soil 

compaction. Low pressure tyres and controlling wheel/track loads can effectively prevent soil 

compaction (Alakukku et al., 2003). A benefit of this tyre system is the flexible structure that can 

carry more loads at low inflation pressure, generate a greater surface imprint which in turn 

increases traction (Michelin, 2017). Moreover, it helps to minimize soil compaction while less 

fuel and more return can be achieved (Michelin, 2017).  

Overall, traffic system experiments on a field scale generally show positive responses of the 

topsoil condition and the yield of most crops to substituting a low tyre inflation pressure traffic 

system for a conventional traffic system (Chamen et al., 2015). Reduction in soil compaction 

due to LTP system is often observed and restricted to the topsoil layers while in the subsoil 

stresses tend to increase due to stress superposition (Sohne, 1958). A detailed review of soil 

compaction related research and literature, its causes and solutions are discussed (Hamza and 

Anderson, 2005). The report also shows that reducing tyre inflation pressure on the soil by 

decreasing wheel loads and increasing contact area and following a CTF system can reduce 

soil compaction that eventually enhances crop growth and yields as compared to higher 

(standard) tyre inflation tyres. The contact area of radial tyres was found to be between 30 and 

46% higher as compared to the equivalent sized bias-ply tyres (Soane et al., 1981). Reports in 

2005 showed that radial tractor tyres had largely been replaced by cross-ply (bias-ply) tyres 

because of the increased traction performance and larger soil contact area that leads to 

reduced soil compaction (Raper, 2005).  

Studies suggest that soil compaction can be avoided by the use of LTP tyres (low inflation 

pressure) and the adoption of CTF in the farming systems (Chamen et al., 2015). Due to their 

role as avoidance of compaction, LTP tyre systems caused less stress mainly on topsoil and 

have a larger footprint that may help to reduce or avoid compaction of soil, which, in turn, 

increased crop yield and gross margin as compared to a conventional trafficking system. Similar 

benefits of using LTP found that LTP systems create more footprint of the tyre and concentrate 

the applied load on soils towards the outside of the tyre whilst the opposite is true for standard 

tyre inflation pressure system (STP) systems which cause more compaction (Raper, 2005). 
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LTP systems reduce the topsoil stresses at depth 0.01 m while increased axle load increases 

subsoil stresses,  with soil stress is always a function of soil conditions, tyre properties, load and 

inflation pressure (Arvidsson & Keller, 2007). The ground contact pressure of 160 kPa increased 

BD and consolidation pressure whilst decreasing air permeability and macroporosity on moist 

soil at depth of 0.12-0.17 m. Cone index under zero traffic was significantly lower than those of 

reduced ground pressure traffic and conventional system to a depth of 0.24 m; at greater 

depths, no significant differences were found (Dickson and Ritchie, 1996).  However, reduced 

ground pressure (130 kPa) showed a marginal change in soil structure at a depth of 0.32–0.37 

m and 0.52–0.57 m (Gysi et al., 1999).  

Reducing tyre pressure indeed increases ground contact area but it also increases the total 

area of field trafficked as compared with STP systems, meaning that there is more compaction 

of the topsoil over a whole field with LTP. Nonetheless, Hamza and Anderson (2005) reported 

that the damage to the soil was greater with the narrower tyres at higher tyre inflation pressure. 

A significant reduction in the negative effect of soil compaction was achieved with a larger 

diameter type with reduced contact pressure rather than a wider tyre (Ansorge and Godwin, 

2007). Tyre contact pressure is a good indicator of the potential amount of soil compaction a 

wheeled machine can exert on the upper layers of the soil (Sohne, 1958). A study confirmed 

that the influences of low ground pressure tyres tend to be most significant in the topsoil while 

severe compaction in subsoils is caused by large axle loads (Botta et al., 2010).  

Heavy machinery considerably increases the risk of rutting and soil compaction under 

unfavourable soil conditions. In Sweden, the effect of 3 levels of tyre inflation pressure (300, 450 

and 600 kPa) and machine passes (1, 2 and 5) on rutting and soil compaction were studied 

(Eliasson, 2005). Machine weight for the 1st pass was 19.7 Mg only for a combine harvester and 

the rest of the passes were with a fully loaded forwarder with 37.8 Mg. The results suggested 

that both rut depth and soil BD significantly increased with the increase in the number of passes 

but was not influenced by tyre inflation pressure. The research concluded that reducing tyre 

inflation pressure with a single pass may reduce soil compaction but when the soil under heavy 

wheel traffic with multiple passes, soil compaction cannot be avoided (Eliasson, 2005). This was 

explained by the fact that the low tyre pressure examined was much higher than the usual low 

tyre pressure (≤ 100 kPa) used in agriculture.  
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A survey conducted in Germany showed that the main benefits of the controlling of tyre inflation 

pressure are an improved tyre potential, reduced soil compaction and drawbar pull, enhanced 

fuel economy and crop yield (Renius, 1994). 

2.9. Growth and Development of Crops and the Effect of Soil Compaction 

Growth of plants is the irreversible increase in size primarily associated with capture and 

allocation of resources e.g. water, nutrients, CO2, sunlight. Albeit development is the continuous 

change in plant form and function with characteristic transition stages and mostly related to 

environmental response such as temperature, photoperiod and light quality (Sadras et al., 

2016). 

Growth and development of crops depend on both abiotic and biotic factors especially soil, and 

environment and climate factors greatly influence these processes. Growth and yield reductions 

of crops due to soil compaction have been found in several studies throughout the world. 

Compaction of soil due to wheel traffic significantly reduced maize root growth as compared to 

the UT side of the row (Kaspar et al., 1991). Compaction induced by the use of heavy 

machinery, repeated tractor wheeling etc. creates physical, chemical and biological changes in 

the soil that negatively impact crop performance (Chyba, 2012; Horn et al., 2003).  

2.9.1. Growth and Development of Maize 

Maize and soybean are the two main crops grown in the Midwestern United States. These two 

crops are commonly cultivated in rotation. The growth and development of maize and soybean 

are briefly described below and in the following section, respectively. 

Maize is the most extensively cultivated crop after wheat and top produced crop in the world in 

2018 (FAO, 2019b). The total production of maize was more than 1 billion Mg from an area of 

almost 200 million hectares in 2018. The U.S. Maize Belt produces 38% of the world’s total, 

followed by China (18%), Brazil (8%), Argentina (8%), Baltic States (9.5%), India (5%), and 

Mexico (3%) (FAO, 2018). In 2018, U.S. maize growers produced 0.366 billion Mg (14.4 billion 

bushels), down 1 percent from 2017 and are estimated at 11.07 Mg ha-1 (176 bushel acre-1) 

from an area harvested, of 33.1 million hectares (1 percent down from 2017). Weather data 

depict that cooler than average summer months but a warmer spring kept the maize harvest just 

1 percent below than 2017 (USDA NASS, 2019a). Crop yields are the result of environmental 
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factors such as soil, climate, and management inputs (Garcia-Paredes et al., 2000). 

Temperature and moisture have a direct influence on the developmental aspects of the crop, 

and thus on the physiological processes such as leaf initiation, shoot and root growth. The most 

susceptible phenological phases to temperature are emergence, anthesis, and grain filling of 

maize (García-Lara and Serna-Saldivar, 2019). 

Maize plants undergo a series of developmental stages throughout the growing season. These 

stages are separated into two groups: vegetative (V) and reproductive (R) and are distinguished 

by the appearances of silks (Ritchie et al., 1993). The vegetative stage starts with the 

emergence of the seed which is known as VE. V1 stage starts when the collar of the first 

developed leaf becomes fully visible. Eventually based on the uniqueness of the number of fully 

developed leaves V2-V10/V15 stages are identified. For example, V6 is the stage when six 

leaves along with their visible colours are fully developed. Tillers start to become visible at this 

stage. At V10 or sometimes at V15, plant ear shoots develop, tassel formation starts, and 

nutrient and dry weight accumulation are greatly increased. A plant reaches VT (Vegetative 

tasselling) stage when the tassel completely extends before silking. VT stage is signified by the 

maximum vegetative growth of plant and pollen shed starts in 2-3 weeks. However, crops at this 

stage are vulnerable to hail damage. The growth stages of maize are shown in Fig. 2.8. 

Reproductive stages start with silking (R1) and become visible outside the husk. Pollen grains 

falls onto the silk, reach the ovule and pollination occurs. Environmental stresses such as lack 

of moisture can cause the silks to dry and that results in poor pollination or kernel set, and limit 

the ability of silk to transfer pollen grain into the ovule. Kernels at the blister stage (R2) are very 

small in size having around 85% water and are white. Milk stage (R3) begins with the milky 

structure of the kernels with a yellowish colour. The rate of dry matter accumulation is very high 

at R3. Dough (R4) and Dent (R5) stages appear when ears become brighter yellow to reddish 

and kernels become dented containing almost 55% moisture, respectfully. Kernel at R5 

continues to form dough stage to a much harder texture. Dry matter accumulation reaches at a 

peak, hard structure, and a black abscission layer forms in the kernels. This is known as the R6 

growth stage where maize plants reach at physiological maturity and kernels contain 

approximately 30-35% moisture. Environmental stresses at R1 limits pollination and can affect 

the size and number of the kernels (Ritchie et al., 1993). Stresses such as water and nutrient 

deficits, unavailability of water in the soil or soil compaction reduce growth and development by 

reducing the amount and the efficiency in the use of resources captured by the crop (Sadras et 

al., 2016).  
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Figure 2.8. Maize growth stages. Adapted from Nafziger (2009).   

2.9.2. Growth and Development of Soybean 

The USA accounts for 35% of global soybean production, producing annually an 85 MT 

(Grassini et al., 2015). According to the USDA Crop Production 2018 Summary, the nation’s 

soybean yield was up 5% from 2017, with the planted area down 1% from record 2017 acreage 

(USDA NASS, 2019b). A record 0.123 billion (4.54 billion bushel) Mg of soybean was produced 

in 2018 which was up 3% from 2017. With record high yields in Arkansas, Illinois, Indiana, 

Mississippi, New York, and Ohio, the average soybean yield is estimated at 3.47 Mg ha-1 (51.6 

bushels acre-1) (USDA NASS, 2019b). 

Growth stages of soybean are also divided into vegetative and reproductive stages. 

Development of trifoliate leaves fully accounted for the vegetative stage whereas, reproductive 

stages starts at flowering and end at plant maturation (Licht, 2014). VE is the first stage that 

determines emergences and V1 stage is identified when one set of trifoliate leaves completely 

appears. Eventually, V2 to Vn vegetative stages are identified based on the appearances of fully 

developed trifoliate leaves of soybean. The onset of flowering (R1) is the first reproductive stage 

when at least one flower is found at any node. Eventually, the final stages are pod formation 

stage (R4) to maturity stage (R8).  The growth stages of soybean are shown in Fig. 2.9. The 

unfavourable environment at conditions such as changes in temperature and rainfall may 

greatly affect the height of soybeans without greatly affecting initial reproductive growth stages 

such as flowering (Naeve, 2018). 
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Figure 2.9. Soybean growth stages. Adapted from the figure of the University of Illinois as 

reported (DEKALB, 2018)  

2.9.3. Effect of Soil Compaction on Crop Growth and Yield 

Soil compaction leads to yield losses because it prevents crop root systems penetrating through 

the compacted soil and extracting soil-bound water (Ball et al., 1999; Hula et al., 2009) and has 

adverse effects on ecology. The consequence of soil compaction is an increase in deep 

tillage/subsoiling and energy requirement for soil treatment. Several studies indicated that these 

extra soil treatments adversely affect the germination of subsequent crops (Chamen et al., 

1992; (Ishaq et al., 2001a; Defossez and Richard, 2002; Gelder et al., 2007; Hula et al., 2009). 

Soil compaction, caused primarily by heavy machinery, can lead to crop yield losses of 9-19%, 

flooding and soil erosion on arable land. Up to 38% reduction in grain yield of a wheat crop was 

reported when the subsoil compaction was present at 0.15 m depth to a BD of 1.93 Mg m-3 

(Ishaq et al., 2001b).  

Compaction of soil generally increases with the increase or repeated number of vehicle passes 

during field operation (Raghavan et al., 1976). Repeated wheel traffic (1, 5, 10, and 15 passes) 

with different contact pressures (31, 41, and 62 kPa) and a zero traffic treatment experiment 

was conducted on a St. Rosalie clay soil in Quebec, Canada. Results indicated that yield 

reductions of crops were almost 40–50% with higher contact pressures and multiple passes 

(Raghavan et al., 1979).  
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Soil compaction prevents crop root systems penetrating through the compacted soil and 

extracting the soil-water and nutrients. This leads to losses of yield (Ball et al., 1999; Hula et al., 

2009). In the UK, a long-term traffic and tillage study showed that compaction lowered the plant 

establishment and reduced root dry mass of winter barley in highly trafficked areas as compared 

with UT areas (34 and 41% more). Millington et al. (2016) reported that anaerobic conditions in 

compacted areas due to the reduction in the size of the soil pores were associated with 

compaction and might be the reason for the reduced yield observed. Reduction in root and crop 

growth and yield are associated with the high annual traffic intensity, which causes reduced soil 

aeration and limited oxygen in the root zone and further boosting undesirable gaseous 

exchanges (Chamen, 2011; Hakansson, 2005) (Fig. 2.10).  

 

Figure 2.10. Relative crop yield in a series of 21 long-term field trials in Sweden. After 

Arvidsson & Håkansson (1996) and redrawn by Hakansson (2005). 

a) Mean relative yield in compacted plots in the whole series of trials 

during the first seven years.  

b) Mean relative yield from year 4 to the year after the last compaction 

treatment in each trial as a function of the clay content of the soil.  

c) Mean relative yield in compacted plots in the whole series of trials after 

the termination of the experimental traffic.  

Year No. 0 is the last year with annual compaction treatment.  



HARPER ADAMS UNIVERSITY 45 M. R. SHAHEB, 2020 

A five-year study to determine the effect of wheel tracks on BD, PR, and wheat yield on a 

Webster clay loam soil in Minnesota was conducted (Voorhees et al., 1985). They found that 

compaction from vehicular traffic on both sides of the row caused increased BD and PR values 

to depths of 0.3 m. Grain yield of wheat decreased by 27% for wheel tracked soil in comparison 

with no tracked soil.  Cotton plants development under different  BD, soil strength and moisture 

tension were studied in the sandy soils of the Southern Great Plains, USA (Taylor & Gardner, 

1963). They concluded that soil strength, not soil BD, was the critical impedance factor 

controlling root penetration in soils. Their findings showed that no roots penetrated into the soil 

with a resistance larger than 2.96 MPa, which was valid whether the soil strength was caused 

by an increase in BD or by a decrease in soil moisture. Later in 1966, results of another study 

on soil strength measurements as an indicator of resistance encountered by cotton seedlings 

showed that no taproots penetrated through soil cores with strengths greater than 2.5 MPa for 

four soil types (Taylor et al., 1966).  

A four-year compaction study evaluated the effect of using different axle loads of 8 and 12.5 Mg 

on maize on a silt loam and silty clay soil in Wisconsin, USA (Lowery and Schuler, 1994). 

Results showed that BD and PR dramatically increased and hydraulic conductivity was 

decreasing in trend with increasing levels of compaction. Plant height was found to be a good 

indicator of compaction as it was lower in the compacted areas in all years. Maize grain yields 

decreased in the first year at both sites in the compaction treatments and the second and fourth 

years at the silt loam site and silty clay site (Lowery and Schuler, 1994). A 25 and 50% yield 

reduction in maize were recorded in field induced with severe compaction (BD of 1.82 Mg m-3) 

and moderate compaction (BD of 1.69 Mg m-3), respectively (Gaultney et al., 1982). Both root 

length and depth of rooting, and yield of spring barley were retarded due to compaction (Domżał 

et al., 1991). 

The effect of a given level of compaction is related to both weather and climate (Batey, 2009) 

and can have both negative and positive effects. A four years soil compaction study induced by 

wheel traffic using 10.6 Mg axle loads for three traffic managements (wheel traffic over the 

entire soil surface, on alternate rows, and control) was conducted on a Thorp silt loam, 

Champaign county, USA (Bicki and Siemens, 1991). The results showed that compaction 

induced by wheel traffic had increased yields of maize in dry years (1st and 3rd year) and 

decreased yields in wetter years (2nd and 4th years), however, there was no individual years 

effect on soybean and no net overall effect from compaction of both crops. They also indicated 

that compaction was found to decrease yields with more favourable moisture conditions. Earlier 
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germination, more rapid early growth, and more intensive root system of the maize plants in no 

extra compaction as compared with adjacent compacted rows might be the reasons for such 

yield differences (Bicki and Siemens, 1991). Compaction had a positive influence on the crop 

yield in dry years, as such grain yields were recorded higher in moderately compacted soils but 

reduced in wetter years compared to non-compacted soils (Raper, 2005). It has been also 

discussed that the effect of compaction becomes severe in the event of large soil moisture 

deficits which restricts rooting depth but may have a negligible effect at the same degree of 

compaction, where moisture deficits are small (Batey, 2009). Reduced crop growth can occur 

due to stresses such as water deficits or soil compaction which decreases the capacity and 

efficiency of the crop canopy and root systems to capture the use of the resources such as H2O, 

CO2, radiation and nutrients (Sadras et al., 2016). 

Plant root systems are often affected by increased soil BD because of compaction. There is a 

non-linear relationship between root elongation and soil resistance in the majority of plants 

(Misra and Gibbons, 1996). Plant total root length of primary and lateral roots decreased with an 

increase in BD and soil strength (from 0.4 to 4.2 MPa) however, results indicated primary roots 

to be more sensitive to high soil strength than the lateral roots. Compaction strongly reduces 

plant growth as it limits root growth (Young et al., 1997; Rosolem et al., 2002; Lipiec et al., 

2012).  

In Poland, experiments were conducted on tractor wheel induced compaction and showed that 

increasing the number of wheel traffic passes cause increased compaction, leading to increased  

BD and decreased aeration that eventually reduced the number of plants after emergence, root 

system development and the grain yield of spring barley (Czyż, 2004). Aeration is the limiting 

factor in strongly compacted soil and optimum  BD of 1.43 Mg m-3 was found for on a sandy 

loam soil for root growth and yield of spring barley (Czyż, 2004). Soil compaction may lead to 

extremely dry topsoil and eventually causes soil to crack because the roots absorb water 

requiring for transpiration from the upper part of the soil where plants can penetrate with their 

restricted root depth (Batey, 2009). The main physical negative effects of soil compaction to 

plants are restricted root growth and accessibility of nutrients and water owing to an increase in  

BD and reduced pore size (Nawaz et al., 2013). 

Field traffic significantly increased soil  PR at depths of 100mm and 250mm, it reduced water 

infiltration rates and decreased the grain yield of winter wheat in the UK (Smith et al., 2014b). A 

summary of long term trials investigating the effects of different tillage with traffic systems (RTF 
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conventional, LGP and CTF) showed that CTF with a 30% trafficked area significantly increased 

yields than RTF conventional and LGP traffic for the winter wheat and spring oats (Godwin et 

al., 2017).  However, proper traffic management along with adaptable wheel track widths and 

operating systems innovation that reduces soil compaction would help to improve water 

infiltration rates, increase crop yields, reduce energy consumption (Godwin et al., 2015).  

An investigation of the effect of repeated traffic (1, 5, 10, and 15 passes) with contact pressures 

(31, 41, and 62 kPa) and a no traffic treatment was established on a St. Rosalie clay soil in 

Quebec (Raghavan et al., 1979). Results showed that maize yield reductions were up to 50% in 

severely compacted plots due to high contact pressures and multiple passes. They concluded 

that reduced air-filled porosity, higher  PR,  BD and moisture stress are associated with the 

higher contact pressure with a higher number of traffic passes that causes a high level of 

compaction (Raghavan et al., 1979). An experiment conducted on a poorly drained Fincastle silt 

loam in Indiana, USA showed that growth and yield of maize were severely affected by subsoil 

compaction (Gaultney et al., 1982). Up to 50 and 25% reduction in maize yield were reported 

with severe compaction and moderate compaction, respectively.  

A five years compaction study in Minnesota showed that compaction from vehicle traffic on both 

sides of the row increased BD and cone index values to depths of 0.3 m (Voorhees et al., 1985). 

Grain yield of wheat in wheel-tracked crop rows was reduced by 27% as compared to non-

trafficked crop rows. It was later documented that the lack of crop response to wheel traffic may 

be due to increased root growth on the UT side of the row that compensates for decreased root 

growth on the trafficked areas (Reeves et al., 1992).  

An experiment conducted in Norway found that damage to topsoil structure caused by a 

compaction treatment of 4 wheelings with of an axle load of 26 Mg traffic, resulting in significant 

yields reduction of barley (Hordeum vulgare) and carrot (Daucus carota)  (Riley, 1994). A similar 

seven years experiment was conducted in Quebec, Canada, where 12 and 20 Mg per axle 

loads were applied in four and two passes, in addition to control (Gameda et al., 1994). Results 

showed that the compaction treatment increased soil BD, decreased total plant dry matter of 

maize whilst grain yield reduction was persistent and reduced by 20.5, 8.4 and 13.9% for the 

three consecutive years.  

In Ohio, effects of harvest traffic (single axle loads grain cart loaded with 0, 10 and 20 Mg 

maize) and tillage systems (no-till, chisel plough, and mouldboard plough) on soil and crop 
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development of soybean on a poorly drained heavy textured soil was studied (Flowers and Lal, 

1998). Results showed that soil compaction due to harvest traffic increased soil BD and 

decreased grain yield of soybean. Reductions in yields were of 9 and 19% when axle loads 

were imposed by 10 and 20 Mg, respectively. 

Experiments of the effect of subsoil compaction were conducted on a sandy clay loam soil in 

Pakistan and results showed that compaction treatment significantly reduced the nutrient uptake 

of wheat and sorghum with an increase in  BD from 1.65 to 1.93 Mg m-3 and  PR from 1.00 to 

4.83 MPa (Ishaq et al., 2001). Up to 38 and 8% reduction in grain yields of wheat in Year 1 and 

2 while in sorghum the yield reductions were 22 and 14% when subsoil compaction was present 

at 0.15 m depth to a BD of 1.93 Mg m-3 (Ishaq et al., 2001a). The effect of compaction due to the 

use of heavy machinery and tyre inflation pressures for various soil types and crops is 

presented in Table 2.1. 
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Table 2.1. Effect of compaction of agricultural soils on growth and yield of crops  

Crops (Scientific 

name) 

Soil types and 

location 

Tyre inflation pressure/ 

machinery traffic/axle load 

Effects on growth and yield of crops 

Corn (Zea mays) 
 

Silt loam and silty 
clay, WI 

Axle load 12.5 and 4.5 Mg; 150- 
220 kPa; 4passes 

Decreased plant emergence; yield reduction of 
4-14 and 14 - 43%, respectively (Lowery and 
Schuler, 1991) 

Fine sand soil, MN PR > 3 MPa; BD 1.57 Mg m-3 Mechanical impedance from 0.15 to 0.35 m 
deep restrict root growth (Laboski et al., 1998) 

Silt loam and silty 
clay, WI 

8 and 12.5 Mg axle load; BD 
1.61 and 1.63 Mg m-3 

Reduced growth and yield in year 1 at both 
sites, and the year 2 at silt loam and 4 at silty 
clay site (Lowery and Schuler, 1994). 

Clay soil, QC, 
Canada 

31, 41 and 63 kPa; 1, 5, 10 and 
15 passes 

Higher contact pressure and multiple passes 
caused  40-50% yield reductions (Raghavan et 
al., 1979b). 

Silty clay loam soil, 
OH 

0, 10 and 20-Mg axle load Decreased in yield in year 1 from 37-71% and 
14-20% for 3 year period,  (Lal, 1996) 

Silt loam soil, PA 700 kPa and 250 kPa; 10-Mg 
axle load 

Yield reductions averaging 17% in 3 years out 
of 4. Deep tillage after compaction increased 
yield (17%) in year 1 only (Sidhu and Duiker, 
2006) 

Silty clay loam, NE; 
Vertisol, AUS; others 

- Mechanical impedance restricts root growth 
(Hamza and Anderson, 2005; Raper and Kirby, 
2006; Radford et al., 2007) 

Clay loam soil, ON, 
Canada 

14 Mg axle Reduced plant growth and productivity; dry 
matter and yield reduced by 33% and 26% 
(Gregorich et al., 2011). 

Garden soil, Cracow, 
Poland 

BD 1.10, 1.34 and 1.58 Mg m-3 Root growth heavily restricted and greater 
damages in physiological characteristics in 
leaves (Grzesiak, 2009; Grzesiak et al., 2013) 

Wheat (Triticum 
aestivum) 

Sandy clay loam, 
Pakistan 

BD 1.61 and 1.93 Mg m-3 Decreased crop growth and yield by 38 in year 
1 and 8% in year 2 (Ishaq et al., 2001a). 

Beijing, China/Lab 
study 

High and Low strength; 
0.75 MPa 

Impeded root growth and reduction in total 
biomass from 71 - 88% (Jin et al., 2015) 
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Crops (Scientific 

name) 

Soil types and 

location 

Tyre inflation pressure/ 

machinery traffic/axle load 

Effects on growth and yield of crops 

Sodic brown clay, 
Australia 

Wheel track and non-track; PR 
>2.0 MPa and BD 1.5-1.58 Mg 
m-3 

Root growth reduction; no difference in yield 
(Chan et al., 2006).  

Soybean (Glycine 
max) 

Heavy textured soil Axle loads 10 and 20 Mg Grain yield reduced by 9 and 19%, respectively 
(Flowers and Lal, 1998). 

Silty clay loam soil, 
OH 

0, 10 and 20-Mg axle load Mean reduction in yields were 9 and 20%, 
respectively (Lal, 1996). 

Clay soil, Argentina Traffic intensity (0, 60, 120 and 
180 Mg km ha−1), 

Decreases in yield from 9.8–38% than zero 
traffic (Botta et al., 2004). 

Sorghum (Sorghum 
bicolor) 

Sandy clay loam, 
Pakistan 

Sub-soil compaction; BD 1.61 
and 1.78 Mg m-3 

Crop growth and yield decreased. Yield 
decreased by 14 and 24% in year 1 and 2 
(Ishaq et al., 2001a). 

Triticale (Triticco 
secale) 

Garden soil, Cracow, 
Poland 

BD 1.10, 1.34 and 1.58 Mg m-3 Impact on root growth and physiological 
characteristic in leaves relatively small 
(Grzesiak, 2009) 

Potato (Solanum 
tuberosum) 

Loamy sand, WI Compaction with 29.8 and 26.2 
Mg; PR >2.0 MPa 

Limited root growth and crop rooting (Copas et 
al., 2009) 

Sandy soil, MN; silt 
loam, ID 

PR > 3 MPa; BD 1.57 Mg m-3 Restricted and ceased root growth, respectively 
(Laboski et al., 1998; Aase et al., 2001) 

Tomato (Solanum 
lycopersicum) 

Loamy sand and clay 
loam, UK 

BD 1.20 and 1.60 Mg m-3 Affects root architecture, limiting the soil 
volume explored (Tracy et al., 2012) 

Barley (Hordium 
vulgare) 

Loomy soil - Root growth and yield decreased 
(Lipiec et al., 2003) 

Sandy loam soil, 
Estonia 

Axle load 4.84 Mg; 0,1,3 and 6 
passes; PR 1.80-1.96 MPa 

Reduction in root dry matter by 74% 
(Trükmann et al., 2008) 

Sandy loam soil, UK 0.12, 0.15 MPa (high) and 0.07 
MPa (low) 

Decreased in yield of approximately 25% in 
year 1 (Millington, 2019)  

Clay loam soil, 
Jordan 

5 and 15 Mg axle load; 200 and 
400 kPa 

Higher pressure and axle load decreased in 
yield (Abu-Hamdeh and Al-Widyan, 2000). 

Radish (Raphanus 
sativus) 

Elsinboro and 
Galestown series, 
MD 

Axle load 11.88 Mg with 0, 1 and 
2 passes; 5.83 Mg with 0 and 1 
pass 

Reduction in root dry matter by 31% and 
biomass by 31.25% (Chen and Weil, 2010)  
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Crops (Scientific 

name) 

Soil types and 

location 

Tyre inflation pressure/ 

machinery traffic/axle load 

Effects on growth and yield of crops 

Rapeseed (Brassica 
napus) 

-do- -do- Reduction in root dry matter by 50% and 
biomass by 62.89% (Chen and Weil, 2010) 

Rye (Secale cereale) -do- -do- Decreased total biomass by 32.01% (Chen and 
Weil, 2010)  

Canola (Brassica 
napus) 

Sodic brown clay, 
Australia 

Wheel track vs between the 
wheel tracks; >2.0 MPa; 1.5-
1.58 Mg m-3 

Reduced root growth; potential yield loss by 
34% in wheel tracks (Chan et al., 2006).  

Oat (Avena sativa) Sandy clay soil, UK - Reduced oats yields by  25% in year 2 
(Millington, 2019) 

Silty clay loam soil, 
OH 

0, 10 and 20-Mg axle load Reduction in yields was up to 57 and 77%, 
respectively (Lal, 1996) 

Sugar beet (Beta 
vulgaris) 

-do- -do- 
 

Reduced growth of root by 7-9%; No significant 
influence on yield (Lal, 1996) 
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Hence, from the above discussion, it can be concluded that heavy agricultural machinery, 

number of traffic passes, higher ground pressures, wheelings etc. cause compaction of soil, and 

change the soil structure. Increasing BD with decreasing aeration in soil due to such different 

magnitudes of compaction negatively affect root structure, crop growth and yields of crops in 

different agro-ecological environments. This view is also supported by the many researchers 

across continents (Hamza, Al-Adawi, & Al-Hinai, 2011; Liebig et al., 1993; Raper & Kirby, 2006; 

Yuxia et al., 2001).  

2.10. Draft Forces and Economic Impact  

Compaction of soil can influence the amount of energy used in agriculture (Chamen et al., 

1992). The possible need for additional inputs of fertilizer (e.g. N ) or pesticides as energy is 

needed during the manufacturing process, a greater draught forces requirement for cultivation, 

and a greater tillage requirement to alleviate compaction (Chamen et al., 1992). Denitrification is 

the indirect effect of compaction which is likely to lead to N deficiency in crops (Batey, 2009), 

possibly increasing the need for additional fertilizer and N requirements (Chamen et al., 1992; 

O’Sullivan and Simota, 1995). 

Draft forces required for running agricultural machinery vary for various field operations. Energy 

is used for tillage which can be a significant cost factor for some cropping systems and soils 

(McPhee et al., 1995). Compaction events and correction of compaction using heavy machinery 

and field traffic consume more engine power and draft forces compare to avoidance of 

compaction, which is, in fact, a waste of money and has a negative impact on the environment. 

Soil strength as a result of compaction increases the draught requirement of the tractor for 

primary tillage (Chamen et al., 1992). Tillage depth is positively correlated with draft force 

requirement and thus draft force increases with the increase of subsoiling depth for primary 

tillage (Wolf et al., 1981).  

Compaction due to one-wheel pass for ploughing increased diesel fuel consumption by 19% 

(Voorhees, 1979). Primary tillage in compacted soil is not sufficient to produce good tilth and 

therefore, more secondary tillage is required for compacted soil than un-compacted soil 

(Dickson and Ritchie, 1993), leading to increased fuel use and consequent GHGs emission to 

the environment. Tractor engine power can be absorbed in the soil of the wheel tracks which is 

in fact wasted up to 30% due to compaction, and a single pass of tractor wheels can also 

increase demand of draft forces by up to 25% (McPhee et al., 1995). The demand for energy 
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consumption for tillage increased in the range 25–40% due to the previous tyre passes on soil, 

that half of tractor engine power could be wasted due to loosening of compacted soil due to 

preceding machinery passes (Tullberg, 2000).  

Large and heavy machinery save operating costs and timeliness of operations but the economic 

losses due to compaction of using these machinery may be much more than this savings 

(Hakansson, 2005). A recent economic analysis of alleviating or avoiding soil compaction 

showed that the net on-farm cost of different mitigation options is negative, however, avoiding 

soil compaction is more cost-effective than alleviating it, particularly true in the case of subsoil 

compaction (Hallett et al., 2012).  

It was discussed earlier that subsoil compaction is persistence which is associated with many 

adverse effects including economic losses such as the decrease in crop yield and soil 

productivity (Hakansson & Reeder, 1994), increased management costs (Chamen et al., 2003). 

and increased requirement for greater draught forces for cultivation (Chamen et al., 1992).  

2.11. Management of Soil compaction 

Prevention of soil compaction is far better than correction of compaction problem (McKenzie, 

2010), meaning that there will be win-win possibilities of improving farm productivity while 

simultaneously reducing environmental impacts (Hallett et al., 2012). Benefits of using CTF 

have also reported (Spoor et al., 2003) as tractor wheelings always remain in the same wheel 

track for all field operations and thus less area become trafficked. The CTF restricts the tractor 

wheelings to the wheel track and reduces annual surface trafficked to around 30% and the 

concept is found to be successful in Australia (Tullberg et al., 2007). However, it requires all 

field machine widths to be matched for crop production (Chamen, 2011) and navigation and 

machine guidance systems to be available and reliable (Misiewicz, 2016). 

Researchers suggested some technical solutions that can potentially help to minimize the risk of 

subsoil compaction. Use of dual and tandem wheels instead of single wheels, low tyre inflation 

pressure or tracks, reducing axle load are compelling among them (Trautner and Arvidsson, 

2003; Hamza and Anderson, 2005; Keller and Arvidsson, 2006). Tijink et al. (1995) reported that 

avoidance of topsoil compaction could be gained with the tyre pressures <50 kPa and 100 kPa 

during the crop growing season and out of seasons, respectively. Evidence suggests that  LTP 

systems are very effective in controlling subsoil compaction, and in the topsoil (0 – 0.15m depth) 
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and low pressure tyres showed 40% reduction of maximum pressure peaks than higher 

pressure tyres (Van den Akker, 1998). LTP systems have shown to reduce ground contact 

stress transmitted during field operations (Trautner and Arvidsson, 2003) and thus help in 

reducing compaction of soil under wheels (Batey, 2009). Both low pressure tyres and tracks 

were suitable to minimize soil compaction in a sandy loam soil in the UK (Smith et al., 2014a). 

The Michelin Tyre Company has developed agricultural tyres based on Ultraflex technology with 

the aim of reducing soil compaction. They claimed that these tyre can operate at low inflation 

pressure and carry more load, resulting in a larger footprint and help in reducing compaction of 

soil whilst improving crop yield (Michelin, 2017).  

Management options such as minimizing or eliminating soil tillage, reducing or minimizing wheel 

traffic load and field traffic areas, avoiding field traffic when soils are wet, and creating a larger 

footprint on the soil by using radial tyres at  LTP, can avoid the risk of soil compaction 

(McKenzie, 2010). A protective residue cover on the soil surface to reduce soil crusting after 

rain or irrigation water and use of best agronomic management practices to improve soil OM 

and soil structure can help to minimize the risks of soil compaction (McKenzie, 2010). Crop 

rotation can improve soil structure. Deep-rooted species in the crop rotation was shown 

desirable to minimize the effects of soil compaction (Ishaq et al., 2001). Growing of fibrous (e.g. 

pea) and tap rooted (e.g. canola) crops in a rotation help the roots to penetrate soils and 

develop deep root channels and eventually add organic matter to soil (McKenzie, 2010). An 

investigation was conducted on a Vertisol soil that was cultivated by conventional farming with 

random traffic over 50 years (McHugh et al., 2003).  At the end of three years, results show that 

no traffic and crop rotation with winter cereal, a legume and lablab were found to be very 

effective. PR at the same soil moisture contents decreased by between 0.2 and 1.0 MPa in the 

depth range of 0-400 mm from greater than 2 MPa (McHugh et al., 2003). 

Plants roots can be considered potential tillage tools as they exert forces to penetrate soils and 

grow through compacted soil layers that may change the soil physical conditions (Elkins, 1985). 

This happens when roots decay in the compacted layers, resulting in macropores that improve 

water movement, aeration and gaseous diffusion (Elkins, 1985). The role of tap roots (e.g. 

Canola plants) in “bio-drilling” can create bio-pores through deeply penetrating the soil and 

ameliorate the subsoil compaction.  This may be helped in the succeeding wheat crop roots to 

penetrate the soil easily (Cresswell and Kirkegaard, 1995). Such role of tap-root plants in the 

compacted soil also recognized as “biological tillage tools” (Chen and Weil, 2010).  
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Tillage systems affect the soil physical and chemical environment, and soil structure and 

reduces macroaggregates and thus reduces the biological activity of soil biota (Dick, 1992; 

Kladivko, 2001). The review also evidenced that crop rotation can suppress deleterious 

microorganisms flourishing in soil especially under monoculture which promotes crop 

productivity. 

There are several possible options that have been proposed that can minimize compaction of 

the soil. These include (Hamza & Anderson, 2005; Raper, 2005):  

− Reducing axle load 

− Reducing tractive element-soil contact stress and this can be achieved through using 

radial tyres, duals, and tracks; 

− Increasing soil drying before traffic; 

− Following conservation tillage systems which minimize vehicle traffic;  

− Using CTF systems which eliminate random vehicle traffic across fields; and  

− Subsoiling to eliminate compacted soil profiles such as plough pans  

Compaction of soil in a practical sense may not be possible to eliminate rather intelligent 

management of vehicle traffic can help in reducing and/or controlling of it (Raper, 2005). A detail 

compaction study was conducted on loamy sand and silty clay soils in Germany (Schäfer-

Landefeld et al., 2004). Their observations showed the presence of plough pan layer at 0.3m cm 

depth can effectively protect the subsoil from high wheel loads (up to 12.5 Mg) but when 

loosened, causes severe compaction, particularly in the subsoil. Approaches to compaction, 

matching machines for alleviation or avoidance of compaction is a good soil management tool 

(Larson et al., 1994). Avoidance of compaction (Hatley et al., 2005)  particularly subsoil 

compaction (Spoor et al., 2003), is beneficial and should be a key issue in future crop 

production systems (Chamen, 2006).  

Loosening of soil can help to reduce the effect of compaction. However, careful assessment of 

the compaction is needed before operations (Spoor et al., 2003). Evidence within agriculture 

suggests that shallower loosening of soil at a depth of 0.3 to 0.35 m most of the time were 

successful but can be upsetting when deeper loosening of soil is done (Spoor, 2006). 
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Soil compaction may be reduced by natural freezing and thawing events that can play a positive 

role on soil structure evolution (Etana et al., 2013) but the impact is more evident in the subsoil 

(Etana and Hakansson, 1994; Voorhees, 2000). However, differences in opinions are also 

found. Gaultney et al. (1982) disagreed with the concept that natural forces of freezing and 

thawing may be reliable agents to break plough pan and to minimize compaction.  In Sweden 

where annual freezing is a normal phenomenon to depths of 0.4-0.7m showed that crop yields 

11 years after deep compaction were still adversely affected (Etana and Hakansson, 1994). A 

similar study was conducted on a clay soil in Finland which reported that both crop yields and N 

contents in the crops were reduced 17 years after a single compaction event (Alakukku, 2000).  

To summarize, the possible approaches of minimizing and/or avoiding compaction from the 

above review of literature: a)_reducing stress on the soil following LTP  system b) use of lower 

wheel load, c) reducing tractive element-soil contact stress using radial tyres, d) use of 

agricultural tracks, e) minimizing vehicle traffic, f) following crop rotation with deep and shallow-

rooted crops, g) adapting practices and cropping to avoid moist soil conditions, h) growing of 

cover crops in the cropping systems and i) confining field traffic compaction to a narrow strip 

following CTF system.  

2.12. Measurement of Soil Compaction 

To characterize the degree of compaction, dry BD and total soil porosity parameters are 

frequently used. The degree of soil compaction can be expressed by pore space, void ratio, dry 

volume weight and bulk weight volume (Koolen and Kuipers, 1983). Soil BD and PR are often 

used as two key parameters to determine and describe the levels of soil compaction and used 

for soil profile examination (Soane et al., 1987; Duiker, 2002; Hatley et al., 2005; Raper, 2005). 

PR provides cone index values that are determined by dividing the force required to insert the 

penetrometer into the soil by the cross-sectional area of the base of the cone. A higher cone 

index value can have a negative effect on root growth. Cone index values over 2 MPa have 

been shown to restrict, to varying degrees, crop root development (Taylor and Gardner, 1963; 

Aase et al., 2001).  

Other studies suggested that soil compaction reduces the porosity and increases the BD of 

soils, and also reduces the water infiltration rate as compared to non-compacted soil (Liebig et 

al., 1993; Yuxia et al., 2001; Hamza and Anderson, 2005; Raper and Kirby, 2006). Thus, soil BD 



HARPER ADAMS UNIVERSITY 57 M. R. SHAHEB, 2020 

and cone index have been conclusively proven to increase as the magnitude and intensity of 

vehicle traffic increased (Solgi et al., 2016).  

Dry BD is a widely accepted means of explaining soil compaction and total soil porosity can 

describe the soil condition concerning vehicular traffic and mechanical tillage operations 

(Campbell, 1994). Researchers suggested that soil compactness needs to be expressed both 

by an absolute term and relative terms (Soane et al., 1980). Bulk density, specific volume, void 

ratio or pore volume for examples are the absolute terms which are the universally and 

independent method of measurement of compaction. The degree of compactness and relative 

density of soil on the other hands are the relative terms which are expressed its absolute value 

as a ratio of that in a reference state of them (Soane et al., 1980). 

Compaction reduces root penetration and decreases the ability of soil to infiltrate water into the 

soil profile (Schoonover and Crim, 2015). Hence, bulk density, infiltration capacity, and 

penetration resistance of soil can be effectively used to explain soil porosity or degree of 

compaction. 

Visual assessments of soils as per the description of soil profiles by soil survey methods, visual 

assessment of porosity and strength, and examination of the plant root system, semi-

quantitative visual and tactile methods etc. can help to explain compaction of soils (Spoor et al., 

2003; Hatley et al., 2005; Batey, 2009). A recent study showed that there were seven soil 

quality indicators (SQIs) that could help in monitoring of soil condition or quality (Rickson et al., 

2012). These are soil depth, surface sealing, visual soil evaluation, packing density (e.g. data on 

bulk density and clay content), aggregate stability, soil water retention characteristics and soil 

erosion rate. These would also help to measure changes in soil condition due to compaction of 

agricultural soils. 

A soil compaction model was developed to assess compaction that uses soil cone resistance, 

dry BD, wheel shrinkage and rut cross-sectional area as measures of the compactive effort of a 

vehicle (Smith, 1987). The model can predict the changes in dry BD with depths because of 

vehicle passage and assess the relative contributions of soil and wheel variables to the 

compaction process.  A conceptual model was also developed for predicting soil BD that is 

considered as a function of soil mineral packing structures and soil structure (Tranter et al., 

2007). This model suggests that BD increased with the depth of soil and were influenced by 

over-burden pressure. A soil compaction profile sensor was developed by Sharifi et al. (2007) 
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that was consisted of a series of eight instrumented flaps that linking its output to global 

positioning systems. The sensor can also able to determine the changes in soil strength by 

different surface-applied loads and tyre inflation pressures (Sharifi et al., 2007).  

Besides, some filed criteria specified by researchers can be used to identify compaction 

including waterlogging, increase in soil strength, reduction in visible porosity, changes to soil 

structure, soil colour and particularly the distribution of plant roots and soil moisture (Spoor et 

al., 2003; Batey and McKenzie, 2006).  

X-ray computed tomography (X-ray CT) has been used as a potential tool to quantify soil 

structure, BD and water content (Taina et al., 2008). Moreover, as a non-invasive method, it can 

also help in analysing soil pore size, porosity and pore size distribution, orientation, and 

improving overall understanding of soil hydrodynamic behaviour (Rab et al., 2014; Beckers et 

al., 2014). In the present study, classical soil physical measurements such as BD, PR, the 

porosity of soil and soil moisture content were recorded to monitor and measure the compaction 

of the soil. Further, X-ray CT tool which is for the first time used to measure the soil compaction 

by quantifying soil pore characteristics under different tyre inflation pressures along with three 

tillage systems for a typical maize/soybean rotation in silty clay loam soil in the US Midwest.  

2.13. Harper Adams University Long Term Traffic and Tillage Trial 

Harper Adams University, UK has established a long-term experiment in 2012 with an aim to 

determine the long-term effect of traffic and tillage systems on a sandy loam soil on crop growth 

and yield and the corresponding effect on soil physical properties. Also, to measure the effect of 

different traffic management and tillage systems on soil structure using the Novel technique of 

X-ray Computed Tomography. Treatments are three traffic systems (Random Traffic Farming 

with standard tyre inflation pressure, Random Traffic Farming with low tyre inflation pressure 

and Controlled Traffic Farming for soils cultivated) with three tillage systems (deep, 250 mm; 

shallow, 100 mm and zero, no-till). A randomized 3 x 3 (traffic x tillage) factorial study with four 

replicated blocks was established at the Large Marsh farm of the University in September 2012. 

Before setting up the experiment, a mouldboard plough/power harrow at a depth of 250 mm 

treatment was applied uniformly to all plots of the whole field. Thus, the first year such activates 

is recognized as a normalisation year. However, these field operations were done to allow the 

field site to stabilise after the installation of a gravel back-filled drainage system at 13 m spacing 
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followed by subsoiling operations to a depth of 0.6m, to remove traffic and tillage related any 

residual deep compaction from the field (Smith et al., 2014b).  

The first trial crop was winter wheat (Triticum aestivum var. Duxford) with the three tillage x 

three traffic treatments, planted in November 2012. The date on plant establishment (plants m-2) 

based on growth stages mark at GS11/12 was recorded using a quadrant method. Photographic 

crop assessment at GS37/39 and immediately prior to harvest were also observed. Analysis of 

data showed that traffic and tillage treatments had no significant effect on plant establishment of 

wheat. The visual assessment showed that plant establishment of wheat was poor or limited in 

primary wheel ways and non-uniformity in the no-till plots. The harvested data showed that the 

interaction of tillage and traffic treatments at 5% probability level did not show any significant 

effect on the grain yield of wheat. This indicating that the experimental field was uniform that led 

into a good uniformity in wheat yield with a coefficient of variation of 6% (Godwin et al., 2015). 

The CTF traffic treatment had the highest mean yields (7.7 Mg ha-1). Among the combinations, 

CTF with shallow tillage treatment was found to have the highest grain yield of 8.39 Mg ha-1 of 

wheat in 2013 which was 14% higher than the mean of the other treatments (7.47 Mg ha-1). The 

yield was significantly higher at 10% level of probability by 15% (1.1 Mg ha-1) to standard tyre 

inflation pressure (STP) with deep tillage mean yield. STP with zero tillage combination had the 

lowest mean yield of 6.87 Mg ha-1 (Smith et al., 2014b; Godwin et al., 2015). Thus, the overall 

findings suggest that CTF farming provide higher grain yield of winter wheat with less area 

trafficked, indicating that wheelings were confined in the specific wheel tracks and one of the 

management practices of compaction ‘avoidance’ was accomplished. Further, soil compaction 

produced by RTF farming and not subject to remedial tillage can reduce yields of winter wheat. 

Continuation of the experiment with the same treatments’ factors was examined on other cereal 

crops such as winter barley, spring oat and spring wheat from 2015 to 2018. Effect of traffic and 

tillage systems on growth and yield of these crops and the corresponding effect on soil physical 

properties using the innovative technique of X-ray Computed Tomography were also studied 

(Millington et al., 2016; Godwin et al., 2017). Overall crop yields result suggest that reducing 

tyre inflation pressure tyres gave a yield improvement of 2.90% compared to standard inflation 

pressure tyres. Adopting CTF combined with a reduced tillage depth (100 mm), resulted in 

increased yields by 6.3% over a five year period (Millington, 2019). However, deep and shallow 

tillage did not show any significant difference in crop yield. The deep tillage significantly (P = 

0.030) reduced the soil shear strength, leaving soils prone to compaction by subsequent field 

traffic. Interestingly, shallow tillage had lower fuel costs than deep tillage which provides an 
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opportunity to saves fuel by reducing the draft force required for the tillage operations 

(Millington, 2019). Significantly reduced crop yield was observed in Zero tillage treatment 

(p<0.001) which was lower by 15% than shallow tillage. Study of soil cores using a novel 

technique for determining the total porosity allowed a comparison of soil porosities derived from 

bulk density measurements and X-ray CT measured porosities. Results found that a constant of 

31% could be added to the X-ray CT porosities to give the total physical soil porosity of sandy 

loam soil in the UK (Millington, 2019). Research is also underway in Zambia to tackle the recent 

problem of soil compaction and results showed that compaction of soil leading to poor crop 

growth and compounding food availability problems in Sub-Saharan Africa (Bwembya et al., 

2017).  

2.14. X-ray Computed Tomography 

X-ray computed tomography (X-ray CT) is a non-invasive imaging technique that is extensively 

used in the medical field. However, it has been shown to be a powerful tool to investigate 

possible modifications in soil structure and other physical properties of soil (Pires et al., 2005). 

The first applicability of X-ray CT in Soil Science was in early 80’s (Petrovic et al., 1982; 

Hainsworth and Aylmore, 1983; Crestana et al., 1985; Vaz et al., 2011). They proved that X-ray 

CT can be effectively used to measure the spatial distribution (2D and 3D) of BD and water 

content in soil (Taina et al., 2008). 

Studies show that as a non-destructive 3D imaging technique, X-ray CT can effectively be used 

to quantify soil pore size and pore size distribution (Rab et al., 2014). The technique greatly 

helps in studies of pore geometry, pore shape, orientation and connectivity, pore size 

distribution, and improving overall understanding of soil hydrodynamic behaviour (Beckers et al., 

2014). Evidence from a field-scale study in Missouri, USA showed that X-ray CT can help to 

quantify the effect of different management in soil relative to environmental benefits, water 

storage and transport (Udawatta and Anderson, 2008). The results suggested that there is a 

close relationship between CT measured pore parameters and saturated hydraulic conductivity 

(Udawatta and Anderson, 2008). Investigation of the effect of compaction using medical GE 

Genesis-Zeus X-ray CT scanner on a silt loam soil in Missouri, USA was also conducted (Kim et 

al., 2010). They found that CT measured porosity in compacted soils was reduced significantly 

by 64 % as compared to the un-compacted soil while the number of pores was decreased by 

71% with an increase of 8% BD of soils. Katuwal et al. (2015).  reported that quantification of 

pore characteristics such as pore size distribution and connectivity were key variables helped to 
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understand air-flow and transport behaviour of soils and there was stronger preferential flow in 

samples with low macroporosity when pores were less dense and interconnected (Katuwal et 

al., 2015). 

Soil compaction reduces larger pores and thus affects soil porosity for a given mass  (Berisso et 

al., 2012) by increasing BD and reducing the proportion of large to small pores in soil (Kim et al., 

2010). It is evident that these large volumes of small pores are more susceptible to waterlogging 

and eventual anaerobic conditions that lead to denitrification and reduction in root growth (Czyż, 

2004). Dal Ferro et al. (2014) observed that tillage systems (conventional tillage and a no-till 

system) significantly influenced the macroporosity of soil measured by X-ray CT while 

microporosity measured by mercury intrusion porosimetry, had no significant effect between the 

treatments. Conventional tillage disrupts macropore structure, resulting in a greater number of 

smaller pores (100-250 μm) than no-till soil (Dal Ferro et al., 2014). A typical X-ray CT 

tomography setup of both fan-beam and cone-beam configurations are given in Fig. 2.11. 

 
 

Figure. 2.11. Typical tomography setup of fan-beam (a) and cone-beam configurations (b) a 

microCT system. After Wildenschild and Sheppard (2013). 

X-ray CT provides 2D cross-sectional images to compose stacks of 3D representation of the 

internal structure of natural porous materials (e.g. soils) through the uses of mathematical 
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reconstructions from attenuation of ionizing electromagnetic radiation (Vaz et al., 2011). Using 

CT-segmented data of Brazilian Oxisols soils they successfully determined soil porosities and 

pore-size distributions (Vaz et al., 2011). However, the whole X-ray CT process involves a 

sample such as soil core being rotated incrementally through 360° in X-ray beams, producing a 

series of radiograms which are then algorithmically reconstructed to produce 2D images (slices) 

and then stack images of producing 3D attenuation map of soil (Beckers et al., 2014). Based on 

the X-ray resolution, each image is made up of 3D pixels which are called voxels (Calistru and 

Jităreanu, 2015). Appropriate resolution of CT scanning is an important factor to get desired 2D 

and 3D stacked images. CT-derived porosities may underestimate physically measured porosity 

values if the resolution is high and 1.0 μm is considered to be the maximum resolution for soil 

samples (Vaz et al., 2011). 

CT-segmentation can differentiate two or more different elements (Taina et al., 2008) and thus 

to quantify pore space the reconstructed images are segmented using a threshold tool on an 8-

bit greyscale image (Taud et al., 2005). A simple histogram of the greyscale values of the image 

explains three main phases of pore space, organic material and mineral grains (Lamandé et al., 

2013). The threshold tool is applied to separate the pore spaces from the mixture of other 

phases of soil (Helliwell et al., 2013). Finally quantified values less than the threshold are air-

filled pore space and values above on that are others (Kim et al., 2010). Quantification of soil 

pore networks is easily done as the X-ray attenuation of soil solids and soil pores have a large 

contrast between them (Taina et al., 2008). Manual thresholding of images is not performed well 

as user bias may affect the thresholding results (Baveye et al., 2010), hence assistance of CT 

experts may be warranted. 

X-ray CT imaging is a powerful tool that helps to understand the nature and spatial configuration 

of soil components, and their relationship with soil behaviour and processes (Taina et al., 2008). 

Mooney et al. (2012) demonstrated the impressive progress and enormous potentiality of X-ray 

CT as a tool to observe and quantify in situ root-soil interactions. They also cited findings of 

various studies of the application of X-ray CT as a powerful means of exploring the structure 

and function of roots and soils e.g. (Heeraman et al., 1997; Gregory et al., 2003), 

characterisation of pore space and BD, spatial correlation of tortuosity and porosity (Heijs et al., 

1995). Research on soil-water and soil-root interactions have been found, however, many of 

them concentrated mainly on the development of the technique for soil analysis and problems 

associated with segmenting images. Recent studies in sandy loam soil in the UK evidenced that 

low tyre pressure systems had a measurable CT derived porosity comparable to high tyre 
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inflation pressure systems (Millington, 2019). However, apart from this and to the present 

knowledge, there are no data on the relationship between the X-ray CT derived porosities and 

soil physical porosities. Besides, field-scale studies of the soil pore structure using X-ray CT as 

a potential tool of studying the effect of high flexion tyre and tillage induced compaction are 

unavailable on a silty clay loam soil in the Midwestern United States. 

2.15. Literature Review Conclusion 

The main aspects of this review of literature were to explore the impact of farm machinery with 

different traffic systems on soil compaction and degradation, factors under different tillage 

systems and their further effect on soil properties and growth and yield of crops. Global food 

demands are projected to double in the 21st century, which further increases the pressure on 

the use of land, water, and nutrients. To increase food productivity and hence economic returns, 

significant improvement of the cropping system is essential (Nazrul et al., 2013; Shaheb et al., 

2014). Sustainable, safe and nutritious food productions are the major challenges for global 

food security to meet dietary needs and food preferences for an active and healthy life (Shaheb 

et al., 2016). Soil supports agriculture and is a critical part of sustainable agriculture as it 

provides water and nutrients to plants.  

Degradation of soil means the declining the capacity of the soil and its ecosystems. Improper 

use or poor management of soil in agricultural, industrial, or urban purposes leads to declining 

soil fertility, loss of SOM, changes in soil structure, increased erosion, and many other adverse 

changes. Intensive mechanization in agriculture is one of the components of the Green 

Revolution that helped agricultural production be successful. Development of larger and heavier 

machinery was inevitable in industrial agriculture as it increases the timeliness of operations, 

saves operating costs, reduces labour costs, and covers substantial areas under cultivation 

within short periods. The intensification of agriculture and the use of these heavy machinery 

have had significant negative effects on soil structure and quality. Soil compaction is caused by 

the use of heavy machinery and high axle load, high tyre inflation pressure, multiple traffic 

passes and conventional tillage systems damages and alters soil structure, and reduces soil 

quality (Hamza and Anderson, 2005).  

Research efforts to address soil compaction and possible approaches either through avoidance 

or reduction are crucial. Research on CTF, track agricultural vehicles, LTP systems, cover 

crops, reduced tillage practices, ecosystem services and sub-soiling are needed in diverse 
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ecosystems. While the use of reduced tyre inflation pressures has been recommended for 

several decades, quantification of these benefits for high flexion tyres by linking the resulting soil 

conditions to crop yield and the economic benefit is not available. Moreover, research works on 

the magnitude the soil compaction and the consequences of the use of heavy machinery on soil 

condition and growth and yield of the two main crops maize and soybean grown in the Midwest 

farming system in Illinois are scarce. Furthermore, a farming system based economic analysis 

of the use of the low pressure tyres technology that can help in preserving soil and provide 

economic benefit to the farmers whether or not are unavailable. The present study is a part of 

this research where efforts are made to address the key issues related to soil compaction, and 

to quantify, the effect of high flexion tyres run at standard and low tyre inflation pressures 

systems under various typical tillage practices on soil properties, crop development and yield in 

a maize-soybean rotation in Central Illinois. Moreover, X-ray CT technique was used to 

determine the effect of compaction on soil pore characteristics throughout the soil profile. An 

economic analysis of the farming systems has also been conducted. As it is essentially 

important that potential solutions must be farmer oriented, easily adaptable, and economically 

profitable.   
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CHAPTER 3: GENERAL METHODOLOGY 

3.1. Introduction 

This chapter focuses on the materials and general methodology of the study. It provides a 

concise description includes sites the study sites, traffic and tillage system treatments and 

experimental design, and laying out of blocks and plots, farm equipment and agricultural tyres. 

Detail approaches of field operations to apply treatments, soil sampling, and data recording of 

soil and crops and their statistical analysis have been discussed. Procedures of soil X-ray CT 

study are also described. However, chapter wise brief methodologies for the experiments 

carried out from 2016 to 2018 are also described in the appropriate chapters (i.e. Chapters 4, 5 

and 6). 

3.2. Details of the Study Area 

The experiment was established at the Agricultural Engineering farm of the Department of 

Agricultural and Biological Engineering, the University of Illinois at Urbana-Champaign (UIUC), 

Champaign County, Illinois, the United States (latitude/longitude: 40.070965, -88.217538) from 

November 2015 – October 2018. Two adjacent fields (North and South) each of 3.24 ha were 

selected for the study. The farm is a representative site for a typical maize/soybean rotation in a 

Midwest farming system in the United States where both fields being in use with alternative 

rotations of these two crops (Fig. 3.1)  
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Figure 3.1. Location of the study in Champaign County, Illinois, United States (Source: Google 

search for US maps/Google maps) 

3.3. Soil and Climate 

The soil of the experimental site consists of two soil series. Drummer soil (152A) series 

characterised as a silty clay loam (59% silt, 33% clay silt and 7% sand) is the prime soil series 

with small areas of the field mainly in Northern field that are Thorp (206A) silt loam series 

(USDA NRCS, 2015a).  The Drummer series consists of soils that formed in 1m to 1.5m of loess 

or other silty material and in the underlying stratified, loamy glacial drift. Drummer silty clay loam 

soil is one of the major extensive and productive soils and is designated as the official state soil 

of Illinois. It occurs on more than 0.6 million hectares in the state in which maize and soybean 

are the principal crops (USDA NRCS, 2019b). Both soil series have 0 to 2% slope and are 

poorly drained. The capacity of the most limiting layer to transmit water (Kstat) is moderately 

high to high (15-50 mm/hr) in the Drummer soil while in the Thorp series it is ranked moderately 

Agricultural 
Engineering 
farm, UIUC 
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low to moderately high (1.5-5 mm/hr). The surface layers are a thick, black silty clay loam and 

subsurface layers are a very dark grey silty clay loam while the subsoil is reddish-brown and a 

grey silty clay loam are main characteristics of the soil (USDA NRCS, 2015a). According to the 

Illinois State Water Survey (ISWS), the average annual precipitation ranges from 838 to 1092 

mm and the average annual air temperature ranges from 7.78 to 12.2°C (ISWS, 2016). 

3.4. Details of Materials and Experimental Design 

The experiment was laid out in a split-plot, factorial randomized complete block design, with five 

blocks where the tyre inflation pressure (TIP) and tillage systems (TS) were the main plots and 

the 8 crop rows (crop rows 1-8) and a central non-trafficked inter-row of 4 and 5 were allotted in 

the sub-plots in the year 2017 and 2018.  In October 2015 prior to year 1 (2016), both 

experimental fields were deeply tilled (450 mm) using a disc ripper with deep tines to remove 

any residual compaction. Thus, each block with three replications where tyre inflation pressure 

was the main plot and crop rows (crop row 1 to 4) as specified by traffic intensity (number of 

vehicles passes) were the sub-plots. The treatments in the year 2016 comprised two tyre 

inflation pressures for the main equipment involved i.e. standard tyre inflation pressure (STP) 

(tillage tractor: front/rear @ 0.121/0.14 MPa; planter tractor: front/rear @ 0.12/0.12 MPa and 

combine harvester: front/rear @ 0.20/0.16 and low tyre inflation pressure (LTP) (both tillage and 

planter: front/rear@ 0.06/0.06 MPa and combine harvester: front/rear @ 0.15/0.16 MPa), and 

four crop rows (crop row 1- 4, as both sides of the central line of the plot are symmetrical) which 

were different traffic intensity levels as a result of vehicle passes on the plots.  

In 2017 and 2018, revised tyre inflation pressures as per vehicles weight verified and 

recommended by the manufacturer (Michelin) were recommended. The treatments comprised 

two tyre inflation pressures i.e. the standard tyre inflation pressure (tillage tractor, planter tractor 

and combine harvester @ 0.14, 0.12 and 0.21 MPa, respectively) and low tyre inflation pressure 

(tillage tractor, planter tractor and combine harvester @ 0.07, 0.05 and 0.14 MPa, respectively) 

and three tillage systems viz. deep tillage (DT) (450mm), shallow tillage (ST) (100mm) and no-

till (NT). The 2 × 3 factorial tyre inflation pressure and tillage system treatments arrangement is 

shown in Table 3.1. Typical tillage practices of Illinois used in the present study is given in 

Appendix 3.1.  
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Table 3.1. Tyre inflation pressure and tillage systems treatments arrangement in 2017 and 2018 

Tyre inflation pressure (2) Tillage system (3) 

Standard tyre Inflation 

pressure (STP) 

Deep tillage (DT): 450mm 

Shallow tillage (ST): 100mm 

No-till (NT) 

Low tyre inflation pressure 

(LTP) 

Deep tillage (DT): 450mm 

Shallow tillage (ST): 100mm 

No-till (NT) 

 

3.5. Block and Plot Layout  

Google Earth Pro and MATLAB 2014b software were used to determine the geographic 

locations (coordinates) of the centre lines (AB lines) of each plot and subsequently, a Trimble 

RTK-GPS rover was used to identify these points in the fields (Appendix 3.2). Different coloured 

flags for each treatment were then positioned to mark the 30 plots. Individual plots were 6 m 

wide by 180 m long with a headland of 10m, to avoid any edge effects. Hence, the unit plot area 

was 160m x 6m = 960m2 with 8 crop rows per plot for both maize and soybean. The plots were 

orientated in an East-West direction. The layout of the experimental design in 2016 and the 

years 2017 & 2018 are given in Figs. 3.2a - b. 
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Figure 3.2a. A typical layout of the experiment in 2016. 

 

 

Figure 3.2b. A typical layout of the experiment in 2017 and 2018 
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3.6. Farm Equipment  

The equipment available at The Agricultural Engineering farm, UIUC: consisted of tractors for 

tillage and planting operations (Model JD 7930 and JD 7700 respectively), a combine harvester 

(Model JD 9410), spring tillage tools (Model Sunflower/AGCO 6221-20"), a disc ripper with deep 

tines (Model Case/IH ET 527B) and 8 row planter (0.75m distance between rows) (JD 7200 Max 

Emerge 2). A self-propelled sprayer (model JD 4930) was used for pre and post-emergence 

spraying of chemicals. The equipment and tools along with their manufacturer and 

specifications are shown in Table 3.2, Figs. 3.3 -3.4 and Appendix 3.3.  

Table 3.2. Specifications of farm equipment  

Equipment Manufacturer Model Power 
(kW)  

Inner/outer wheel 
spacing (m) 

Axle load (Mg) 

Front Rear* Front Rear 

Tillage tractor John Deere 7930  164  1.47/2.18  1.36/2.29 3.81 6.49 
Planting tractor John Deere 7700 94 1.30/2.03 1.12/2.11  3.12 5.51 
Combine John Deere 9410 306 2.58/4.13 2.58/3.39  18.14 - 
Spring tillage 
Tool 

Sunflower 
/AGCO 

6221-20 - - - - - 

Disc Ripper 
(Autumn tillage 
tool) 

Case/IH ET527 B - - - - - 

Planter John Deere 7200 Max 
Emerge 2 

     

Self-propelled 
sprayer 

John Deere 4930  Boom width 36.5m   

 
*For dual wheels used in 2016, the inner and outer wheel spacings were 2.69 and 3.58 
m, respectively. 
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a) 
 
 

 
 
b) 
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c)  

Figure 3.3. Farm equipment, a) tillage tractor (JD 7930), b) planter tractor (JD 7700) and c) 

combine harvester (JD 9410) 

 
 

 
 

Figure 3.4a. Deep tillage operations during fall after harvest of crops (Disc ripper model: 

CASE/IH ET 527B). Tines used are shown top corner of the picture. 
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Figure 3.4b. Shallow tillage operations during autumn in April (Tillage tool model: 

Sunflower/AGCO 6221-20) 

 
 

Figure 3.4c. Seed planting in mid-May (Planter model: JD 7200 Max Emerge 2) 
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Figure 3.4d. Self-propelled sprayer (model: JD 4930)  

3.7. Agricultural Tyres Used 

Manufacture Française Des Pneumatiques Michelin supplied a range of Ultraflex tyres to fit on 

the equipment for the experiment and specified the appropriate STP and LTP pressures based 

on the load of the equipment. The specification of both front and rear tyres and their 

recommended inflation pressures used in the experiment are given in Table 3.3. Different 

manufacturer tyres comparable with Michelin Ultraflex radial tyres are also presented in Table 

3.4. Tyres were fitted on the tractors and combine harvester before conducting the experiment 

in mid - April 2016. 

Table 3.3.  Ultraflex radial tyres and recommended tyre inflation pressures  

Equipment Model Front tyres Rear tyres Pressure 
mode 

Tyre inflation pressure 
(Front and Rear, MPa) 

2016 2017 - 2018 

Tillage 
tractor 

JD 
7930 

Yieldbib VF 
380/85R34 

Yieldbib VF 
480/80R46 

STP 0.12 0.14 0.14 0.14 
LTP 0.06 0.06 0.07 0.07 

Planting 
tractor 

JD 
7700 

Yieldbib VF 
380/85R34 

Yieldbib VF 
480/80R46 

STP 0.12 0.12 0.12 0.12 
LTP 0.06 0.06 0.05 0.05 

Combine 
Harvester 

JD 
9410 

Cerexbib 
800/65/R32 

Cerexbib 
14.9R24 

STP 0.20 0.16 0.21 0.21 
LTP 0.15 0.16 0.14 0.14 

 
Source: Michelin (2017)  
Note: STP and LTP represent the standard and low tyre inflation pressure, respectively. 



HARPER ADAMS UNIVERSITY 75 M. R. SHAHEB, 2020 

Table 3.4.  Different manufacturer tyres comparable with Ultraflex radial tyres  

Equipment Front/Rear Tyres of Different Manufacturer 

Michelin tyre  Firestone  Titan/Goodyear  

Standard Tyre 

Tractor Front Yieldbib VF 
380/85R34 

Radial All Traction 
380/85R34 

Dyna Torque Radial 
380/85R34 

 Rear Yieldbib VF 
480/80R46 

Radial All Traction 
480/80R46 

Dyna Torque Radial 
480/80R46 

Combine Front Cerexbib 
800/65R32 

Radial All Traction 
DT  800/65R32 

Dyna Torque Radial 
800/65R32 

 Rear Cerexbib 
14.9R24 

All Traction 2 
14.9R24 

Hi-traction Lug Radial 
14.9R24 

Improved Tyre 

Tractor Front Yieldbib 
VF380/85R34 

Performer EVO  
380/85R34 

Optitrac TL  380/85R34 

 Rear Yieldbib 
VF480/80R46 

Performer EVO  
480/80R46 

Optitrac TL 480/80R46 

Combine Front Cerexbib 
800/65R32 

Radial All Traction 
DT  800/65R32 

no offering 
  

Rear Cerexbib 
14.9R24 

All Traction 2 
14.9R24 

no offering 

 
Source: T. Lecher, Personal communication, 24 October 2019. 

3.8. Crops and Varieties 

The main crops in the Midwest farming system are soybeans (Glycine max L.) and maize (Zea 

mays L.). Maize is a C4 plant and in respect of day length, it is considered to be either a day-

neutral or a short-day plant. Maize is grown across temperate to tropic climates and the daily 

favourable temperatures are above 15°C. The most susceptible phenological phases to 

temperature are emergence, anthesis, and grain filling of maize (García-Lara and Serna-

Saldivar, 2019). Soybeans are originally cultivated in East Asia and presently, have been 

adapted to diverse environments around the world. Soybean is a C3 plant and responds to the 

length of days and begins to flower as nights become longer. The number of plants per hectare, 

pods per plant, seeds per pod and grain weight are the determining factors of soybean yield. 

Illinois State is recognized as a leading producer of soybean (ranked 1st) and maize (2nd) in the 

USA (Illinois Department of Agriculture, 2019). Thus, these two crops were selected to 

implement for the present experiment. The varieties of maize and soybean were P1221AMXT 

(Pioneer seed) and P35T58R, respectively. Seed rate of maize and soybean were 

approximately 86076 seeds/ha and 307406 seeds/ha, respectively. Maize and soybean were 
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grown in rotation (maize-soybean-maize in North field and soybean-maize-soybean in South 

field) for the three years.  

3.9. Field Traffic and Tillage Operations and Crop Production Technology 

Deep tillage operation as autumn tillage is the typical tillage system in Illinois during autumn 

after harvest of maize and soybean and thus both fields were deeply tilled (450 mm) using 

ripper tines in October 2015. Before cultivation, tyre inflation pressures were adjusted and 

checked for the respective compaction treatment as per the recommendation of Michelin. The 

tillage tractor attached with spring tillage tool, fitted with the Ultraflex tyre as per tyre inflation 

pressure  (Table 3.3) was then cultivated by shallow tillage (100 mm) on April 2016 in an East-

West direction, following an AB/Centre line of each plot. In May 2016, the field was then levelled 

using the same tillage tractor with recommended tyre pressures for STP and LTP plots. In 2016, 

as both fields had been deeply tilled, tillage was not a factor and therefore the only factor was 

tyre inflation pressure so,15 STP and 15 LTP plots of the North field were allotted for maize 

production and another 15 STP and 15 LTP plots of South field were cultivated for soybean 

production (Fig. 3.5). But in 2017 and 2018, besides the two tyre inflation pressures, three 

tillage systems were included (Figs. 3.6 - 3.8). Thus, deep tillage was undertaken on the deep 

tillage plots only of both north and south fields by Michelin Ultraflex tyres fitted to the 

tillage/compaction tractor (JD 7930) in Autumn 2016 and 2017. All deep and shallow tillage plots 

of both fields were then cultivated by shallow tillage (100 mm) using the same tillage tractor with 

revised recommended tyre pressures for STP and LTP plots following an AB line/centre line in 

April 2017 and 2018. To study the compaction effect closely on each row and to simulate grain 

cart chase-bin, extra compaction was applied in the 2nd week of May 2017 and 2018 using the 

planting tractor running on crop rows 1 and 3 to all plots as per STP and LTP modes, 

respectively. For pre-emergence spraying, a self-propelled sprayer (Model JD 4930) with boom 

widths of 36.6m was used to spray 32% urea ammonium nitrate (UAN) @ 563 L ha-1 fertilizer 

with herbicide Harness extra @ 5.27 L ha-1 in the maize field and Authority Assist 250 GL @ 

0.42 kg ha-1 in the soybean field perpendicular (North-South) to the direction of the plots in May 

2017 and 2018. The tillage tractor was then used to mix chemicals in soils and level the 

cultivated plots as per recommended tyre pressures for STP and LTP plots. Maize and soybean 

were planted in mid-May maintaining the row-to-row spacing of both crops 0.75 m following the 

recommended STP and LTP pressures. All field operations were conducted using a Real-Time 

Kinematic (RTK) tractor guidance system combined with autosteer technology. The post-
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emergence spray was applied at 30 days after planting (DAP) with the herbicides Calisto 4SC  

@ 0.14 kg ha-1 and Round-up @ 2.24 kg ha-1 in the maize and Cobra @ 0.70 kg ha-1, Select 

Max @ 0.42 kg ha-1  and Warrant @ 0.21 kg ha-1 in the soybean field were sprayed 

perpendicular (North-South) to the direction of the plots so that all plots receive an equal 

amount of sprayer wheel traffic. No major disease or insect incidences were observed. All 

necessary data related to soil and crops were recorded over time. Hand sampling of both crops 

was conducted before plot-wise harvest. Finally, maize and soybean were harvested in October 

at 135-160 DAP using a JD 9410 combine harvester, which was run as per the specified STP 

and LTP pressures treatments. Details timescale and sequence of field operations, and crop 

and soil data recording during 2016 - 2018 were given in Appendices 3.4a – 3.4c. Further, a 

summary of the width of area trafficked and un-trafficked (%) in DT, ST and NT plots and the 

number of vehicles passes/wheel traffic of each crop row was calculated using AutoCAD (Table 

3.5 and Appendices 3.5 – 3.7). Trafficked and un-trafficked crop rows/zones were identified by 

the number of vehicles trafficked/passes they received. Based on the tyre and vehicle 

configuration, the number of vehicle pass in each row of each tillage system was calculated by 

adding the tyre pass/wheel traffic on the crop row, the edge of the tyre at the centre line of crop 

row and the edge of tyre 60 mm from the centre line of crop row. 

 

Figure 3.5. A typical plot layout in 2016, indicating deep tillage operations to all plots in Fall, 

2015 followed by shallow tillage in spring, levelling the plots and planting of crops. 
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Figure 3.6. A typical deep tillage plot layout in 2017 and 2018, where 1 to 8 indicate crop rows 

(CR1 to CR8) showing tractors and combine harvester wheels positions. 

 

 

Figure 3.7. A typical shallow tillage plot layout in 2017 and 2018, where 1 to 8 indicate crop 

rows (CR1 to CR8) showing tractor and combine harvester wheel positions. 
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Figure 3.8. A typical no-till plot layout in 2017 and 2018, where 1 to 8 indicate crop rows (R1 to 

R8) showing tractor and combine harvester wheel positions. 

 

Table 3.5a. Number of vehicles passes in deep tillage, shallow tillage and no-till plot in 2017 

and 2018 

Crop Row/plot Number of vehicles passes Remarks 

Deep tillage 
plot 

Shallow tillage 
plot 

No-till plot  

Crop row 1 2 1 1 HT 
Crop row 2 1 1 1  
Crop row 3 5 4 3 HT 
Crop row 4 1 0 0  
Inter-row of 4 and 5 0 0 0 Centre line, UT 
Crop row 5 1 0 0  
Crop row 6 3 3 2  
Crop row 7 1 1 1  
Crop row 8 1 0 0  

 
Note: HT and UT denote heavily trafficked and un-trafficked locations/zones, respectively. 

Crop row 1 and 3 received higher vehicle traffic and considered as HT while other rows were 

identified as less trafficked crop row. Inter-row 4 and 5 was the centre line of the plot and 

receive no traffic at all.    
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Table 3.5b. % area of the width of the trafficked and un-trafficked zones of the experimental plot 

under different tillage systems 

Tillage systems Trafficked Areas (%) Un-trafficked Areas (%) 

Deep tillage 75.2 24.8 

Shallow tillage 57.6 42.4 

No-till 57.5 42.5 

 
Note: Detail information is shown in Appendices 3.5 to 3.7. 

3.10. Data Recording  

Weather data, soil properties, crop growth and development and yield were recorded. These are 

described below. 

3.10.1. Weather Data 

The daily maximum (max.) and minimum (min.) temperatures (ºC), rainfall and snowfall (mm) 

over the growing seasons from November 2015 to November 2018 were collected from a 

weather station located 500m from the experimental site. These data were processed as per 

monthly average max. and min. are shown in Fig. 3.9 -3.11. In addition, 30 years’ weather data 

from 1981 to 2010 are given in Table 3.6. Further, air and soil temperatures and rainfall data 

from 16 October – 4 November 2017 during soil sampling collection for X-ray CT study were 

also given in Appendix 3.8. Weather data shows that temperatures of all three years were 

almost similar in range except in 2018 where in May, the mean max. temperature was nearly 

30°C. Total annual precipitation was recorded the highest in 2016 (1168 mm) followed by 2018 

(1024 mm), while in 2016 it was 883 mm. All three figures show that the mean temperature 

peaked in July to around 30°C after which it gradually decreased to October. The lowest 

temperatures were recorded below 0°C during the months from December to April, in which 

January was the coldest month. However, monthly total rainfall data shows that average nearly 

85 mm of rainfall was recorded throughout the year. Rainfall was recorded more in May and 

June, and then September. However, mean temperatures, precipitation and snowfall data 

during 2016 to 2018 were showed marginally higher with some fluctuations when compared with 

the 30 years annual average weather data (ISWS, 2016) (Figs. 3.9 - 3.11 and Table 3.6).  
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Figure 3.9. Monthly mean, max. and min. temperatures (°C) and total rainfall (mm) at 

Champaign County, Illinois, 2016 

 

Figure 3.10. Monthly mean, maximum and minimum temperatures (°C) and total rainfall (mm) 

at Champaign County, Illinois, 2017 
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Figure 3.11. Monthly mean, maximum and minimum temperatures (°C) and total rainfall (mm) 

at Champaign County, Illinois, 2018 

 

Table 3.6. Monthly average max. and min. temperatures, rainfall and snowfall from 1981 to 

2010. 

Month Temperatures (0C) Precipitation 
(mm) 

Snowfall 
(mm) Max. Min. Mean 

January 0.50 -8.50 -4.00 52.1 172.7 
February 3.20 -6.60 -1.67 54.1 147.3 
March 9.90 -1.10 4.44 72.6 66.0 
April 17.1 5.10 11.1 93.5 10.2 
May 23.0 10.9 16.9 124.2 0.00 
June 28.1 16.6 22.3 110.2 0.00 
July 29.4 18.3 23.8 119.4 0.00 
August 28.7 17.3 23.0 99.8 0.00 
September 25.7 12.3 19.0 79.5 0.00 
October 18.4 5.90 12.2 82.8 2.54 
November 10.3 0.00 5.17 93.5 22.9 
December 2.60 -6.00 -1.72 69.3 167.6 

 
Source: ISWS (2016)  
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3.10.2. Soil Properties 

Soil properties in both initial and during the crop growing periods were recorded as listed below: 

I. Initial soil parameters (prior to establishing the experiment) 

− Electrical conductivity (mS/m) 

− Penetrometer resistance (MPa) 

− Soil moisture content (%) 

− Soil particle density (Mg m-3) 

− Soil bulk density (Mg m-3) 

− Total porosity (%) 

− Soil pH 

 − SOM (%) 

− Cation exchange capacity (CEC),  

− Soil nutrients: Nitrate N (NO3
-N), 

Ammonium N (NH4
+N), 

Phosphorus (P), Potassium (K), 

Calcium (Ca), Magnesium (Mg), 

Hydrogen (H), Sulpher (S), Zinc 

(Zn) and Boron (B) 

II. Soil parameters during crop growing periods 

− Penetrometer resistance (MPa)   

− Soil moisture content (%)   

− Soil bulk density (Mg m-3)   

− Total porosity (%)   

III. Data on pore characteristics of soil from X-ray CT study 

− Number of soil pores 

− Total pore area 

− Total CT-porosity 

− Average pore size 

 − Pore size distribution 

− Perimeter 

− Circularity 

− Solidity etc. 



HARPER ADAMS UNIVERSITY 84 M. R. SHAHEB, 2020 

3.10.3. Crop Growth Parameters and Yield 

Data on crop growth and yields of maize and soybean recorded over time are listed below: 

a) Plant establishment (%) 

b) Number of plants (plants ha-1) 

c) Days to 50% flowering (days) 

d) Plant height (m) 

e) Ear height of maize (m) 

f) Ear length of maize (m) 

g) 1000 Grain weight (g) 

h) Seed moisture content (%) 

i) Grain yield (Hand harvest) (Mg ha-1) 

j) Grain yield (Combine harvest) (Mg ha-1) 

3.10.4. Economic Analysis 

The cost and benefit analysis for the use of Ultraflex tyre system (LTP) over the standard tyre 

system (STP) for the maize and soybean production achieved for two years study from 2017-

2018 (four crop seasons), were calculated based on the market price of Ultraflex and standard 

tyres, tyre depreciation costs, and 2018 annual mean price of the products. Typical farm size of 

the University of Illinois farm and State of Illinois farm was of 200 and 809 ha (500 and 2000 

acres) were considered for the growing of maize-soybean in a rotation. Machinery costs, 

machinery depreciation, overhead cost, repair, and ownership costs, tillage tools purchase 

costs, labour cost, were assumed equal for both tyre inflation pressure systems. Fuel use cost 

and fuel usage rate were considered similar to both systems which are confirmed by the 

findings of Arslan et al. (2014) who showed that there was no significant difference in fuel use 

between the standard tyre and Ultraflex tyre systems. Similarly, seed, herbicide, and fertilizer 
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costs were the same as these were applied equally to all plots. Finally, annual cost and 

earnings increased of using ultra tyre system and the mean economic benefit were determined.  

3.11. Data Recording Approach of Soil Properties 

Soil core samples from 25 sampling points identified as per coordinates following a grid 

sampling method (spacing 25 m) from each field (i.e. 2 samples × 25 sampling points = 50 

samples/field × 2 fields = 100 samples), were collected in April 2016 before establishing the 

experiment. A Gator (0.67 Mg) mounted Giddings machine was used to collect soil core 

samples using 58 mm diameter by 300 mm long tubes. The collected soil cores/tubes were 

marked at three depths (0-100, 101-200 and 201-300mm) and subjected to soil physical (50 

samples) and chemical properties (50 samples) analysis. 

3.11.1. Soil Nutrients 

To analyse soil nutrient status, 50 soil samples (25 samples/field) were used.  The analysed 

chemical properties of soil and their methods were pH by pH meter (McLean, 1982; Peters et 

al., 2015), OM (%) by loss of weight on ignition method (Schulte and Hopkins, 1996; Combs and 

Nathan, 2015), CEC (Warncke and Brown, 2015), Nitrate-N (NO3
-N) by Nitrate Electrode 

Method (Millham et al., 1970; Dahnke, 1971; Gelderman and Beegle, 2015), Ammonium-N 

(NH4
+N) by Kjeldahl method (Bremner, 1960), P by Bray and Kurtz P-1 method (Bray and Kurtz, 

1945), K, Ca, and Mg by Mehlich 3 Extractant method (Mehlich, 1984; Warncke and Brown, 

2015), H, S by Monocalcium phosphate extraction method (Franzen, 2015), Zn by DTPA – 

Diethylene triamine penta acetic acid method (Lindsay and Norvell, 1978; Whitney, 2015) and B 

by Hot-Water Extractable Boron method (Watson, 2015).   

3.11.2. Electrical Conductivity 

Electrical conductivity (EC, mS/m) of each field was mapped, every second equivalent to 

approximately one sample per 3.6 m, using a Veris EM38 sensor drawn behind a John Deere 

Gator vehicle (0.67 Mg) on 28 April 2016 (Fig. 3.12). The EC maps were then overlaid onto 

NRCS soil survey maps for both fields.  
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Figure 3.12. JD Gator, Veris EM38 Sensor and data recording for EC measurement 

3.11.3. Penetrometer Resistance 

Cone penetrometer resistance (PR) was measured (MPa) as per ASABE Standards of S313.3 

and EP542 (ASAE, 1999a; b) in 25 mm increment from 0 mm to approximately 450 mm depth of 

soil with varying degrees of replication using a hand-held cone penetrometer (Model: Field 

Scout SC 900 Soil Compaction Meter, Spectrum Technologies Inc.) with a cone angle of 30° 

and a base area 130 mm2 (Fig. 3.13). PR readings were taken when the soil was near to field 

capacity (Arvidsson and Keller, 2007). 

  

 

Figure 3.13. Field Scout SC 900 Soil Compaction Meter (Spectrum Technologies) 
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PR data was recorded before establishing the experiment and during the active vegetative 

stage of growth of crops. In 2016 and 2017, PR data were recorded at approximately 35-40 

days after planting (DAP) for both maize and soybean and in 2018 at 95-100 DAP and 55-60 

DAP for maize and soybean, respectively. Initial PR data was replicated 3 times to a depth up to 

450 mm at each soil core sampling point in both fields (Fig. 3.14). In 2016, PR data were 

recorded from the left half of the plot from the centre line, as both halves of the plot were 

symmetrical in terms of field traffic and compaction. To determine the effect of compaction a 

total of 720 readings (3 readings/row x 4 crop rows/plot x 30 plots/field = 360 times/field x 2 

fields = 720 readings) from each 30 plots were recorded from both for maize and soybean 

fields. While in the year 2017 and 2018, PR was replicated 5 times to the same depth (450 mm) 

at each sampling point from crop row 1 to 8 including the UT centre line of the plot. A total of 

1350 readings (5 readings/sampling locations x 9 locations (8 rows and the centre line of each 

plot) x 30 plots/field = 1350 times) PR data per field were recorded from the maize and soybean 

fields, respectively. Finally, the average of the 5 readings per crop row (location) was calculated.  

 

Figure 3.14. A typical plot layout showing sampling points for PR and Soil MC data reading  

3.11.4. Soil Moisture Content 

Soil moisture influences soil structure and compaction. Plant nutrient availability, nutrient 

transformation, and soil biological activities, and finally crop growth is affected by soil moisture. 

Soil moisture content % (Soil MC) was calculated using the following equation: 
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Soil moisture (θ) = 
W1- W2

W2

 × 100                                                                                [3.1] 

Where,  

θ = Soil moisture content  

W1 = Weight of wet soil (g) 

W2 = Weight of dry soil (g) 

Initial soil moisture contents were measured from the soil samples collected from the same 

location during PR data recording from both fields following gravimetric methods. To see the 

compaction effect on the soil after Year 2 (2017), a total 30 soil cores from the heavy trafficked 

(HT) area between the crop row 3 and 4 and 30 cores from UT centre line (Interrow of crop row 

4 and 5)  were collected and gravimetric soil moisture contents were measured at five different 

depths with a 60 mm increment from 0 – 300 mm depth in the soil lab. Moreover, on the 

occasion of each PR data recording during the crop growing period for all three years, the 

volumetric water content in soil was taken from the same location indicated in Fig. 3.14 using a 

TDR (time-domain reflectometry) 300 soil moisture meter to a depth 200 mm (Fig. 3.15).  

 

Figure 3.15. Field Scout TDR 300 Soil Moisture Meter (Spectrum Technologies, Inc.) 

3.11.5. Soil Particle Density 

Soil particle density (PD) is the ratio of the mass of oven dry weight of the soil particles to the 

volume of solid particles not pore space, expressed in grams per cubic cm (g cm-3) or 
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megagram per cubic meter (Mg m-3) and calculated by the following equation. Soil PD differs 

from BD because the volume used does not include pore spaces. The volume of soil is 

determined by measuring the volume of water displaced by the particles. The Graduated 

Cylinder Method was used to measure the PD of soil.  

Particle Density (ρ
s
) = 

MS

Vs

                                                                                              [3.2] 

Where, 

ρs = Soil particle density (Mg m-3) 

Ms = Mass of oven-dry soil (g) 

Vs = Volume of solid soil without air (g) 

3.11.6. Soil Bulk Density 

Bulk density (BD) of soil is the ratio of the oven-dry weight mass of the soil to the bulk volume 

expressed in g cm-3 or Mg m-3. BD is a parameter that indicates soil structure and void space 

and is often used to describe compaction. The degree of magnitude of soil compaction can be 

measured using soil BD and PR (Raper, 2005). BD was measured using the following formula: 

Dry Bulk Density (ρ
d
) = 

MS

Vt

                                                                                          [3.3] 

Where, 

ρd = Soil dry BD (Mg m-3) 

Ms = Mass of oven-dry soil (g) 

Vt = Volume of soil (g) 

Soil BD was measured both before and after implementing the experiment. Initial soil samples 

(50 soil cores, 25 from each field) at field capacity moisture content conditions were collected 

which were taken to the laboratory and separated at three depths of 0-100 mm, 101-200 mm 

and 201-300 mm. Soil samples were then put in the oven for oven dried at 105°C for 72 hrs as 

per the American Society for Testing and Materials standard (ASTM) (ASTM International, 
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2019).  Finally, as per the gravimetric method, dry basis BD and soil MC% were determined. 

Soil cores from the south field immediately after harvest of maize in 2017 from the HT (Between 

crop row 3 and 4) and UT centre (Between crop row 4 and 5) locations of the plots were 

collected for X-ray computed tomography study. These undisturbed soil cores after completion 

of X-ray CT scanning were taken to the soil lab and separated into 5 different depths (0-60 mm, 

61-120 mm, 121-180 mm, 181-240 mm and 241-300 mm) and eventually BD and soil MC% 

were measured.   

3.11.7. Total Pore Space and Porosity 

The porosity of soil is the fraction of the total soil volume that is taken up by the pore space. 

Percent pore space (PS) is the ratio of the volume of voids in the soil to the total volume of the 

soil that is expressed by percentage. PS is filled with air and water, found between adjacent 

sand, silt and clay particles and between aggregates. Texture and structure are the main factors 

governing the amount of PS in the soil. Total pore space and porosity (%) are measured by the 

following formulas (Hallett & Bengough, 2013): 

% Porosity of Soil (φ) = 
ρ

d - 
ρ

s

ρ
d

 × 100                                                                                 [3.4] 

Where, 

φ = Total pore space/porosity (%) 

ρd = Soil BD (Mg m-3) 

ρs = Soil particle density (Mg m-3) 

The total porosity of soil was measured from the results of BD and PD for both initial soil 

samples and samples collected for X-ray CT study in the year 2017.  

3.11.8. Pore Characteristics of Soil from X-ray CT 

Application of X-ray CT to study soil physical properties has recently been used by a number of 

researchers, for example (Mooney et al., 2012; Rab et al., 2014; Beckers et al., 2014; Baveye et 

al., 2018). It is considered to be a powerful tool to explore possible modifications to the structure 

and other physical properties of soil (Pires et al., 2005). Soil cores from the south field 
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immediately after harvest of maize in 2017 from the HT (between the crop row 3 and 4) and UT 

centre (between the crop row 4 and 5) locations of all traffic and tillage plots were collected 

using a Giddings machine. These undisturbed soil cores were then CT scanned in a resolution 

of 98 µm at the Molecular Imaging Laboratory, Beckman Institute for the Science and 

Technology, UIUC, IL (Fig. 3.16) Eventually images were processed using Image J as per the 

working protocols and pore spaces and particles were segmented by Yen threshold. The Image 

J processing produced data spreadsheets, each containing different pore parameters. Detail 

procedures of the investigation of soil cores using X-ray CT are discussed in Chapter 4. 

 

Figure 3.16. Soil cores X-ray CT scanning and top view of the image stack. 

3.12. Data Recording Approach of Crop Parameters 

Growth and development stages and days to 50% flowering of maize and soybean were closely 

observed and recorded. There were no significant differences were observed between 

treatments and thus these data and results were not included in the present thesis. Main crop 

parameters recorded in terms of growth and yields of maize and soybean are described below. 

3.12.1. Plant Establishment 

Plant establishment (%) of maize and soybean per hectare (ha) was recorded at 15-18 DAP 

using the 1/1000th-acre method (University of Wisconsin, 2010). To determine plant counting, a 

5.31 m (17′ 5″) long pole was placed alongside crop rows and the number of plants in each crop 

row per plot were recorded. The number of plants was multiplied by 1000 provided plant 

population per acre (Plants/17′ 5″ × 1000 = Plants/acre). Measurements were replicated in 
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triplicate per row from all 240 rows of both crops from all STP and LTP plots. Plant 

establishment (%) was then calculated based on the seed rates applied for maize and soybean 

per ha. 

3.12.2. Number of Plants Per Hectare 

To estimate the number of plants per unit area, the 1/1000th acre method was repeated and the 

number of plants in each crop row per plot was recorded in triplicate at 30-35 DAP. The number 

of counted plants was multiplied by 1000 to get plants per acre. Finally, the number of plants 

were then converted to the number of plants per ha. 

3.12.3. Plant Height 

Plant heights of maize and soybean (m) were recorded from five plants in each crop row at 30 

and 45 DAP in  2016 while in 2017 and 2018, to get compaction effect of the whole crop 

season, these were recorded prior to the harvest (at approximately 130-135 DAP). A linear 

scale was used to record the plant height of maize from the base to flag leaf angle. Plant height 

of soybean was recorded from the base to tip of the main stem using a linear meter scale. Data 

on plant height was recorded in triplicate from each row of 30 STP and LTP plots. 

3.12.4. Ear Height and Length of Maize 

Ear height of maize (m) was recorded only in 2018 at 130-135 DAP using a linear scale from the 

base of the plant to ear. The ear height was recorded from the same five plants that were 

measured for plant height of maize. The ear length of maize (m) was recorded after hand 

harvest of ears in 2018.  

3.12.5. Rooting Depth 

For the rooting depth study, an un-replicated one STP and one LTP plots were investigated for 

both maize and soybean at 60-65 DAP in 2016. To do so, 4 crop rows of one side (both sides of 

the plot were symmetrical from the centre AB line) profile pits were dug to a depth of 1.5 m 

using a Caterpillar excavator, then spade and trowel were used carefully to uncover roots and 

rooting depths (m) of both crops into the soil were recorded. Approximately 6-7 hours were 

needed to dig and uncover the soil profile of each plot. Although, it was initially planned that 
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rooting depth study will be conducted to all plots, however, the time required per plot would 

have hampered the collection of other soil and crop parameters. Therefore, this un-replicated 

rooting depth study was conducted to get a general idea of how far the roots of maize and 

soybean can penetrate under the different tyre inflation pressure treatments.  

3.12.6. 1000 Grain Weight 

Grains used to measure 1000 grain weight (g) were cleaned and all cracked and abnormal 

grains were removed. The 1000-grain weights of maize and soybean of each crop row from all 

30 STP and LTP treatments were then recorded using a seed counter.  

3.12.7. Grain Moisture Content 

Grain moisture content percentage of both maize and soybean were recorded using a seed 

moisture meter (Model: John Deere grain moisture tester GT-30300). Moisture content (%) of 

grains of all plots harvested using combine harvester and plant samples of each crop row 

harvested by hand were recorded when shelled (maize)/threshed (soybean). 

3.12.8. Grain and Biomass Yield (Hand Harvest) 

To determine treatment effects in each row of all traffic treatments plots, hand harvest sampling 

of ten plants of soybean and five ears of maize per row were harvested before the plot combine 

harvest. In 2016, hand harvest sampling was from crop row 1 to 4 (both sides of the centre line 

were symmetrical) while in 2017 and 2018, these were from all eight crop rows of all STP and 

LTP plots. Hand harvest sampling of soybean and maize were conducted in the first week and 

the second week of October, respectively. In 2018, ear length of maize was recorded, and 

maize ears were then shelled and cleaned. Sample grain weight, 1000 grain weight and seed 

moisture content of maize were then recorded. Soybean samples per row were dried in a room 

dryer and then threshed using a soybean thresher. In 2018, hand harvest sampling of soybean 

included leaves, pods, and stems/branches. Before threshing, the total sample biomass weight 

was recorded and then samples were threshed. Finally, sample grain weight, seed moisture 

content and 1000 grain weight of soybean were recorded. The grain moisture contents were 

then adjusted to 15.5% for maize (Lauer, 2002) and 13% for soybean (Iowa State University, 

2008) and final grain weight/yield were converted to Mg ha-1. Harvesting of soybean and 

threshing are shown in Fig. 3.17. 
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3.12.9. Grain Yield (Combine Harvest) 

Maize and soybean were harvested using a combine harvester with a header width of 6 and 4.5 

m respectively on at 135-160 DAP in October. The combine harvester harvested all 8 soybean 

rows and the centre 6 maize rows of each plot and yield data were recorded accordingly. At 

first, the 15 STP plots were harvested as per the STP treatment for the combine and those were 

considered for the final plot yield. For maize, to harvest the two edge rows, 3 adjacent STP 

plots, STP plots 1 and 30 were harvested as per the STP mode. Subsequently, tyre pressures 

were lowered to LTP pressures and 15 LTP plots were harvested followed by 4 LTP plot 

boundaries. After that, 2 edge rows of adjacent plots of the remaining 22 plot boundaries were 

harvested as per STP and LTP treatments (left and right tyres of the combine were run in STP 

and LTP mode). Extra compaction by the combine harvester was also conducted to all plots as 

per STP and LTP modes to all plots boundaries in the soybean field to make both fields 

symmetrical in terms of field trafficking. The grain yield and seed moisture content (%) per plot 

were recorded using a weigh wagon (Model: Par-Kan GW 200A) and John Deere grain moisture 

tester (GT-30300), respectively. Seed moisture contents were then adjusted to 15.5% (Lauer, 

2002) and 13% for maize and soybean (Iowa State University, 2008), respectively. Finally, grain 

yields of both maize and soybean were then converted into Mg ha-1. 

 

 
 

a) Hand harvesting of soybean 

 
 

b) Threshing of hand harvest samples 
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c) 1000 grain weight (g) 
 

d) Crop row sample weight (g) 
  

Figure 3.17. Hand harvesting and threshing of soybean 

3.13. Statistical Analysis 

The experimental data were analysed by two way ANOVA for the main effect of tyre pressure 

and tillage systems on combine harvested yield and General ANOVA for hand-harvested data 

on growth and yield of both crops using software Genstat 18th Edition (VSN International, 2015). 

Data on PR, BD and total porosity of soil and pore characteristics throughout the soil depth (0 – 

450 mm) were analysed using repeated measures of ANOVA. The treatment structure was of 

tyre inflation pressure x tillage system x crop row and the block structure of block/whole plot 

(main plot)/crop row. Tukey HSD multiple range tests (P = 0.05) was used to determine 

significant differences between treatments. However, means, total count, standard deviation, 

standard error, maximum and minimum data etc. were also calculated by Microsoft Excel 2016 

software. 
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CHAPTER 4: STUDY OF SOIL PROPERTIES USING X-RAY COMPUTED 

TOMOGRAPHY 

4.1. Introduction 

The structure is an important physical property of soil which regulates and influences the nature 

of the different physical processes (Kooistra and Tovey, 1994). It enables the soil to support and 

sustain plant and animal life, and moderate water quality and soil carbon sequestration (Bronick 

and Lal, 2005). Soil with good structure typically has three types of pores macropores, 

mesopores, and micropores with equivalent diameters are >30, 0.2–30 and <0.2 μm, 

respectively (Kay and Vandenbygaart, 2002). Compaction alters soil structure, reduces total 

pore space, particularly macropores (> 30 µm) and voids between soil particles and aggregates 

(Berisso et al., 2012). It increases soil BD and reduces the proportion of large to small pores in 

the soil (Kim et al., 2010). Reduction in macroporosity due to compaction can restrict root 

growth (Rab et al., 2014) which leads to a reduction in crop growth and yield (Pagliai and 

Vignozzi, 2002; Czyż, 2004). Soil physical measurements such as BD, PR, and total porosity 

are widely used indicators of changes in soil compaction, but these are unable to provide 

quantification of soil pores, pore sizes and their distribution within the soil. 

X-ray computed tomography (CT) facilitates quantification of soil structure such as pore size 

distribution, porosity, and tortuosity of the porous network at the micrometre scale. It is a non-

invasive three dimensional (3D) imaging technique that can be used to measure and quantify 

soil pore size and distribution (Rab et al., 2014). Its ability to visualise the internal 3D image 

structure of soil greatly helps the current understanding of the hydrodynamic behaviour of soil 

(Beckers et al., 2014). The technique has been applied in the field of soil science since the early 

1980s (Petrovic et al., 1982; Hainsworth and Aylmore, 1983; Crestana et al., 1985; Beckers et 

al., 2014). Others refer to the technique as a state of the art in soil science research (Taina et 

al., 2008; Pires et al., 2010; Baveye et al., 2010).  

The heterogeneous nature of soil makes the assessment of structure challenging (Munkholm et 

al., 2013). The CT technique has offered a non-destructive means of the quantification and 

visualization of soil in 3D that has provided fundamental insights regarding soil features and 

function (Helliwell et al., 2013). The process involves a sample (e.g. a soil core) being rotated 

through 360o in X-ray beams, which produce successive projections of pixels based on the 
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attenuation, that are reconstructed into cross-sectional 2-D images (tomo/slice) yielding a 3-D 

object (Mooney et al., 2012). Based on the X-ray resolution, each image/slice is made up of 3D 

pixels called voxels (Calistru and Jităreanu, 2015). It produces stacked 2D images to create 3D 

models of the sample using the mathematical reconstructions from attenuation of radiation (Vaz 

et al., 2011), allowing the researcher to quantify and visualise changes in pore system structure 

throughout the soil profile. In line with soil compaction, soil structural changes by heavy field 

traffic using X-ray CT with 90 a μm resolution were investigated (Schäffer et al., 2007). The 

results showed that both porosity and connectivity of the macropores decreased and that 

macropore size distribution was distinctly affected by compaction. Qualitative assessment of 

compacted soil using a medical CT at 750 μm resolution showed that larger vertical pores of soil 

disappeared due to compaction at 10 to 20 cm depth but more pores persisted at a depth of 30 

to 40 cm (Wiermann et al., 2000). 

Changes in soil structure due to compaction can be explained by changes in pore size, shape, 

orientation and connectivity of soil (Pagliai and Vignozzi, 2002). Pore size distribution (PSD) and 

continuity regulate infiltration and storage of water into the soil (Kutilek and Nielsen, 1994; Hillel, 

1998; Kodešová et al., 2011) and available water and aeration for uptake by plants (Cary and 

Hayden, 1973). However, segmentation (the process of converting a grayscale image to a 

binary image) method and processing selection are subjective, which, in turn, can have a strong 

impact on results and conclusions (Beckers et al., 2014). The reconstructed images are 

segmented to detect pore space of the sample (Taud et al., 2005) using a threshold tool on an 

8-bit greyscale image. Values lower than the threshold are considered air-filled pore space and 

above are considered the solid matter (Kim et al., 2010) or non-pores. However, due to the 

limitation of X-ray CT resolution, CT derived pores are classified as macropores (Scott, 2000). 

Smaller macropores and a higher number of smaller macropores indicate the existence of many 

unconnected pores in the soil (Pires et al., 2017). X-ray CT technique helps to explore possible 

modifications in the structure and other physical properties of soil (Pires et al., 2005). A recent 

pore structural study conducted on sandy loam soil in the UK using X-ray tool showed that pore 

structures in soil significantly varied between the traffic and tillage treatments (Millington, 2019). 

Apart from this, to the present knowledge, there are no data on the changes in pore 

characteristics due to the effect of high flexion tyre and tillage induced compaction of soils and 

the relationship between the X-ray CT derived porosities and soil physical porosities. X-ray CT 

technique and image analysis may help to cover these gaps.   
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4.2. Hypothesis 

Reduced tyre inflation pressure maintains soil macroporosity, number of pores, pore area and 

size of pores for three tillage systems. 

4.3. Objectives of the X-ray Computed Tomography Study 

To determine the effect of standard and low tyre inflation pressure on:  

a) Soil structure in terms of pore number and size of pores, and percentage pore area for three 

tillage systems (deep, 450 mm; shallow, 100 mm and no-till).   

b) Soil pore area, pore size and distribution, circularity, and solidity of pores.  

c) The relationship between X-ray CT porosity and physical porosity of the soil, PR, and BD of 

soil. 

4.4. Methodology 

An investigation of the effect of tyre inflation pressure and tillage systems on soil properties 

using X-ray computed tomography (CT) was conducted at the Molecular Imaging Laboratory, 

the Beckman Institute for Advanced Science and Technology, at the University of Illinois at 

Urbana-Champaign during 2017-2018. The experiment was part of the long-term study of the 

effect of tyre inflation pressure on soil properties and crop development for three tillage 

systems, which was implemented in Champaign County, Illinois, USA (lat/lon: 40.070965, -

88.217538) from November 2015 – October 2018. The soil of the experimental site consists 

mainly of Drummer soil (152A) series characterised as a silty clay loam (USDA, 2015). The 

experiment was a 2 × 3 factorial randomized complete block design, with five blocks. The 

treatments comprised two tyre inflation pressures: standard tyre inflation pressure (STP) and 

low tyre inflation pressures (LTP) and three tillage systems: deep tillage (DT, 450mm), shallow 

tillage (ST, 100mm) and no-till (NT). Details of the study area, experimental design and 

treatments, field operations as per treatment structure and crop production of maize and 

soybean in rotation are presented in Chapter 3: General Methodology.  
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4.4.1. Soil Sampling  

Soil samples were collected immediately after harvest of maize on November 4, 2017 (second 

year of the crop rotation) from the heavily trafficked (HT, between crop row 3 and 4) and UT 

locations (between crop row 4 and 5) which was the centre line of the plot (Fig. 4.1). HT location 

of each plot received an equal amount and the same vehicle passes under the two different tyre 

inflation pressure treatments. Therefore, the soil core collection of these areas and afterwards 

using X-ray CT study, a fair comparison between two tyre inflation pressure systems were made 

possible. A Gator (0.67 Mg) mounted Giddings machine was used to collect 60 soil cores (2 

trafficked locations × 30 plots) in PVC liners of 58 mm diameter × 300 mm length from the 30 

plots (Fig. 4.2). Soil cores were covered with red (top) and black (bottom) lids and then stored in 

a cool room in an upright position in the dark at 4°C to avoid drying out and to reduce microbial 

activity. 

 

Figure 4.1. Typical plot layout showing vehicles wheeling and soil core sampling locations (red 

circle) for X-ray CT study. 

Note: Red circles 1 and 2 are the locations of sampling of soil cores corresponded to the heavily 
trafficked (HT, between crop row 3 and 4) and un-trafficked area (UT, between crop row 4 and 5), 
respectively.  
 
Deep tillage: Applied only to DT plots, shallow tillage: Applied to both DT and ST plots and No-
till: NT plots receive no tillage at all. 

1 2 
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Figure 4.2. Gator mounted Giddings machine (left) and soil cores (right) collected for X-ray CT 

scanning. 

4.4.2. X-ray Computed Tomography Scanning  

The soil cores were scanned using a microCT Preclinical scanner (Model: Hybrid Siemens 

Inveon triple-modality microPET/SPECT/CT scanner2). The system is equipped with multiple 

pinholes and parallel hole collimators, acquisition, and image processing workstations, and 

BioVet monitoring system, which allows for rapid evaluation of radiotracers. X-rays were emitted 

from the source and passed through the sample, which rotated incrementally through 360°. A 

flat panel detector collected the attenuated X-rays. The CT system parameters were 80 KV, 500 

µA and 98 µm resolution. As this was a comparative study thus, the compromise between 

resolution, sample size and CT scanner beam time was considered acceptable. Studies showed 

that higher resolutions can provide a smaller field of view and can miss pore structure 

information due to heterogeneity in the larger sample (Peng et al., 2012). CT scanning of the 

soil cores was then conducted. Image acquisition and then reconstruction of images were 

automatically performed by the image acquisition and image reconstruction software installed in 

the controlling computer/workstation. Three scans were required (0-100 mm, 100-200 mm and 

200-300 mm depth) to cover the full length of the soil core. These three scan files were exported 

as volume files were combined and reconstructed, and the resultant 3D X-ray attenuation maps 

were exported as top view (cross-sectional area). X-ray CT scanner and a representative whole 

 
2 PET - Positron Emission Tomography, SPECT - Single Photon Emission Computed Tomography and 
CT – Computed Tomography.  
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CT scanned image are shown in Figs. 4.3 and 4.4. A flow diagram of the whole CT scanning 

procedures of soil cores is also given in Fig. 4.5. The reconstructed image stacks consisted of 

3053 slices per soil sample and were then stored in tagged image files format (tiff) for further 

processing.  

 

Figure 4.3. X-ray CT scanner at the Molecular Imaging Laboratory, Beckman Institute 

 

Figure 4.4. A representative whole X-ray CT scanned image with a top view (left) and side view 

(right). 
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Figure 4.5. Stepwise CT scanning protocol of soil cores at MIL, Beckman Institute.  

Note: FOV – Field of View. It is the extent of the observable object (e.g. soil core) that can view 

on the display screen. 
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4.4.3. Image Processing and Segmentation 

Tiff files of the stack images were processed by Fiji-ImageJ (Schindelin et al., 2012). Before 

processing the image stacks, a cylindrical region of interest (ROI) of 535-pixel x 535-pixel per 

slice in the centre of the images was selected. The ROI was extracted to reduce disruption 

artefacts at the boundary of the samples and to reduce any effect from beam hardening (the 

most commonly encountered artefact in CT scanning) and deformation from the soil core tool (Li 

et al., 2016). Beam hardening causes the edges of a scanned object to appear brighter than the 

centre because of greater attenuation of lower energy photons relative to high energy photons. 

The effect can be reduced by the use of a filter between the x-ray source and the sample 

(Helliwell et al., 2013; Rab et al., 2014). In a first step, the topography of each image stack was 

determined by discarding the top 100 slices or voxels (approx. 10 mm) and the bottom 120 

slices or voxels (approx. 12 mm) to avoid including possible wall artefacts introduced by the 

sampling process. Later, the ROI of 535-pixels x 535-pixels per slice in the centre of the image 

stack (2832 slices) was cropped that served as a basis for all further processing steps (Fig. 4.6).  

The soil core image stacks had large beam hardening effects especially at the centre and on the 

edges. To remove the noise, the median, mean, Gaussian Blur and minimum filters as 

potentials tools were applied. However, these background filters did not improve the ability of 

the image quality to threshold all pore space. Sample CT images for the study of the same 

parameters for comparison were analysed and compared at the Hounsfield Facility, The 

University of Nottingham, UK, however, similar observations were found. Therefore, three 

options were considered for segmenting the soil pore space: (1) subtracting the background of 

the image stack first and then apply an automatic Li thresholding algorithm (Li & Tam, 1998), 

however, due to huge beam hardening, the results observed overestimated porosity; (2) perform 

manual threshold such as Otsu, Li, MaxEntropy, RenyiEntropy and Yen on all samples, which 

resulted in an underestimation of porosity; (3) creating 2X image stacks (black and white 

backgrounds), adjusting the background to grey and running an automatic threshold with Yen 

method, which resulted in slightly underestimated porosity values (3S. Mooney and B. Atkinson, 

Personal communication, 7 March 2018). Finally, option 3 was adopted and the Yen threshold 

(Yen et al., 1995) was applied to the original cropped image with the knowledge that the pore 

space was being underestimated (Vaz et al., 2011). However, few image stacks were not able 

to perform an automated threshold due to higher level of beam hardening. To solve the issue, at 

 
3 Scientists of the Hounsfield Facility, The University of Nottingham, UK. 
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first, all automated threshold was run to the cropped image stacks. Then from the log window, 

the value of Yen was taken and input manually by setting up the value as close as possible to 

the Yen automated method. Finally, the pore space of these image stacks was segmented. 

 
 

Figure 4.6. A cylindrical ROI selected in stacked images of 535 pixel x 535 pixel per slice. 

4.4.4. Image Analysis 

ROI image stacks of each sample were further analysed by Fiji  ImageJ software (Schindelin et 

al., 2012) which is similar to that analysed in a macroporosity study of soil (Rachman et al., 

2005). After segmentation using the Yen threshold method, binary (8 bit) images were produced 

and values below the threshold were identified as soil pore space. The image processing 

produced an HT and UT excel spreadsheet, each containing sheets for the various soil pore 

parameters across the cores being pore count, pore size, total pore area, circularity, solidity etc. 

Data visualization and analysis algorithms were written using MATLAB R2018b programming 

software. The detail procedures/protocol of the X-ray CT analysis is shown in Fig. 4.7. 
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Figure 4.7. Procedures of soil cores X-ray CT images analysis. 

4.4.5. Bulk Density, Total Porosity and Penetrometer Resistance of Soil 

Bulk density (Mg m-3) and total porosity percentage (BDp) of the X-ray CT soil cores after CT 

scanning were measured at 5 depths; 0-60 mm, 61-120 mm, 121 – 180 mm, 181 – 240 mm and 

241- 300 mm (Detailed methods are described in Chapter 3). During soil core collection for the 

X-ray CT study, a total of 300 readings of PR data were recorded from the HT and UT locations 

of all 30 plots in 25 mm increments from 0- to approximately 450 mm depth of soil using a hand-

held cone penetrometer as per the ASABE standards of S313.3 and EP542 (ASAE, 1999a; b). 

4.4.6. Data Collection  

Soil pore space parameters such as total pore count, total pore area (TPA), the average size of 

pores, CT measured porosity percentage (CTp), perimeter, circularity, solidity, FeretX, FeretY, 

were collected (Fig. 4.8). Moreover, the cumulative frequency of pore size distribution was 

plotted. Pore perimeter is defined as the length of the outside boundary of a given selected 

(Between crop row 3 and 
) 

2. Untrafficked area 
(between crop row 4 and 
5) 
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pore. Pore circularity is a measure of how circular pores are. The circularity value lies between 

0-1. A circularity value of 1.0 indicates a perfect circle (Kim et al., 2010) while value approaches 

0.0 indicates an increasingly elongated polygon (Ferreira and Rasband, 2012). Solidity is the 

area of a blob (a common term used in image processing) divided by its convex area (the 

imaginary convex hull around it). Feret diameter is defined as the distance between the two 

parallel planes restricting the object perpendicular to that direction. FeretX and FeretY are the 

lengths of the object’s projection in the X and Y directions, respectively. Image J calculates 

circularity and solidity by the following equations: 

Circularity = 4π × 
[Area]

[Perimeter2]
                                                                                     [4.1] 

Solidity = 
[Area]

[Convex Area]
                                                                                              [4.2] 

 

 
 

Figure 4.8. An example of a typical image of soil pores, explaining key pore parameters (A - 

Area, D - Diameter and R - Radius). 

4.4.7. Statistical Analysis 

Data were analyzed by General ANOVA and repeated measures of ANOVA using software 

Genstat 18th Edition (VSN International, 2015). The treatment structure was of tyre inflation 

pressure x tillage system x trafficked location while the block structure was of block/whole plot 

(main plot)/ trafficked location. Tukey HSD multiple range tests (P = 0.05) were used to 

determine significant differences among treatments.  
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4.5. Results and Discussion 

The effect of tyre inflation pressure and tillage systems on soil cores by observing image stacks 

(2832 slices per sample) of HT and UT locations using X-ray CT is shown in Figs. 4.9 and 4.10. 

Their effect on various pore parameters along with BD and PR are described below: 

4.5.1. Qualitative Observation of X-ray CT Images 

Figs. 4.9 and 4.10 represent HT and UT locations and show longitudinal slice sections of the 

sample images produced from the X-ray CT attenuation maps using the slicer function of the 

ImageJ. Overall, visual observation of these image stacks shows that soil structural differences 

between cores of HT soil are evident. Comparing this, soil structural variations are smaller in UT 

locations whilst loose and open structures with a larger volume of pores were seen in the LTP. 

Fig. 4.9 showed that the soil was in a compacted and dense condition in the samples of STP 

especially in the HT location, which might be evidence of possible re-compaction after tillage. 

Moreover, some vertical and horizontal cracks and pore spaces are more prominent in LTP as 

compared to STP and in UT compared to the HT treatment (Figs. 4.9 and 4.10). Load and 

pressure induced by agricultural machinery traffic on soil cause cracks and reduced voids on 

arable soils (Kooistra and Tovey, 1994). However, images of both STP and NT appear to show 

a more dense structure throughout the profile with the presence of vertical cracks, which agree 

with the findings of (Millington, 2019).   
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 Standard tyre inflation pressure  Low tyre inflation pressure 
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tillage 

 No-till  Deep tillage Shallow 
tillage 

 No-till 

      
 

Figure 4.9. Side view of soil cores X-ray CT image stacks (280 mm × 50 mm) of heavily 

trafficked locations as influenced by tyre inflation pressure and tillage systems. 

  

50mm 
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Figure 4.10. Side view of soil cores X-ray CT image stacks (280 mm × 50 mm) of un-trafficked 

locations as influenced by tyre inflation pressure and tillage systems. 

  

50mm 
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4.5.2. Number of Pores  

Total pore count of STP and LTP plots and HT and UT locations in different tillage systems, 

histograms of the frequency of pores (HT location) and statistical results between treatments 

are presented in Table 4.1 and Figs. 4.11 – 4.19. Fig. 4.11 shows STP vs LTP in different tillage 

systems and HT and UT locations, where colour lines are represented as replications of the field 

experiment. It shows that pore count in LTP was recorded more in all five replications than pore 

counted in STP. Visualization of pore count in HT vs UT showed that pore count in UT location 

was higher as compared to the HT location (Fig. 4.12). A histogram of the frequency of pores 

showed that a right-skewed distribution of pores was observed in HT location of the tyre inflation 

pressure and tillage systems plots (Fig. 4.13). The mean pore count of LTP and STP for three 

tillage systems in the HT and UT locations and pore count of UT and HT for various tyre inflation 

pressures and tillage systems are shown in Figs. 4.15 -4.16. These figures show that pore count 

was more in the LTP treatment plots than the STP while between trafficked locations, UT 

location across tire inflation pressure and tillage treatment had shown a higher pore count than 

HT. 

Statistical results show that tyre inflation pressure (P = 0.05), tyre inflation pressure and soil 

depth (P = 0.010), the interaction effect of tyre inflation pressure and tillage system in HT (P = 

0.030) in HT location, and trafficked location and soil depth (P = <0.001) had a significant effect 

on the number of pores of soil (Table 4.1 and Figs. 4.17-4.18). The tillage system was not 

significant on the mean pore count of soil (P = 0.95; Fig. 4.17b). Table 4.1 shows that the mean 

number of pores was recorded to be significantly 38.8% higher in LTP (105.2) than in the STP 

plots (75.8) (n = 75). The interaction effect of LTP and DT treatments in HT location had a 

higher number of pores (118) which was significantly different from the treatment combination of 

STP and NT (70) and STP and DT (59.10) (n = 25). A higher number of pores were also 

observed in all depths in the LTP treatment; however, the significant differences were observed 

in the soil depth of 60-120 mm and 120-180 mm (n = 15; Fig. 4.17a and Appendix 4.1). 

Irrespective of tyre inflation pressure, the mean pore count of all slices was recorded to be 

significantly higher in UT location (164) than HT areas (91) (n = 150; Appendix 4.2). Mean pore 

count at different soil depths showed that topsoil (0-60 mm) had the higher pore count that was 

followed by the depth 60-120mm, however, UT had higher pore count as compared to the HT 

location. Mean pore count was decreased in the subsequent soil depths and the lowest mean 

pore count was recorded in soil depth of 180-240 mm (Fig. 4.18). The combined effect of tyre 
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inflation pressure, tillage system and the trafficked location was not significant at 5% level but 

was found to be significant at the 20% level (P = 0.06; n = 25), where the highest number of 

pores was obtained in the combination of LTP × ST × UT which was significantly different from 

others except LTP × DT × UT, STP × ST × UT and STP × ST × UT (Fig. 4.19). 

Table 4.1. Effect of tyre inflation pressure and tillage system on the number of pores in the 

heavily trafficked location  

Treatments Number of pores Mean 

DT ST NT 

STP 59.1a 98.3bc 70.0ab 75.8a 
LTP 118.0c 86.7abc 110.9c 105.2b 
Mean* 88.6a 92.5a 90.5a  
20 and 96 DF  SEM P value LSD CV (%) 
TIP 7.31 0.05 21.56 31.30 
TS 8.95 0.95 26.41  
TIP × TS 12.66 0.03 37.35  

 
Note: TIP, TS, STP, LTP, DT, ST, NT and DF represent tyre inflation pressure, tillage systems, 

standard tyre inflation pressure, low tyre inflation pressure, deep tillage, shallow tillage, no-till 

and degree of freedom, respectively. Means with the same letter are not significantly different (P 

= 0.05) from each other.  
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Figure 4.11. STP vs LTP pore count for HT (top row) and UT (bottom row) in NT (left column), 

ST (centre column) and DT (right column) scenarios. Indicating that the majority of pore counts 

data points lie below the yellow equality line.  

 

Figure 4.12. UT vs HT pore count for LTP (top row) and STP (bottom row) in NT (left column), 

ST (centre column) and DT (right column) scenarios. Indicating that the majority of pore counts 

data points lie below the yellow equality line.  
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Figure 4.13. Frequency vs pore count for LTP (top row) and STP (bottom row) in NT (left 

column), ST (centre column) and DT (right column) scenarios in the HT location. 

 
 

Figure 4.14. Pore count vs soil depth for LTP (top row) and STP (bottom row) in NT (left 

column), ST (centre column) and DT (right column) scenarios in the HT location. 
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Figure 4.15. UT vs HT pore count for LTP (top row) and STP (bottom row) in NT (left column), 

ST (centre column) and DT (right column) scenarios. Indicating that the majority of pore counts 

data points lie above the yellow equality line. 

 

Figure 4.16. STP vs LTP pore count for LTP (top row) and STP (bottom row) in NT (left 

column), ST (centre column) and DT (right column) scenarios. Indicating that the majority of 

pore counts data points lie below the yellow equality line.  
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Figure 4.17. Effect of tyre inflation pressure (a), tillage system (b) and their combined effect (c) 

on the mean pore count of soil in the HT Location. Error bar indicates the standard error of 

mean. 

 

 

Figure 4.18. Mean pore count vs trafficked location at different soil depths. Error bar indicates 

the standard error of mean. 
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Figure 4.19. Mean pore count vs. tyre inflation pressure and trafficked Locations for different 

tillage systems. Error bar indicates the standard error of mean. 

4.5.3. X-ray CT Measured Percentage Macroporosity (CTP) 

X-ray CT results showed that tyre inflation pressure (P = 0.004), trafficked location (P = <0.001), 

soil depth (P = <0.001), tyre inflation pressure and soil depth in HT location (P = 0.004), tyre 

inflation pressure irrespective of trafficked locations (P = 0.014), and interaction effect of 

trafficked location and soil depth (P = <0.001) had a significant effect on the CTP of the test soil 

(Table 4.2 and Figs. 4.20-4.22 and Appendix 4.3). The effect of tillage system and interaction 

with tyre inflation pressures were not significant. In HT location, the CTP was recorded as 

significantly 62.4% higher in LTP (4.66%) compared to STP mode (2.87%) (P = 0.004 and n = 

75; Table 4.2). Fig. 4.20a shows that the LTP treatment throughout soil depth had a higher CTP 

than the STP, as, it was significantly increased at depths of 60-120mm (5.54%) and 120-180mm 

(5.08%) (n = 15). Like pore count, the highest CTP was observed in the soil depth of 0-60mm 

(6.25%) and decreased with depths with the lowest CTP of 3.93% was recorded in the depth of 

240-300mm. Even though upper soil strata (approx. 0-60mm soil depth) in both UT and HT 

locations had a higher CTP, however, the CTP was recorded to be higher in UT than HT. The 

trend of CTP presence in the soil profile is similar to the trend of the number of pores and thus 

indicating that the number of pores and CTP are inversely proportional to soil depth. Similarly, 

the mean CTP across trafficked locations was recorded as 55.4% higher in LTP (5.84%) than 
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STP (4.36%) (n = 150). When considering the trafficked locations, the HT had a 41.5% lower 

CTp (3.77%) than the UT location (6.44%) (n = 150; Fig. 4.21), however, the differences 

between them throughout soil depths were higher as shown in Fig. 4.22. 

Mean CTP throughout the soil profile plotted as STP vs LTP in different tillage systems and 

trafficked locations, and UT vs HT in different tyre inflation pressures and tillage systems and 

CTP across soil profile are shown in Figs. 4.23 - 4.26. Fig. 4.23 shows that pore percent area 

(CTP) data points were more bountiful in the UT locations compared to HT. Similarly, 

visualization of CTP distribution was greater in LTP plots not only across five replications of the 

experimental field than that of STP but also more throughout the soil depth (Figs. 4.24 and 

4.26).  

Table 4.2. Effect of tyre inflation pressure and tillage system on the CT measured 

macroporosity in the heavily trafficked location. 

Treatments CT Measured Macroporosity (%) Mean 

DT ST NT 

STP 2.69a 3.05a 2.87a 2.87a 
LTP 5.03a 4.16a 4.80a 4.66b 
Mean* 3.86a 3.60a 3.83a  
20 and 96 DF  SEM P value LSD CV (%) 
TIP 0.38 0.004 1.13 39.50 
TS 0.47 0.91 1.38  
TIP × TS 0.67 0.65 1.96  

 
Note: TIP, TS, STP, LTP, DT, ST, NT and DF represent tyre inflation pressure, tillage systems, 

standard tyre inflation pressure, low tyre inflation pressure, deep tillage, shallow tillage, no-till 

and degree of freedom, respectively. Means with the same letter are not significantly different (P 

= 0.05) from each other.  
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Figure 4.20. Effect of tyre inflation pressure (a), tillage system (b) and their interaction (c) on the 

CT measured macroporosity of soil in HT location. Error bar indicates the standard error of 

mean. 

 
 
 

Figure 4.21. Effect of tyre inflation pressure (a) and trafficked location (b) on CT measured 

macroporosity of soil. Error bar indicates the standard error of mean. 

0

60

120

180

240

300

0 2 4 6 8 10

STP

LTP

0

60

120

180

240

300

0 2 4 6 8 10

DT

ST

NT

0

60

120

180

240

300

0 2 4 6 8 10

STP-DT STP-ST

STP-NT LTP-DT

LTP-ST LTP-NT

CT Measured Macroporosity (%) 
S

o
il

 D
e

p
th

 (
m

m
) 

P value: 0.004 
SEM: 0.38 
LSD: 1.32 
CV (%): 39.50 

P value: 0.91 
SEM: 0.47 
LSD: 1.38 
CV (%): 39.50  

P value: 0.64 
SEM: 0.66 
LSD: 1.96 
CV (%): 39.50  

a) b) c) 

a) b) 



HARPER ADAMS UNIVERSITY 119 M. R. SHAHEB, 2020 

 

Figure 4.22. Effect of trafficked location and soil depth on the CT measured macroporosity of 

soil. Error bar indicates the standard error of mean. 

 

Figure 4.23. UT vs HT percent area (CTP) for LTP (top row) and STP (bottom row) in NT (left 

column), ST (centre column) and DT (right column) scenarios. Indicating that the majority of 

percent area data points lie above the yellow equality line. 
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Figure 4.24. STP vs LTP percent area (CTP) for HT (top row) and UT (bottom row) in NT (left 

column), ST (centre column) and DT (right column) scenarios. Indicating that the majority of 

percent area data points lie below the yellow equality line. 

 

Figure 4.25. Depth vs percent area (CTP) for LTP (top row) and STP (bottom row) in NT (left 

column), ST (centre column) and DT (right column) scenarios in HT Location. 
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Figure 4.26. Depth vs percent area (CTP) for LTP (top row) and STP (bottom row) in NT (left 

column), ST (centre column) and DT (right column) scenarios in UT location. 

4.5.4. Total Pore Area (TPA) 

The results showed that tyre inflation pressure (0.004), tyre inflation pressure across depth (P = 

0.004) in HT location, tyre inflation pressure irrespective of trafficked locations (P = 0.014), 

trafficked location (P =<0.001), soil depth (<0.001) and the combined effect of trafficked location 

and soil depth (P =<0.001) had a significant effect on the mean total pore area in soil (Table 4.3, 

Figs. 4.27a and 4.28, and Appendices 4.4 - 4.5). However, the tillage system and its interaction 

with tyre inflation pressure were not significant (Fig. 4.27b-c). Table 4.3 shows that the mean 

TPA in the HT location was recorded as 63.6% higher in the LTP (92.60 mm2) than the STP 

treatment (56.60 mm2) (n = 75). Similarly, across depths, the LTP had an increased TPA than 

STP, however, significantly higher mean TPA was recorded in soil depths of 60-120 mm and 

120-180 mm in which LTP treatment had almost double TPA (108.03 and 100.88 mm2, 

respectively) than the STP treatment (56.77 and 52.14 mm2, respectively) (n = 15; Fig. 4.27a). 

Irrespective of trafficked location, higher TPA was recorded in LTP (116 cm2) than STP (86.5 

cm2) (n = 150) while between trafficked locations, the HT location had a lower mean TPA (74.7 

mm2) as compared to the UT location (127.8 mm2) (n = 150; Appendix 4.5) with a lower TPA 

throughout soil depths than UT (n = 30; Fig. 4.28). In contrast, among soil depths, the mean 

TPA was observed to be significantly higher in soil depth of 0-60mm (124 mm2) that all 
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subsequent soil depths, while the lowest mean TPA was recorded in the depth of 240-300mm 

(78 mm2) (n = 60; Appendix 4.5). The trend in mean TPA was found to be similar to that 

observed in CTp, indicating that both CTp and mean TPA were inversely proportional to soil 

depth (0-60 mm> 60-120 mm> 120-180 mm> 180-240 mm> 240-300 mm). These findings 

confirm that deeply tilled soils have lower soil strength and less ability to support field trafficking 

which increases susceptibility to re-compaction (Soane et al., 1986).  

To visualize mean TPA across the whole soil profile, TPA data plotted as STP vs LTP for HT 

and UT locations showed that the mean TPA was higher on average in LTP than that of STP 

plots (Fig. 4.29). Similarly, HT vs UT TPA for STP and LTP in different tillage systems indicated 

that UT had a higher mean TPA than the HT locations (Fig. 4.30). The mean TPA across soil 

depths in both HT and UT locations also indicates a higher mean TPA throughout the soil profile 

for the UT rather than HT locations and mean TPA decreased with increased soil depths (Fig. 

4.31). 

Table 4.3. Effect of tyre inflation pressure and tillage system on the total pore area in the heavily 

trafficked location. 

Treatments Total Pore Area (mm2) Mean 

DT ST NT 

STP 53.5a 60.0a 56.9a 56.8b 
LTP 100.0a 82.5a 95.3a 92.6a 
Mean 76.7a 71.3a 76.1a  
20 and 96 DF  SEM P value LSD CV (%) 
TIP 7.65 0.004 22.59 39.70 
TS 9.37 0.90 27.67  
TIP × TS 12.49 0.66 39.14  

 
Note: TIP, TS, STP, LTP, DT, ST, NT and DF represent tyre inflation pressure, tillage systems, 

standard tyre inflation pressure, low tyre inflation pressure, deep tillage, shallow tillage, no-till 

and degree of freedom, respectively. Means with the same letter are not significantly different (P 

= 0.05) from each other.  
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Figure 4.27. Effect of tyre inflation pressure (a), tillage system (b) and their interaction (c) on the 

total pore area (Soil Depth vs. TPA). Error bar indicates the standard error of mean. 

 

Figure 4.28. Effect of trafficked location and depth on the total pore area of soil. Error bar 

indicates the standard error of mean. 
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Figure 4.29. Total area STP mean vs total area LTP mean for HT (top row) and UT (bottom 

row) in NT (left column), ST (centre column) and DT (right column) scenarios. Indicating that the 

majority of data points lie below the yellow equality lines. 

 

Figure 4.30. Total area UT mean vs total area HT mean for LTP (top row) and STP (bottom 

row) in NT (left column), ST (centre column) and DT (right column) scenarios. Indicating that the 

majority of total area data points lie above the yellow equality line. 
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Figure 4.31. Depth vs total area for LTP (top row) and STP (bottom row) in NT (left column), ST 

(centre column) and DT (right column) scenarios in HT Location. 

4.5.5. Average Size of Pore and Pore Size Distribution 

The average pore size and pore size distribution in the soil are given in Figs. 4.32 – 4.36. 

Results showed that only soil depth had a significant effect on the average sizes of pores (P = 

0.001, n= 60) while the combined effect of trafficked location and soil depth had a significant 

effect at 10% level (P = 0.06, n = 30) (Fig. 4.32-4.33). The main effect of tyre inflation pressure, 

tillage system and their interaction, however, were not significant. It was observed that the 

average size of pores was recorded to be significantly higher at a soil depth of 180-240 mm 

(1.35 mm2) that was followed by the depths of 120-180 (1.24 mm2) and 240-300 mm (1.11 

mm2), respectively. The lowest average size of the pore was obtained at a depth of 0-60mm 

(0.66 mm2, Fig. 4.32). It indicates that the average pore area was proportional to depth. 

Likewise, Fig. 4.33 shows that the UT location at depth 180-240 mm (1.60 mm2) had the highest 

average size of pores which was followed by the same location at depth 120-180mm (1.29 mm2) 

while the lowest average size of pores was recorded in the treatment HT at depths of 0-60 mm 

(0.65 mm2). As trafficked location had no significant effect on the average size of pores, such 

differences in location × depth combination are presumably due to the effect of soil depth, 

indicating again that average pore size was proportional to soil depth.  
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Pore size distribution is often considered one of the most relevant soil structure characteristics 

as it affects plant growth (Cary and Hayden, 1973). It highlights the complexity of soil structure 

between treatments as compared with percentage porosity (Nimmo, 2013). The pore size 

distribution of tyre inflation pressure, tillage system and their interaction, are shown in Figs. 4.34 

and 4.35. The mean pore size distribution cumulative frequency of tyre inflation pressure and 

tillage system treatments and their combined effect is also shown in Fig. 4.36. These graphs 

show that the differences in pore size distribution were not affected by tyre inflation pressure. 

However, the difference in mean pore size frequency among tillage systems became visible with 

mean values of DT, ST and NT were of 1.26, 1.1.03 and 0.95, respectively (P = 0.10 and n = 

100; Fig. 5.36b) which was also likely to have been affected by the combination of tyre inflation 

pressure and tillage system treatment (Fig. 5.36c). The results are in agreement with the 

findings that the average pores in tilled soil were twice (0.52 mm2) as large as pores in no-tilled 

soils (0.27 mm2) (Mangalassery et al., 2014). Similar findings of having larger pores in deeply 

tilled soils are also reported at a depth of 100-150 mm with higher mean pore size frequency 

(Millington, 2019). However, the findings were varied. For example, a study showed that no-till 

treatment had a higher number of macropores than tilled soils possibly due to the influence of 

weather and microbial activity (Kay and Vandenbygaart, 2002). Lipiec et al. (2006) reported that 

the effect of crop roots and soil fauna may in large part be the reasons for the creation of 

macropores in no-till soils. 

 
 

Figure 4.32. Average pore size vs soil depth. Error bar indicates the standard error of mean. 
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Figure 4.33. Average pore size vs soil depth for HT and UT locations. Error bar indicates the 

standard error of mean. 

 
 

  
 
 

 

Figure 4.34. Mean pore size distribution as influenced by tyre inflation pressure (a) and tillage 

system (b). Error bar indicates the standard error of mean. 
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Figure 4.35. Mean pore size distribution as influenced by tyre inflation pressure and tillage 

system (a: DT, b: ST and c: NT). Error bar indicates the standard error of mean. 

   
 
 

  

   

Figure 4.36. Mean pore size (mm2) cumulative frequency of 280 mm soil core as influenced by 

a) tyre inflation pressure, b) tillage system and c) their interaction.  
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4.5.6. Pore Perimeter 

Results showed that the mean pore perimeter was significantly affected by both soil depth and 

the combined effect trafficked location and soil depth (P =<0.001 and 0.007, respectively; Fig. 

4.37 and 4.38) while tyre inflation pressure, tillage system and their interaction had no 

significant effect. Fig. 4.37 shows that significantly the highest mean pore perimeter was 

recorded at a soil depth of 180-240 mm (3.59 mm) followed by the depths of 120-180 (3.46 mm) 

(n = 60). The lowest average size of the pore perimeter was obtained at a depth of 0-60mm 

(2.35 mm). Conversely, among the combination of location and depth, the highest pore 

perimeter was recorded in UT treatments at a soil depth of 180-240 mm (4.00 mm) and the 

lowest average perimeter was recorded for the UT treatments at depths of 0-60 mm (2.31 mm) 

and the treatments HT at the same depths (2.39 mm) (n = 30). These results are similar to the 

results found in case of the average sizes of the pore that both average sizes of pores and pore 

perimeter increased with an increase in depth of soil. 

 

Figure 4.37. Mean pore perimeter vs soil depth. Error bar indicates the standard error of mean. 
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Figure 4.38. Mean pore perimeter vs trafficked location and soil depth. Error bar indicates the 

standard error of mean.  

4.5.7. Pore Circularity 

Fig. 4.39 shows that soil depth had a significant effect on the circularity of pores (P =<0.001) 

while its interaction with trafficked location had a significant effect at the 10% level of 

significance (P = 0.08, Fig. 4.40). However, there were no significant effect of tyre inflation 

pressure, tillage system and their interaction on the circularity of pores. The highest circularity of 

pores was recorded a topsoil depth of 0-60 mm (0.846) followed by the depths of 240-300 mm 

(0.830) (n = 60). Circularity, in general, decreased with the depth however, a further increase in 

trend was observed at depths of 240-300mm. The lowest circularity was obtained in the depth of 

180-240 mm (0.806 mm). Likewise, the highest circularity was recorded in HT treatment location 

at depths of 0-60 mm (0.852 mm) that was followed by UT at the same depth of soil (0.834). 

The lowest circularity was observed in UT treatment locations at depths of 160-180 mm (0.798) 

and 180-240 mm (0.799 mm) (n = 30). However, the overall trend was that circularity is 

inversely proportional to soil depth up to a depth of 180mm then increased to a depth 300 mm 

and was partially followed the trends found in the case of average size and perimeter of pores in 

the soil. Circularity is a function of pore area and perimeter. Studies showed that better soil 

aggregation, root activity and soil flora and fauna affect the perimeter leading to affect the 

circularity (Rachman et al., 2005). The circularity of pores tended to be higher in both top and 
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deeper soil layers compared to a shallower depth (Rachman et al., 2005) which is partially true 

to the present study.  

 

Figure 4.39. Effect of soil depth on the mean pore circularity. Error bar indicates the standard 

deviation of mean. 

 
 

Figure 4.40. Circularity vs soil depth for HT and UT locations. Error bar indicates the standard 

deviation of mean. 
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4.5.8. Pore Solidity 

Results showed that neither tyre inflation pressure nor tillage system had any significant effect 

on the solidity of pores. However, trafficked location and soil depth had a significant effect on 

the solidity of pores (P = 0.04 and P = <0.001, respectively) while their interaction had a 

significant effect at 10% level of significance on the solidity of pores (P = 0.06) (Figs. 4.41 and 

4.42). Between trafficked locations, the solidity of pores was narrowly higher in HT treatments 

(0.84) than UT treatment locations (0.83) (n = 150; Fig. 4.41a). On the contrary among soil 

depths, the highest solidity of pores was recorded at a depth of 0-60 mm (0.849) and 240-300 

mm (0.846). Similar to circularity, solidity tended to decrease initially up to 120 mm then 

increased in deeper soil strata to a depth of 240-300 mm. The lowest solidity of the pore was 

obtained at a depth of 120-180 mm (0.837) (n = 60; Fig. 4.41b). 

 
 

 

Figure 4.41. Mean pore solidity vs trafficked location (a) and soil depth (b). Error bar indicates 

the standard deviation of mean. 

a) b) 
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Figure 4.42. Mean pore solidity vs trafficked location (a) and vs soil depth for HT and UT 

locations (b). Error bar indicates the standard deviation of mean. 

4.5.9. Soil Physical Properties at the Location of X-ray CT soil sampling 

Dry bulk density and total porosity values of the soils are shown in Figs. 4.43 and 4.44, and 

Tables 4.4 and 4.5. The results show that tyre inflation pressure (P = <0.001), tillage system (P 

= 0.04), trafficked location (P = <0.001) and the combined effect of tyre inflation pressure and 

trafficked location (P = <0.001), all had a significant effect on the BD of soil (Fig. 4.43 and Table 

4.4). Irrespective of trafficked location, the BD of soil was recorded to be significantly higher in 

STP (1.50 Mg m-3) than LTP (1.40 Mg m-3) (n = 150, Fig. 4.43a). Among the tillage systems, the 

BD of soil (1.47 Mg m-3) was recorded to be significantly the highest in NT whilst both DT and 

ST had the same BD (1.44 Mg m-3) (n=100, Fig. 4.43.b). Between the trafficked locations, the 

BD was found to be significantly higher in HT areas (1.49 Mg m-3) than the UT areas (1.41 Mg 

m-3) (n = 150, Fig. 4.43c). Data in Fig. 4.43d shows that BD was found to be higher in HT 

location of the STP treatment (1.56 Mg m-3) and was significantly different from others with the 

lowest BD of 1.42 Mg m-3 recorded in the UT areas of the LTP treatment (n = 75). Irrespective of 

trafficked location, the dry BD of the interaction between tyre inflation pressure and tillage 

systems showed that LTP treatment at all depths had significantly lower BD (1.39 – 1.41 Mg m-

3) than that of the STP (1.49 – 1.51 Mg m-3) (n = 10, Table 4.4). 
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 The results also showed that tyre inflation pressure (P = <0.001), tillage system (P = 0.04), 

trafficked location (P = <0.001) and the combined effect of tyre inflation pressure and trafficked 

location (P = <0.001) had a significant effect on the total porosity (BD porosity) of soil (Fig. 4.44 

and Table 4.5). The mean porosity of soil was recorded as 4% higher in LTP (46.4 %) than STP 

treatments (42.6 %) (n = 150, Fig. 4.44a). Between tillage systems, the porosity of soil was to 

be significantly higher in both DT and ST (45%) whilst the lowest porosity was observed in NT 

(1.44 Mg m-3) (n = 100, Fig. 4.44b). On the other hand, as expected, the total porosity of soil 

was recorded as being significantly higher in UT areas (45.9%) compared to HT areas (43.0%) 

(n = 150, Fig. 4.44c). The total porosity in the HT location of the STP treatment was the lowest 

(43.3%) which was significantly different from others with the highest porosity of 47% obtained 

in the UT location of the LTP treatment (n = 75, Fig. 4.44d). Likewise, Table 4.5 shows that 

porosity of soil among the tyre inflation pressure and tillage systems combination across the five 

different soil depths had a similar trend, in which across all depths LTP had significantly higher 

porosity (46.1 – 46.7%) than the STP (42.1 – 43.1%) (n = 10). Field trafficking with LTP tyre 

system can significantly decrease soil compaction (Boguzas & Hakansson, 2001; Ridge, 2002) 

which are in line with the present findings. Results of other studies also found agreement with 

the present findings that compaction increases soil BD whilst reducing the porosity of soil 

(Hamza and Anderson, 2005).  
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Figure 4.43. Effect of tyre inflation pressure (a), tillage system (b), trafficked locations (c) and 

tyre inflation pressure and trafficked locations (d) on bulk density of soil. Means with the same 

letter are not significantly different (P = 0.05) from each other.  

Note: The ends of boxes are the upper and lower quartiles, the median is marked by a vertical 

line inside the box. The whiskers are the two lines outside the box that extends the highest and 

lowest observations.  
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Figure 4.44. Effect of tyre inflation pressure (a), tillage system (b), trafficked locations (c) and 

tyre inflation pressure and trafficked locations (d) on total porosity of soil. Means with the same 

letter are not significantly different (P = 0.05) from each other.  

Note: The ends of boxes are the upper and lower quartiles, the median is marked by a vertical 

line inside the box. The whiskers are the two lines outside the box that extends the highest and 

lowest observations.  
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Table 4.4. Effect of tyre inflation pressure and tillage system on bulk density of soil in 2017  

TIP Tillage/ 
depth 

Bulk density (Mg m-3) Mean 

0-60mm 60-120mm 120-180mm 180-240mm 240-300mm 

STP 
  
  
  

DT 1.45bc 1.49a 1.48a 1.49a 1.49a 1.48a 
ST 1.52d 1.51a 1.51a 1.46a 1.49a 1.50a 
NT 1.50c 1.53a 1.54a 1.49a 1.49a 1.51a 
Mean 1.49B 1.51B 1.51B 1.48B 1.49B 1.50B 

LTP 
  
  
  

DT 1.41ab 1.40a 1.38a 1.41a 1.40a 1.40a 
ST 1.34a 1.40a 1.41a 1.39a 1.37a 1.38a 
NT 1.42b 1.43a 1.42a 1.42a 1.42a 1.42a 
Mean 1.39A 1.41A 1.41A 1.40A 1.40A 1.40A 

P value TIP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
 TS 0.137 0.38 0.08 0.02 0.20 0.046 
 TIP × TS <0.001 0.41 0.90 0.74 0.90 0.31 
CV(%)  2.40 3.10 2.70 2.30 2.60 1.70 

 

Table 4.5. Effect of tyre inflation pressure and tillage system on total porosity of soil in 2017 

TIP Tillage/ 
Depth 

Total porosity (%) Mean 

0-60 mm 60-120 mm 120-180 mm 180-240 mm 240-300 mm 

STP 
  
  
  

DT 44.4ab 42.8a 43.5a 42.8a 42.9a 43.3a 
ST 41.8a 42.1a 42.2a 43.8a 42.9a 42.6a 
NT 42.5a 41.2a 41.1a 42.7a 42.8a 42.1a 
Mean 42.9A 42.1A 42.2A 43.1A 42.9A 42.6A 

LTP 
  
  
  

DT 46.0bc 46.9a 47.0a 46.0a 46.2a 46.4a 
ST 48.5c 46.3a 45.8a 46.8a 47.6a 47.0a 
NT 45.7b 45.3a 45.5a 45.7a 45.5a 45.5a 
Mean 46.7B 46.2B 46.1B 46.2B 46.4B 46.3B 

Pvalue TIP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
 TS 0.137 0.381 0.087 0.016 0.204 0.046 
 TIP × TS <0.001 0.410 0.992 0.744 0.985 0.312 
CV (%)  2.90 3.10 2.70 2.90 3.20 2.10 

 
Note: Tables 4.5 and 4.6, TIP, TS, STP, LTP, DT, ST and NT represent tyre inflation pressure, 

tillage systems, standard tyre inflation pressure, low tyre inflation pressure, deep tillage, shallow 

tillage, no-till, respectively. Means in a column with the same letter are not significantly different 

(P = 0.05) from each other. Capital and small letters in both tables indicate mean differences 

between TIP and among TIP × TS treatments, respectively. 
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4.5.10. Soil Penetrometer Resistance at the Heavily Trafficked and Un-trafficked 

Locations 

The results of PR data in Figs 4.45a-d and appendix 4.6 showed that across soil depth, tyre 

inflation pressure across (P = 0.014, n = 30) and trafficked location (P = <0.001, n = 30) and 

interaction effect of tyre inflation pressure and trafficked location (P = 0.023, n = 15), and tillage 

system and trafficked location (P = 0.003, n =10) had a significant effect on the PR of soil. There 

was no significant effect of tillage system and interaction between tyre inflation pressure and 

tillage systems across soil depth on the PR of soil. Fig 4.45a shows that irrespective of 

trafficked location, the PR values in the STP treatment were significantly higher from the depths 

of 50 mm to 225 mm as compared to the LTP. Between trafficked locations, the PR values of 

soil were recorded higher in the HT location at all depths as compared to the UT (Fig. 4.45b). 

The PR values in HT location showed that both STP and LTP had almost similar PR at 

approximately 0.50 MPa at 25 mm depth, however, the PR values were recorded as being 

significantly higher in the STP from the depths of 75 mm to 150 mm as compared to the LTP 

with some minor fluctuations (Fig. 4.45c). The peak PR value in STP in the HT location, 

however, was recorded at depth of 75mm (1.93 MPa) while the corresponding PR in LTP was 

1.61 MPa. Below which, the PR values in both STP and LTP plots gradually increased with a 

small difference between them and simultaneously reaching their highest value of 2.00 MPa at 

450mm depth. As expected, the PR values of STP and LTP of the UT locations were similar, 

starting at 0.50 MPa at the surface increasing in magnitude throughout the soil profile to a 

maximum PR of 1.50 MPa a soil depth of 450 mm. Similarly, among tillage systems, PR values 

were always found to be higher in the HT location as compared to UT location. The PR values 

were recorded higher in the NT × HT combination that was significantly different from the DT × 

HT combination from the depths 50 to 75 mm with the peak PR values of 1.94 and 1.54 MPa at 

depth 75 mm, respectively and different from the combinations of DT × UT, ST × UT and NT × 

HT from the surface to 250 mm soil depths (Fig. 4.45d). Higher PR values in STP than LTP 

treatment and HT location than UT could be due to compaction were associated with the vehicle 

traffic with high tyre inflation pressure. The present findings are in agreement with the findings of 

others who reported that compaction increases soil BD, PR whilst reducing the porosity of soil 

(Hamza and Anderson, 2005). Traffic frequency and higher tyre inflation pressure have strong 

effects on the soil condition, which increased BD and PR of soil (Solgi et al., 2016).  
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Figure 4.45a. Effect of tyre inflation pressure on penetrometer resistance of soil. Error bar 

indicates the standard error of mean. 

   
 

Figure 4.45b. Effect of heavily trafficked and un-trafficked locations on penetrometer resistance 

of soil. Error bar indicates the standard error of mean. 
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Figure 4.45c. Effect of tyre inflation pressure on penetrometer resistance of soil at heavily 

trafficked and un-trafficked locations. Error bar indicates the standard error of mean. 

 

 
 

Figure 4.45d. Effect of tillage system on penetrometer resistance of soil at heavily trafficked 

and un-trafficked locations. Error bar indicates the standard error of mean.  
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4.5.11. Relationship Between X-Ray Computed Tomography Derived Porosities to 

Physical Soil Porosity 

Earlier, it was described that due to the resolution, X-ray CT scanning can only be used to 

identify macropores of soil. Tables 4.6 and 4.7 show that the mean total BDP was recorded as 

44.5±2.98 % while CTP was 5.10±2.68 %. The CT measured macroporosity of the present study 

was lower than that of total porosity of soil which is an agreement with the findings that X-ray CT 

derived porosity are macroporosities which underestimate the total soil porosity of soil (Vaz et 

al., 2011; Marcelino et al., 2007).  

There is a high correlation between measured saturated hydraulic conductivity and 

macroporosity derived from X-ray CT  (Kim et al., 2010). The mean difference between BDP and 

CTP under different tyre inflation pressure and tillage systems was found as 39.4±2.87 ≈ or 39 

%. This is a constant and adding this with CTP (5.10 %) can be partially comparable with the 

findings of Hall et al. (1977), when compared with the air capacity and water retention ability of 

certain particle-size classes in topsoil. The CTP derived porosity corresponds to water-filled pore 

space for a silty clay loam soil (Fig. 4.46). The results are in agreement with the findings of 

Millington (2019) who found a constant 31 % that was comparable and correspond to the water-

filled pore space for the sandy loam soils in the UK. However, the constant value of 39 % for the 

silty clay loam soil may be dependent on the resolution of the X-ray CT scanning and also the 

thresholding method used for analysing X-ray CT image stacks. Nevertheless, the constant of 

39 % can be compared and well fitted with the findings of Godwin and Dresser (2003) and 

Brady and Weil (2008) who showed the relationship between soil textural classes and plant 

available water holding capacity, corresponding to the permanent wilting point, field capacity 

and saturation (Fig. 4.47). The results suggest that the constant 39 % porosity can be 

comparable to the field capacity which is approximately equivalent to microporosity of a silty 

clay loam soil. Therefore, it can be said that CT measured macroporosity is the macroporosity 

and adding 39 % porosity to it, can be correlated with the air-filled porosity and field capacity for 

silty clay loam soil.  
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Table 4.6. Comparison of bulk density and X-ray CT measured porosities for silty clay loam soil (Mean±SD). 

Treatments Tillage System BDP CTP BDP-CTP 

HT UT Mean HT UT Mean HT UT Mean 

STP Deep tillage  41.4±1.93 45.1±2.59 43.2±2.92 2.69±0.94 6.74±3.07 4.72±3.02 38.7±2.16 38.6±4.38 38.5±3.26 

Shallow tillage 40.2±2.55 44.8±0.94 42.5±3.01 3.05±1.21 5.35±0.90 4.20±1.58 37.2±2.92 39.5±1.73 38.3±2.56 
No-till 39.4±0.93 44.7±1.39 42.1±2.96 2.87±1.81 5.45±1.92 4.16±2.23 36.6±1.86 39.2±3.21 37.9±2.83 
Mean 40.3±1.96 44.8±1.66 42.6±2.90 2.87±1.28 5.85±2.10 4.36±2.28 37.5±2.36 39.0±3.09 38.2±2.81 

LTP Deep tillage  45.7±1.51 47.2±1.76 46.4±1.45 5.03±2.73 8.11±3.35 6.57±3.49 40.6±2.49 39.1±2.85 39.8±3.18 
Shallow tillage 46.2±2.00 47.7±1.52 47.0±1.85 4.16±1.71 8.20±3.24 6.18±3.24 42.1±2.11 39.5±2.18 40.8±2.43 
No-till 45.1±1.45 46.0±1.11 45.5±1.31 4.80±0.76 4.76±1.98 4.78±1.41 40.3±1.61 41.2±2.26 40.8±1.09 
Mean 45.7±1.62 47.0±1.37 46.3±1.62 4.66±1.81 7.02±3.30 5.84±2.88 41.0±2.11 39.9±2.84 40.5±2.51 

Tyre Inflation pressure 
mean 

43.0±3.22 45.9±1.84 44.5±2.99 3.77±1.79 6.44±2.78 5.10±2.68 39.2±2.83 39.5±2.95 39.4±2.87 

Table 4.7. Comparison of bulk density and X-ray CT measured porosities of 0 - 300 mm depth of soil (Mean±SD). 

Treatments Soil depth 
(mm) 

BDP CTP BDP - CTP 

HT UT Mean HT UT Mean HT UT Mean 

STP 0-60 39.8±2.99 45.9±2.74 42.9±4.19 3.44±1.56 8.06±4.14 5.75±3.87 36.4±2.80 37.9±4.52 37.1±3.77 
60-120 40.5±2.74 45.2±2.60 42.9±3.52 2.87±2.08 6.55±3.38 4.71±3.33 37.7±3.53 38.6±4.73 38.1±4.13 
120-180 39.5±2.92 44.5±2.11 42.0±3.54 2.63±2.44 5.71±2.48 4.17±2.88 36.9±4.76 38.7±3.23 37.8±4.11 
180-240 40.5±2.44 43.8±2.29 42.2±2.86 2.77±1.94 5.35±2.83 4.06±2.72 37.8±2.88 38.5±4.32 38.1±3.62 
240-300 41.3±1.86 44.9±2.17 43.1±2.70 2.64±1.74 3.57±1.94 3.11±1.87 38.6±2.46 41.3±2.69 40.0±2.87 
Mean 40.3±1.96 44.8±1.66 42.6±2.90 2.87±1.28 5.85±2.10 4.36±2.28 37.5±2.36 39.0±3.09 38.2±2.81 

LTP 0-60 46.0±2.51 47.4±2.47 46.7±2.55 4.51±2.58 8.98±4.54 6.74±4.28 41.5±2.86 38.5±4.22 40.0±3.87 
60-120 45.9±1.96 47.0±2.65 46.4±2.36 5.44±2.91 7.93±3.85 6.69±3.58 40.4±3.35 39.1±3.38 39.7±3.38 
120-180 45.6±1.64 46.7±2.06 46.1±1.91 5.08±2.69 7.51±3.82 6.29±3.47 40.5±2.77 39.2±3.09 39.8±2.96 
1800240 45.2±2.15 47.0±1.35 46.1±1.98 3.42±2.98 6.05±5.16 4.73±4.35 41.8±2.63 40.9±4.60 41.4±3.71 
240-300 45.6±2.29 46.7±2.61 46.2±2.48 4.87±3.39 4.64±2.46 4.76±2.91 41.7±4.39 42.1±3.95 41.4±4.16 
Mean 45.7±1.62 47.0±1.37 46.3±1.62 4.66±1.81 7.02±3.30 5.84±2.88 41.0±2.11 39.9±2.84 40.5±2.51 

Tyre Inflation pressure 
mean 

43.0±3.22 45.9±1.84 44.5±2.99 3.77±1.79 6.44±2.78 5.10±2.68 39.2±2.83 39.5±2.95 39.4±2.87 
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Figure 4.46. Air capacity and water retention ability of certain particle-size classes in topsoils 

(Adapted from Hall et al., 1977). 

 

Figure 4.47. Relationship between soil textural classes and plant available water holding 

capacity (Adapted from Godwin & Dresser, 2003). 
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4.6. Conclusions 

1) X-ray CT has shown to be a valuable tool in determining macroporosity differences with 

a high resolution among various traffic systems for various tillage practices.  

2) The results confirm the hypothesis that the addition of the field capacity porosity with the 

CTP gives the total porosity of the soil which is in line with the findings of Millington 

(2019), as the mean difference between total porosity and CTP was 39% which is 

comparable to the field capacity pore space for the silty clay loam soil as shown by 

Brady & Weil, (2008) and Godwin & Dresser (2003).  

3) Observation of the longitudinal view of X-ray CT scanned image stacks showed that 

there are soil structural differences between cores of HT and UT soil areas.  Smaller 

variations in the UT locations and a more open structure can be seen in LTP mode 

whilst more compact and dense conditions were observed in STP mode, especially in 

HT location images. 

4) Tyre inflation pressure and its interaction with tillage had a significant effect on mean 

pore count in HT (P = 0.010 and P = 0.030 respectively) with the higher pore count 

observed in LTP (105.2) as compared with STP (75.8). Trafficked location (P = <0.001), 

the combined effect of trafficked location and soil depth (P = <0.001) also had a 

significant effect on the mean pore count of soil. A higher mean pore count was recorded 

in the UT location (164) as compared with HT areas (91).  

5) Tyre inflation pressure and tyre inflation pressure across soil depths had a significant 

effect on % CTP (P = 0.014 and 0.004 respectively) with a greater percentage porosity 

obtained in LTP (4.66%) than in STP (2.87%) in HT location. The number of pores and 

CTP was inversely proportional to soil depth, indicating a possibility to re-compact or 

subsoil compaction through tillage and tyre inflation pressure increase. Trafficked 

location (P = <0.001), soil depth (P = <0.001) and trafficked location across depth (P = 

<0.001) had also a significant effect on the CTP of soil with no significant effect of the 

interaction between tyre inflation pressure and tillage system. 

6) Results revealed that tyre inflation pressure and its effect across depth (P = <0.001 and 

0.014 respectively) in HT, tyre inflation pressure irrespective of trafficked location (P = 

0.014), trafficked location (P = <0.001), soil depth (P = <0.001) and combined effect 
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trafficked location and soil depth (P = <0.001) all had a significant effect on the mean 

total pore area of soil. In contrasts, tillage systems, the interaction effect of tillage 

systems and depth, and tyre inflation pressure, tillage systems and depth were not 

significant. Similar to CTP, LTP had a higher mean total pore area (116 mm2) than STP 

(86.5 mm2) and mean total pore area was inversely proportional to soil depths in the 

order 0-60mm> 60-120mm> 120-180mm> 180-240mm> 240-300mm. 

7) Soil depth had a significant effect on the average pore size, perimeter, circularity and 

solidity of pores  (P = 0.001, <0.001,  <0.001 and 0.04, respectively) while the interaction 

between trafficked location and soil depth were significant on the perimeter and solidity 

of pores (P = 0.007 and <0.001 respectively). The main effects of tyre inflation pressure, 

tillage system and their interaction, however, were not significant. The average pore 

area, pore perimeter and circularity were proportional to soil depth. The solidity of pores 

was higher in the heavily trafficked location as compared to the un-trafficked location. 

8) The results of the classical gravimetric/volumetric soil physical analysis showed that tyre 

inflation pressure (P = <0.001), tillage system (P = 0.04), trafficked location (P = <0.001) 

and the combined effect of tyre inflation pressure and trafficked location (P = <0.001) 

had a significant effect on the BD and total porosity of the soil.  The mean BD of HT 

location was higher in STP (1.56 Mg m-3) as compared to the LTP treatment (1.42 Mg m-

3). The porosity of soil was on average recorded 4% higher in LTP (46.35 %) mode than 

in STP (42.64 %) mode.  

9) The results of PR of soil studies showed that tyre inflation pressure (P = 0.014), 

trafficked location (P = <0.001) and the interaction effect of tyre inflation pressure and 

trafficked location (P = 0.023) and tillage system and trafficked locations (P = 0.003) had 

a significant effect on the penetration resistance of the soil with no significant effect of 

tillage system and interaction between tyre inflation pressure and tillage systems on the 

PR of soil. The PR values in the STP treatment were significantly higher from the depths 

of 50 mm to 225 mm while in HT location higher PR was recorded in the STP from the 

depths of 75 mm to 150 mm as compared to the LTP with the peak value at depth of 

75mm of 1.93 MPa and 1.61 MPa, respectively. Between trafficked locations, the PR 

values of soil were recorded higher in the HT locations at all depths as compared to the 

UT locations.  
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CHAPTER 5: SOIL PROPERTIES AND CROP DEVELOPMENT OF 

MAIZE 

5.1. Introduction  

Soil compaction by machinery traffic in agriculture is a well-recognised problem in many parts of 

the world e.g. (Horn and Fleige, 2003; Chan et al., 2006) and acknowledged as a serious form 

of soil degradation by the European Union (Jones et al., 2003). Compaction creates physical, 

chemical and biological change in the soil that negatively impacts crop performance (Chyba, 

2012; Horn et al., 2003). Soil compaction reduces the porosity and increases the BD of soils, 

and also reduces the water infiltration rate as compared to non-compacted soil (Liebig et al., 

1993; Li et al., 2001; Hamza and Anderson, 2005; Raper and Kirby, 2006) and restricts root 

growth and accessibility of nutrients of the plant (Nawaz et al., 2013). Cone index values in 

excess of 2 MPa have been shown to restrict, to varying degrees, crop root development 

(Taylor and Gardner, 1963; Aase et al., 2001). Kaspar et al. (2001) found a reduction of root 

growth of maize in trafficked crop rows due to higher BD as a result of wheel trafficked as 

compared to the UT rows. Raghavan et al. (1979b) observed that up to 40–50% of maize yield 

reductions occurred due to high contact pressures and multiple passes. Increased PR and 

reduced grain yield of winter wheat and spring oats were observed due to random conventional 

pressure traffic system as compared to other traffic systems (Godwin et al., 2017). Low ground 

pressure systems with agricultural tracks or specially manufactured tyres transmit reduced 

ground contact stress (Trautner and Arvidsson, 2003) and showed a positive benefit to 

minimising soil compaction (Smith et al., 2014a; Godwin et al., 2015). However, research is are 

scarce on the effect of tyre inflation pressure with different tillage practices in the mid-west 

farming systems in the United States. Hence, the present experiments were undertaken to 

assist in understanding the effect of lower inflation pressure systems on soil properties, crop 

growth and yield of maize. 

5.2. Hypothesis  

It is possible to increase the yield of maize by improving crop growth and development by 

reducing soil compaction using reduced tyre inflation pressure systems. 
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5.3. Aim and objectives 

The main aim of the study is to determine the effect of tyre inflation pressure on soil properties, 

and crop development and yield of maize for three tillage systems. The overall objectives are as 

follows: 

a) To determine the effects of tyre induced ground pressure, by comparing ultra-flex high 

and low inflation tyre systems, on soil structure, crop development and yield of maize for 

2 tillage depths (deep tillage, 450 mm and shallow tillage, 100 mm) and no-till through 

field-scale studies on a silty clay loam soil in Illinois, the United States. 

b) To correlate the effects of the different tyre inflation pressure and tillage systems, on soil 

conditions and crop parameters. 

5.4. Materials and Methods 

The study was conducted in Champaign County, Illinois, United States (lat/lon: 40.070965, -

88.217538) from November 2015 through October 2018. The treatments comprised of standard 

(STP) and low tyre inflation pressures (LTP) and three tillage system: deep tillage (450mm), 

shallow tillage (100mm) and no-till. All machinery was fitted with Michelin Ultraflex radial tyres 

(Yieldbib and Cerexbib) inflated at standard/high (STP) and low pressures (LTP). The 

experiment was a split-plot, factorial randomized complete block design with five blocks where 

the tyre inflation pressure and tillage systems were the main plots and crop rows were sub-

plots. The main crop grown in the present farming systems was maize (Zea mays L.), the 

variety P1221AMXT (Pioneer seed), in North field (2016) - South field (2017) - North field (2018) 

manner where the following crop after maize was soybean (Glycine max L.). The detailed 

methodology of the experiment including tyre inflation pressures for different equipment 

involved, plot layouts, trafficked and un-trafficked crop rows (Table 3.5 and Appendices 3.5-3.7), 

field operations, crop description, methods of sampling and procedures for data collection and 

statistical analysis of soil and crops parameters were described in Chapter 3: General 

Methodology.  
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5.5. Results and Discussion 

5.5.1. Initial Soil Properties Assessment 

Initial soil physical and chemical characteristics have been summarised in Tables 5.1 - 5.2 and 

Figs. 5.1 - 5.3. The result showed that the mean soil MC (%) of Thorp soil series at three 

different depths of 0-100, 101-200 and 201-300 mm was approximately 23, 21 and 22%, 

respectively. While in the Drummer soil series, the soil MC recorded at these three soil depths 

were 26, 28 and 27 % respectively (Table 5.1). The dry BD at the three depths of 0-100, 101-

200 and 201-300 mm in Thorp soil series were 1.23, 1.33 and 1.27 Mg m-3 respectively.  The 

BD’s of the Drummer soil were 1.14, 1.23 and 1.21 Mg m-3, respectively. Overall, in both soil 

series, the BD of soil ranged from 1.14 to 1.33 Mg m-3 which are well below the BD of >1.40 Mg 

m-3 that can cause a negative effect through soil compaction on root and plant growth in silty 

clay loam soils (USDA NRCS, 2019d). The mean particle density of both soils was 2.61 Mg m-3. 

The total porosity of the soil in the Drummer and Thorp soil series was 54% and 51% 

respectively (Table 5.1). These soil physical properties indicate that the selected site was 

sufficient for plant establishment and growth.  

Table 5.1. Initial bulk density and moisture content of soil at three different depths in April 2016 

Series Soil 
properties 

Unit Deptha Mean 

0-100 mm 101-200 mm 201-300 mm 

206A- 
Thorp 

BD Mg m-3 1.23±0.02 1.33±0.02 1.25±0.04 1.27±0.03 
PD Mg m-3 2.61±0.01 2.61±0.01 2.61±0.01 2.61±0.01 
Porosity % 52.9±0.92 49.1±1.03 52.2±1.50 51.4±0.82 

Soil MC % 22.8±1.70 20.6±0.80 22.4±1.33 21.9±1.27 

152A- 
Drummer 

BD Mg m-3 1.14±0.03 1.23±0.02 1.21±0.03 1.19±0.03 
PD Mg m-3 2.61±0.01 2.61±0.01 2.61±0.01 2.61±0.01 
Porosity % 56.1±1.19 52.4±0.76 52.9±0.85 53.8±0.93 

Soil MC % 25.5±0.98 27.6±0.92 26.9±1.09 26.7±0.99 
 

aAverage of 5 samples for Thorp and 20 samples for Drummer soil series (Mean ± SE) 

  
The initial experimental block (n = 15) and soil series (n = 60 and 15 for Drummer and thorp 

series, respectively) and overall mean (n = 75) PR of soil in the North field are shown in Fig 

5.1a-c. These data showed that PR values gradually increased to values from 0 - 1.33 MPa up 

to a depth of 400 mm and 0 - 1.20 MPa up to a depth of 350 mm in the blocks and series, 

respectively then remained constant with some fluctuations to consistent values of 1.03 - 1.23 
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MPa and 1.12 – 1.19 MPa, respectively. The mean data showed that the peak PR of soil (1.19 

MPa) was recorded at a depth of 350 mm (Fig. 5.1c). Soil BD and PR are commonly used to 

determine the level of soil compaction (Raper, 2005). Field traffic with heavy machinery and 

high tyre inflation pressures increase soil strength and has strong effects on soil physical 

properties and causes compaction of soil (Solgi et al., 2016) is eventually increases the BD of 

soil and cone PR to soil. Researchers found that the first tyre pass in the soil increased the BD 

and PR at an average of 7 and 6%, respectively (Canillas and Salokhe, 2002).  Research 

indicates that the EC values were higher in clay loam soils as compared to sandy loam soils 

(James et al., 2003). North field had a small difference in soil texture in the northeast section of 

the field where the Thorp soil series is located, characterised as a silt loam. However, soil 

physical and chemical properties data showed that there were no significant differences 

between these two soil series.  
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Figure 5.1. Initial penetrometer resistance of soil for block (a), soil series (b) and overall mean 

(c) data in the North field, 2016. Error bar indicates the standard error of mean. 
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Initial EC data showed that the dominant, silty clay loam Drummer soil series had higher EC 

values than the Thorp soil series (Fig. 5.2). Regardless of soil series, the EC data ranges from 

13.24 - 45 mS/m meaning that both soil series are moderately homogenous with some variation 

in Thorp series.  

 

 
 

Figure 5.2. Electrical conductivity digital terrain map laid onto the NRCS soil survey map of 

North field, 2016. 152A - Drummer and 206A - Thorp soil series. 

The results of chemical properties of soil showed that soil pH was 6.32 and 6.23 and SOM that 

were 3.39% and 3.29% at two different depths 0-150 and 151-300 mm, respectively (Table 5.2). 

Cation exchange capacity (CEC) ranged between 26-29 meq/100g soils. Analysis of soil 

nutrient showed that Nitrate (NO3
-N) and Ammonium (NH4

+N) in soils were found higher at 

depth 0-150mm (15.4 ppm) as compared with a depth of 151-300 mm (8.4 ppm), respectively. 

The mean values of P, potassium (K), calcium (Ca) and magnesium (Mg) were around 98, 298, 

8243 and 1061 Kg ha-1, respectively. Mean values of base saturation of Ca, Mg, K, H, S were 

66%, 15%, 2%, 19% and 17%, respectively. Micronutrients results showed that the mean values 

of Zinc (Zn) and Boron (B) were 5.85 and 1.32 Kg ha-1, respectively. 
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Table 5.2. Chemical properties of soil in the North field in April 2016. 

Soil properties Unit Deptha 

0-150 mm 150-300 mm 

Soil pH - 6.32±0.11 6.23±0.11 
OM  % 3.39±0.07 3.29±0.09 
CEC  meq/100g 26.0±2.79 29.0±3.29 
NO3

- N ppm 15.4±1.29 8.40±1.17 
NH4

+ N ppm 6.20±0.49 4.80±0.38 
P3-  kg/ha 129.3±10.12 66.5±7.91 
K+ kg/ha 372.4±118.52 222.7±10.52 
Ca2+ kg/ha 8076.4±1032.2 8410.3±1101.7 
Mg2+      kg/ha 1024.0±167.0 1098.4±131.7 
Ca2+      % 68.5±3.58 64.1±3.40 
Mg2+ % 14.5±2.17 15.3±2.94 
K+       Base saturation   % 2.20±0.57 1.16±0.15 
H+ % 18.4±4.32 19.4±3.77 
S2- kg/ha 17.2±0.67 16.1±1.15 
Zn2+ kg/ha 6.30±0.99 5.40±0.89 
B3+ kg/ha 1.39±0.25 1.25±0.18 

 

aAverage of 25 samples at each depth (Mean ± SE)  

5.5.2. Effect on Soil Properties in Maize Field 

In 2016, the PR data recorded at the vegetative stage of maize are presented in Figures 5.3a - 

5.3c. The results showed that tyre inflation pressure, the trafficked location had a significant 

effect on PR in the maize field (at depths of 0-450 mm) (P = 0.006, 0.004 and <0.001) with no 

significant interaction. The mean PR value was significantly higher in the STP treatment (2.80 

MPa) as compared to the LTP treatment (2.51 MPa) (n = 570, Fig. 5.3a). Initially, the PR values 

across depths in both STP and LTP treatments were similar (0.55 MPa), however, the PR of 

STP treatment across depths was significantly higher than LTP treatment with peak PR at 

depths of 300 mm (3.48 MPa) and 275 mm (3.35 MPa) respectively (n = 30; Fig. 5.3b). Fig. 5.3c 

shows that, not unsurprisingly the PR of HT location had significantly higher compaction levels 

to a depths of 275 mm as compared to the UT, with peak PR values of 3.49 MPa and 3.30 MPa 

respectively (n = 30). Below 275 mm, the PR values decreased with depth for both UT and HT 

locations.  
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Figure 5.3a. Effect of tyre inflation pressure on the mean penetrometer resistance in the North 

field in 2016. Error bar indicates the standard error of mean. 

 
 

Figure 5.3b. Effect of tyre inflation pressure on the penetrometer resistance in the North field in 

2016. Error bar indicates the standard error of mean. 
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Figure 5.3c. Mean penetrometer resistance of the heavily trafficked and un-trafficked locations 

in the North field in 2016. Error bar indicates the standard error of mean. 

Soil parameters of BD, MC, and total porosity at 3 depths of 0-80mm, 81-160mm and 161-

240mm from the crop row 1 to crop row 4, are presented in Appendices 5.1-5.3. These non-

replicated data show that the mean BD of the soil was higher in STP treatment plot (1.52 Mg m-

3) than LTP treatment (1.42 Mg m-3), while the mean soil MC was recorded more in LTP plot 

(16.47%) than that of STP plot (14.05%). Similarly, the mean total porosity of soil was recorded 

higher in LTP treatment plot (46%) than STP (42%). Higher BD and lower soil porosity were 

recorded in STP plots as a result of compaction of soil as compared to LTP plots are in 

agreement with the findings that compaction reduces porosity and increases soil bulk density 

(Liebig et al., 1993; Li et al., 2001).  

The soil MC and PR of the soil in 2017 are presented in Figs. 5.4a-b and 5.5a-d. The results 

showed that the effect of crop row was significant on Soil MC (p = <0.001, n = 30) however, tyre 

inflation pressure, tillage system and their interaction had no significant effect on the soil MC in 

the maize field. The mean highest soil MC was recorded in un-trafficked inter-row between 4 
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in LTP and STP treatments were 32 and 31% respectively while in the tillage system, the mean 

values of soil MC in DT, ST and NT were similar (32%) (Fig. 5.4b).  

 
 

Figure 5.4a. Effect of crop row on soil moisture content in the South field in 2017. Means with 

the same letter are not significantly different (P = 0.05, n = 30) from each other. Error bar 

indicates the standard error of mean. 

 
 

Figure 5.4b. Effect of tyre inflation pressure, tillage systems and crop row on soil moisture 

content in the South field in 2017 (n = 5). Error bar indicates the standard error of mean. 
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Figures 5.5a and 5.5b show that the tillage system and crop row had a significant effect on the 

PR of the soil (P = 0.001 and <0.001, respectively). However, tyre inflation pressure and 

interaction with tillage systems and crop row were not significant on PR of the soil (Figs. 5.5c 

and 5.5d).  The PR values of soil were recorded the highest in NT than both ST and DT 

treatments with a maximum PR of soil 1.87 MPa in NT and 1.58 MPa in DT (n = 90), however, 

the PR of soil was overall in the order of NT>ST>DT. In all cases, PR values increased with soil 

depth down to 100mm, after which they generally reduced in value and remained relatively 

constant down to 400mm. The PR values then again increased at depths of 450 mm (Fig. 5.5a). 

The highest PR values were measured in CR3 at soil depths from 50 to 200 mm, with a peak 

PR of 1.77 MPa at a depth of 75 mm. These were higher than all other crop rows with a 

maximum PR of 1.90 MPa at depth 450 mm (P = <0.001, n = 30). The lowest PR values were 

recorded in the non-trafficked inter-rows 4 and 5, which was the UT zones of the plot (Fig. 5.5b).  

 
 

Figure 5.5a. Effect of tillage system on the penetrometer resistance in the South field in 2017. 

Error bar indicates the standard error of mean. 
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Figure 5.5b. Effect of crop row on the penetrometer resistance in the South field in 2017. Error 

bar indicates the standard error of mean. 

 
 

Figure 5.5c. Effect of tyre inflation pressure on penetrometer resistance in the South field in 

2017. Error bar indicates the standard error of mean. 
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Figure 5.5d. Effect of tyre inflation pressure and tillage system on the penetrometer resistance 

in the South field in 2017. Error bar indicates the standard error of mean. 
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significantly higher soil MC (36%) than crop rows 1, 3, 4 and 5 (Fig. 5.6a). However, the main 

effect of tyre inflation pressure, tillage system and interaction between them and crop row were 

not significant on soil MC (Fig. 5.6b).  
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Figure 5.6a. Effect of crop row on soil moisture content at 200 mm depth at 95-100 DAP in the 

North field in 2018. Means with the same letter are not significantly different (P = 0.05, n = 30) 

from each other. Error bar indicates the standard error of mean. 

 

 
 

Figure 5.6b. Effect of tyre inflation pressure, tillage system and crop row on soil moisture 

content at 200 mm depth at 95-100 DAP in the North field in 2018 (n = 5). Error bar indicates 

the standard error of mean. 
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The results showed that tyre inflation pressure and its effects across depth and tillage system 

across depth had a significant influence on PR of soil in the maize field (P =<0.001, Figs. 5.7a-

c) with no significant interactions between them (P = 0.06, Fig. 5.7d). The subplot effect of crop 

row, its effect across depth, and interaction effect of tyre inflation pressure and crop row had 

also a significant effect on PR of soil (P = <0.001, <0.001 and 0.004; Figs. 5.7e-g). The mean 

PR values were recorded significantly lower in the LTP treatment (2.39 MPa) than the STP 

treatment (2.71 MPa) (n = 2565; Fig. 5.7a). PR values in STP and LTP similarly increased from 

the soil surface to a depth of 50mm, after which the PR values were significantly higher in STP 

than LTP up to depth 275 mm where PR values were 3.16 and 3.39 MPa, respectively (n = 

135). PR values then declined in the same trend up to 450 mm depth of soil where STP had 

higher values of PR than that of LTP treatment (Fig. 5.7b). Among tillage system, at the 

beginning across depth, PR values were 0.21 MPa then increased significantly in NT at depths 

from 25 to 75 mm than ST and DT and almost the same in all three tillage system to a depth of 

100mm (n = 90). The increments of PR values were then recorded higher in DT and ST 

treatments to a depth of 150 mm than NT. After that PR values of soil were in the order of 

DT>ST>NT, however, significant differences were recorded between them from the depths of 

325 mm to 450 mm (Figs. 5.7c).  

Fig. 5.7e shows that the mean highest PR was recorded in CR3 (2.95 MPa) that was 

significantly different from others while the lowest mean PR value was ascertained in CR8 (2.32 

MPa) (n = 570).  PR values in varying depths were higher in the highly trafficked CR3, however, 

a significant increment of PR was recorded at depths 50 to 175 mm than other crop rows (P = 

<0.001, n = 30; Fig. 5.7f). PR values significantly increased from 0.32 MPa to a peak of 3.28 

MPa in CR3 at a depth of 275 mm then PR values in all crop rows were gradually decreased to 

a depth of 450mm. The interaction between STP and crop row 3 had the highest PR of soil 

(3.30 MPa) that was statistically different from other crop rows in both tyre inflation pressure 

treatments (n = 285; Fig. 5.7g). 
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Figure 5.7a. Effect of tyre inflation pressure on the mean penetration resistance down to 450 

mm depth in the North field in 2018. Error bar indicates the standard error of mean. 

 
 

Figure 5.7b. Effect of tyre inflation pressure on the penetration resistance in the North field in 

2018. Error bar indicates the standard error of mean. 
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Figure 5.7c. Effect of tillage system and depth on the penetration resistance in the North field in 

2018. Error bar indicates the standard error of mean. 

 

Figure 5.7d. Effect of tyre inflation pressure and tillage system on the penetration resistance in 

the North field in 2018. Error bar indicates the standard error of mean. 
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Figure 5.7e. Effect of crop row on the mean penetration resistance down to 450 mm depth in 

the North field in 2018. Means with the same letter are not significantly different (P = 0.05) from 

each other. Error bar indicates the standard error of mean. 

 

Figure 5.7f. Effect of crop row and depth on the penetration resistance in the North field in 

2018. Error bar indicates the standard error of mean. 
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Figure 5.7g. Effect of tyre inflation pressure and crop row on the mean penetration resistance 

down to 450 mm depth in the North field in 2018. Means with the same letter are not 

significantly different (P = 0.05) from each other. Error bar indicates the standard error of mean. 

5.5.3. Effect on Growth and Yield of Maize 

5.5.3.1. Growth Parameters of Maize 

The data in 2016 shows that tyre inflation pressure had a significant effect on plant 

establishment (%) (P = 0.013, n = 60) and number of plants per ha (P = 0.012, n = 60) but had 

no significant influence on plant height at 30 DAP (P = 0.08) and 45 DAP (P = 0.757 and 0.009) 

of maize (Table 5.3 and Appendix 5.4). The mean plant establishment (%) across crop rows in 

LTP treatment was observed slightly higher i.e. 1.0 % (95.8%) compared to STP treatments 

(95.0%). Similarly, more plants per ha were recorded in LTP (89038) than that of STP treatment 

(88368, Table 5.3). The mean values of plant height of maize in STP treatment at 30, 45 DAP 

(base to flag leaf) and 45 (base to tip) were 1.26 m, 1.30 m and 1.89 m, respectively. Plant 

heights at these three different DAP of maize in the LTP treatments were 1.27 m, 1.29 m and 

1.89 m respectively (Appendix-5.5). The results showed that the crop row had a significant 

effect on the plant height of maize at 30 DAP (P = <0.001) but had no significant effect on plant 

establishment (%, P = 0.60) and the number of plants ha-1 (P = 0.60) of Maize, and no 
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interaction with tyre inflation pressure on any of these parameters (P = 0.59, 0.82 and 0.34, 

respectively). The plant height of maize at 30 DAP was significantly shorter in the crop row 3 

(1.24 m) and 4 (1.25 m) than rows 1 and 2 (1.29 and 1.28 m, respectively) (1.25 m).  
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Table 5.3. Effect of tyre inflation pressure and crop row on plant establishment, number of plants ha-1 and plant height of maize, in 

the North field in 2016 

Treatments Plant establishment (%) Number of plants ha-1 Plant height at 30 DAP (m) 

Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Mean Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Mean Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Mean 

STP 95.5a 95.3a 94.2a 95.3a 95.0a 88577a 87573a 88577a 88745a 88368a 1.29a 1.28a 1.24a 1.24a 1.26a 
LTP 96.2a 95.5a 95.6a 95.8a 95.8b 89080a 88912a 88745a 89415a 89038b 1.28a 1.28a 1.25a 1.27a 1.27a 
Mean 95.8a 95.4a 94.9a 95.5a  88829a 88243a 88661a 89080a  1.29b 1.28b 1.24a 1.25a  
24 and 80 
DF 

SEM P 
value 

LSD CV 
(%) 

 SEM P value LSD CV (%)  SEM P 
value 

LSD CV 
(%) 

 

TIP 0.11 0.01 0.46 0.30  108.8 0.01 427.0 1.60  0.004 0.08 0.016 1.50  
CR 0.47 0.60 1.39 1.60  444.3 0.60 1296.0 2.60  0.005 <0.001 0.015 2.20  
TIP × CR 0.59 0.82 1.73   555.0 0.82 1614.0   0.008 0.34 0.021   
 

†TIP- Tyre inflation pressure, STP- standard tyre inflation pressure, LTP- low tyre inflation pressure, CR-Crop row, DF-

Degree of freedom. Means with the same letter are not significantly different (P = 0.05) from each other.  



HARPER ADAMS UNIVERSITY 167 M. R. SHAHEB, 2020 

It was observed that the vegetative stage started with emergence (VE, 5-7 DAP) and ended with 

tasselling (VT) from 65-80 DAP, respectively. The reproductive stage (R) of maize began when 

silk was visible outside the husks (R1 stage) at 70 DAP and ended with physiological maturity 

i.e. a black layer in the seed (R6) stage at 125-130 DAP. Days to 50% flowering of maize 

(silking and tasselling) was observed at 60-65 DAP. There was no visible difference on the days 

to 50% flowering between the tyre inflation pressures and crop row. The non-replicated rooting 

depth investigation showed that the maize rooting depth was 1.28 - 1.30 m (Appendix 5.6), 

which is comparable to typical maize effective rooting depths of 0.91 to 1.22 in the Midwest soils 

with a maximum depth of 1.52 to 1.82 m (Abendroth et al., 2011; Irmak and Rudnick, 2014). 

Vegetative growth and harvesting of maize are shown in Fig. 5.8.   

  
 

 
a) Vegetative stages 

 

  
 

 

b) Rooting depth investigation 
 

c) Harvest of maize 
  

Figure 5.8. Vegetative stage, rooting depth study and harvesting of maize. 



HARPER ADAMS UNIVERSITY 168 M. R. SHAHEB, 2020 

The data in Fig. 5.9 shows that there was no significant main effect of tyre inflation pressure, 

tillage system or their interaction on plant establishment (%) of maize in 2017 (P =0.349, 0.105 

and 0.501, respectively). The subplot effect of crop row of maize was also not significant; the 

mean plant establishment (%) of maize was recorded to be 97%. The mean plant establishment 

(%) in both tyre inflation pressure treatments was similar (97%). Tables 5.4 - 5.5 and Appendix 

5.7 show that only tillage system had a significant effect on the number of plants ha-1 of maize 

(P = <0.001, n = 80) while tyre inflation pressure and crop row had a significant influence on the 

plant height of maize (P = 0.04 and 0.002, respectively) and others were not significant. The 

highest number of plants ha-1 was found in NT (91676) which was significantly different from ST 

(91215) and DT (90744). Table 5.5 shows there was a small (1%) but significantly greater plant 

height in the LTP treatment (2.15 m) in comparison to the STP treatment (2.13 m, P = 0.045, n 

= 120). Among crop rows, the heavily trafficked crop row 3 had the shortest plant height (2.11 

m) that was 2% shorter than some, but not all the remaining crop rows (n = 30). 

 

 
 

Figure 5.9. Effect of tyre pressure, tillage system and crop row on plant establishment of maize, 

in the South field in 2017 (n = 5). Error bar indicates the standard deviation of mean. 
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Table 5.4. Effect of tyre inflation pressure and tillage system on the number of plants ha-1 of 

maize, in the South field in 2017 

Treatments† 

 
Number of plants ha-1 Mean 

DT ST NT 

STP 90964a 91173a 91864a 91334a 
LTP 90524a 91257a 91487a 91089a 
Mean 90744a 91215b 91676c  
20 and 168 DF SEM P value LSD (0.05) CV (%) 
TIP 100.0 0.09 294.9 0.40 
TS 122.4 <0.001 361.1  
TIP × TS 173.1 0.27 510.7  

 

†TIP- Tyre inflation pressure, TS-Tillage systems, STP- standard tyre inflation pressure, LTP- 

low tyre inflation pressure, DT- deep tillage, ST- shallow tillage and NT- no-till. Means with the 

same letter are not significantly different (P = 0.05) from each other. 

 

Table 5.5. Effect of tyre inflation pressure and crop row on plant height of maize at harvest, in 

the South field in 2017 

Treatments† Plant height (m) Mean 

Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Crop 
row 5 

Crop 
row 6 

Crop 
row 7 

Crop 
row 8 

STP 2.11a 2.15a 2.09a 2.14a 2.14a 2.13a 2.14a 2.13a 2.13a 

LTP 2.16a 2.17a 2.13a 2.15a 2.15a 2.13a 2.14a 2.15a 2.15b 

Mean 2.13ab 2.15b 2.11a 2.15b 2.14b 2.13ab 2.14ab 2.14b  

20 and 168 DF SEM P value LSD 
(0.05) 

CV (%)     
 

TIP 0.007 0.04 0.02 1.20      

CR 0.007 0.002 0.02 1.70      

TIP × CR 0.013 0.34 0.03       
 

†TIP- Tyre inflation pressure, CR-crop row, STP-standard tyre inflation pressure, LTP-low tyre 

inflation pressure. Means with the same letter are not significantly different (P = 0.05) from each 

other.  

 
The data in Tables 5.6 to 5.8 and Appendix 5.8 revealed that in 2018, tyre inflation pressure had 

a significant effect on plant establishment (%) (P = 0.007, n = 120), number of plants ha-1 (P = 

0.005, n = 120) and plant height (P = 0.004, n = 120) of maize while tillage system significantly 

influenced the plant height of maize (P = 0.047, n = 80) with no significant interaction between 

tyre inflation pressure and tillage system. The result showed that plant establishment (%) of 

maize was recorded marginally higher in LTP (91.3%) than STP treatment plot (90.4%). The 
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mean plant establishment (%) of maize across all three tillage systems was approximately 91% 

(Table 5.6). A small but significantly 0.6% higher number of plants ha-1 (84775) and 2% higher 

plant height (2.57 m) were recorded in LTP as compared to the STP treatment with the number 

of plants ha-1 of 84273 and plant height of 2.52 m. Among tillage system, across both tyre 

inflation pressures, the plant height was marginally higher in DT plots (2.56 m) that was 

significantly different from NT (2.55 m) and ST treatment plots (2.52 m, Table 5.8). 

Table. 5.6. Effect of tyre inflation pressure, tillage system and crop row on plant establishment 

of maize, in the North field in 2018  

Treatments† Plant establishment (%) Mean 

DT ST NT 

STP 90.1a 90.6a 90.5a 90.4a 
LTP 91.0a 91.6a 91.3a 91.3b 
Mean 90.5a 91.1a 90.9a  
20 and 168 DF SEM P value LSD (0.05) CV (%) 
TIP 0.28 0.007 0.59 0.90 
TS 0.35 0.26 0.73  
TIP × TS 0.49 0.95 1.03  

 

†TIP- Tyre inflation pressure, STP-standard tyre inflation pressure, LTP-low tyre inflation 

pressure, DT-deep tillage, ST-shallow tillage, and NT- no-till. Means with the same letter are not 

significantly different (P = 0.05) from each other.  

 

Table. 5.7. Effect of tyre inflation pressure and tillage system on the number of plants ha-1 of 

maize, in the North field in 2018 

Treatments† Number of plants ha-1 Mean 

DT ST NT 

STP 84538a 83994a 84287a 84273a 
LTP 84517a 84810a 84998a 84775b 
Mean 84527a 84402a 84643a  
20 and 168 DF SEM P value LSD (0.05) CV (%) 
TIP 111 0.005 328.6 0.50 
TS 136 0.47 402.5  
TIP × TS 193 0.08 569.3  

 

†TIP- Tyre inflation pressure, STP-standard tyre inflation pressure, LTP-low tyre inflation 

pressure, DT-deep tillage, ST-shallow tillage and NT- no-till. Means with the same letter are not 

significantly different (P = 0.05) from each other.  
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Data of the effect of tyre inflation pressures, tillage system and crop row, and their interaction 

effects on the ear height and ear length in 2018 are shown in Table 5.9 - 5.10 and Appendix 5.9. 

Table 5.9 shows that tyre inflation pressure, tillage system and interaction between tillage 

system and crop row had a significant effect on ear height of maize (P = 0.05, 0.02 and 0.001, 

respectively). There was no significant effect of interaction between tyre inflation pressure and 

tillage system and crop row on the ear height of maize (P = 0.63 and 0.32, respectively). In 

comparison to standard tyre inflation pressures (1.20 m), the low inflation pressure tyre systems 

had higher ear height of maize (1.23 m, n = 120) in 2018. The ear height of maize was also 

recorded higher in DT (1.2 m) that was significantly different from NT and ST plot (1.20 m) (n = 

80).  Higher ear height of maize was recorded in crop row 3 in DT (1.29 m) that was significantly 

different from the crop rows 2, 4, 5, 7 and 8 in ST and crop rows 3 and 6 in NT (1.17 m) with the 

lowest ear height in crop row 3 of NT (Table 5.9b) (n = 10). In the case of ear length, LTP had a 

6.29% higher ear length of maize (0.186 m) as compared with STP treatments (0.175 m) (n = 

120; Table 5.10). 

Table 5.8. Effect of tyre inflation pressure and tillage system on plant height of maize at harvest, 

in the North field in 2018 

Treatments†  

 
Plant height (m) Mean 

DT ST NT 

STP 2.53a 2.49a 2.55a 2.52a 
LTP 2.59a 2.55a 2.56a 2.57b 
Mean 2.56b 2.52a 2.55a  
20 and 168 DF SEM P value LSD (0.05) CV (%) 
TIP 0.009 0.004 0.03 1.40 
TS 0.012 0.04 0.03  
TIP × TS 0.016 0.32 0.05  

 

†TIP- Tyre inflation pressure, STP-standard tyre inflation pressure, LTP-low tyre inflation 

pressure, DT-deep tillage, ST-shallow tillage, and NT- no-till. Means with the same letter are not 

significantly different (P = 0.05) from each other.  
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Table 5.9a. Effect of tyre inflation pressure and tillage system on the ear height of maize at 

harvest, in the North field in 2018  

Treatments† 

 
Ear height (m) Mean 

DT ST NT 

STP 1.23a 1.18a 1.21a 1.20a 
LTP 1.25a 1.22a 1.21a 1.23b 
Mean 1.24b 1.20a 1.21a  
20 and 168 DF SEM P value LSD (0.05) CV (%) 
TIP 0.007 0.05 0.021 2.30 
TS 0.009 0.02 0.026  
TIP × TS 0.013 0.63 0.037  

 

†TIP- Tyre inflation pressure, STP-standard tyre inflation pressure, LTP-low tyre inflation 

pressure, DT-deep tillage, ST-shallow tillage, and NT- no-till. Means with the same letter are not 

significantly different (P = 0.05) from each other.  

 

Table 5.9b. Effect of tillage system and crop row on the ear height of maize, in the North field in 

2018 

Treatme
nts 

Ear height (m) Mean 

Crop row 
1 

Crop row 
2 

Crop row 
3 

Crop row 
4 

Crop row 
5 

Crop row 
6 

Crop row 
7 

Crop row 
8 

DT 1.20abcd 1.22abcde 1.29ce 1.23abcde 1.23abcde 1.28bcde 1.21abcde 1.22abcde 1.24b 
ST 1.20abc 1.20ab 1.22abcde 1.19ab 1.19ab 1.21abcde 1.19ab 1.17a 1.20a 
NT 1.22abcde 1.20abcde 1.17a 1.21abcde 1.22abcde 1.20ab 1.22abcde 1.23abcde 1.21a 
Mean 1.21a 1.21a 1.23a 1.21a 1.21a 1.23a 1.21a 1.21a  
20 and 
168 DF 

SEM P value LSD CV (%)      

TS 0.009 0.02 0.03 2.30      
CR 0.009 0.32 0.03 4.10      
TS × CR 0.017 0.001 0.05       
 

†TIP- Tyre inflation pressure, STP-standard tyre inflation pressure, LTP-low tyre inflation 

pressure, DT-deep tillage, ST-shallow tillage, and NT- no-till. Means with the same letter are not 

significantly different (P = 0.05) from each other.  
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Table 5.10. Effect of tyre inflation pressure, tillage system and crop row on the ear length of 

maize, in the North field in 2018 

Treatments†  

 
Ear length (m) Mean 

DT ST NT 

STP 0.177a 0.178a 0.171a 0.175a 
LTP 0.189a 0.183a 0.186a 0.186b 
Mean* 0.183a 0.181a 0.179a  
20 and 168 DF SEM P value LSD (0.05) CV (%) 
TIP 0.002 <.001 0.006 4.20 
TS 0.002 0.44 0.007  
TIP × TS 0.003 0.37 0.01  

 

†TIP- Tyre inflation pressure, STP-standard tyre inflation pressure, LTP-low tyre inflation 

pressure, DT-deep tillage, ST-shallow tillage, and NT- no-till. Means with the same letter are not 

significantly different (P = 0.05) from each other.  

 

5.5.3.2. Yield Parameters and Grain Yield of Maize 

The 2016 data in Table 5.11 shows that the subplot effect of crop row had a significant influence 

on both 1000 grain weight and hand harvested grain yield of maize (P = 0.005 and 0.038, 

respectively) with no significant main effect of tyre inflation pressure and interaction with crop 

row. Among crop rows, the highest 1000 grain weight of maize was recorded in CR1 (305 g) 

that was significantly different from the CR3 (291 g) (n = 30). Similarly, the highest hand 

harvested grain yield was recorded in CR1 (15.75 Mg ha-1) followed by CR 4 (15.23 Mg ha-1) but 

significantly different from CR3 ( 14.99 Mg ha-1) and CR2 (14.97 Mg ha-1). Highly trafficked 

areas might have a negative effect on the closest crop row 3, which in turns decreased 1000 

grain weight and yield of maize in 2016. 
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Table 5.11. Effect of tyre inflation pressure and crop row on 1000 grain weight and hand harvest 

grain yield of maize, in the North field in 2016 

Treatments 1000 grain weight (g) Hand harvest grain yield (Mg ha-1) 

Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Mean Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Mean 

STP 303a 293a 291a 291a 295a 15.4a 15.2a 15.3a 15.3a 15.3a 
LTP 306a 298a 291a 299a 298a 16.1a 14.6a 14.6a 15.1a 15.1a 
Mean 305b 296ab 291a 295ab   15.7b 14.9a 14.9a 15.2ab  
24 and 80 
DF 

SEM  P 
value 

LSD 
(0.05) 

CV (%)  SEM P value LSD 
(0.05) 

CV (%)  

TIP 4.64 0.46 12.87 2.70  0.229 0.31 0.63 4.30  
CR 3.52 0.005 7.26 5.40  0.294 0.03 0.60 8.20  
TIP × CR 6.33 0.73 13.75   0.427 0.09 0.88   
 

†TIP- Tyre inflation pressure, STP- standard tyre inflation pressure, LTP- low tyre inflation 

pressure, CR-crop row. Means with the same letter are not significantly different (P = 0.05) from 

each other. 

 
The results given in Fig 5.10 reveal that there was no significant difference in combine 

harvested grain yield was observed between STP and LTP treatments with values of 14.36 Mg 

ha-1 and  14.27 Mg ha-1, respectively with a CV of 1.70% (P = 0.32, n = 15).  

 
 

Figure 5.10. Effect of tyre inflation pressure on the combine harvested grain yield of maize, in 

the North field in 2016.  

P value: 0.32 
SEM: 0.06 
LSD: 0.18 
CV (%): 1.70 a 

a 



HARPER ADAMS UNIVERSITY 175 M. R. SHAHEB, 2020 

Note: The ends of boxes are the upper and lower quartiles, the median is marked by a vertical 

line inside the box. The whiskers are the two lines outside the box that extends the highest and 

lowest observations.  

 
In 2017,  hand harvest of maize data showed that tyre inflation pressure, tillage system and their 

interaction had no significant effect on 1000 grain weight (P = 0.250, 0.414 and 0.312) or hand 

harvest yield of maize per ha (P = 0.769, 0.142 and 0.317, respectively) (Appendices 5.10 and 

5.11). Mean hand harvested 1000 grain weights of maize were 336 and 340 g for the STP and 

LTP treatment, respectively. Results revealed that the subplot effect of crop row had a 

significant influence on the 1000 grain yield of maize (P = 0.04, n = 30; Table 5.12), however, its 

interactions with tyre inflation pressure and tillage system were not significant in terms of 1000 

grain weight (P = 0.189, 0.702 and 0.908) or hand harvested grain yield of maize (P = 0.764, 

0.283 and 0.881, respectively; Appendices 5.10 – 5.11). The highest 1000 grain weight of maize 

was recorded in the CR4 (342 g) which was significantly different from the CR2 (332 g) and 

CR1 (333 g). The mean hand harvested grain yields were recorded as 17.3 and 17.4 Mg ha-1 in 

STP and LTP treatment, respectively. The low quantity of hand-harvested sampling (5 ears/crop 

row) may not adequately represent the whole 180 m length of crop row and thus yield was 

similar. On the other hand, the mean hand harvested grain yields of DT, ST and NT systems 

were 17.4, 17.0 and 17.7 Mg ha-1, respectively.  

Table 5.12. Effect of tyre inflation pressure and crop row on 1000 grain weight of maize, in the 

South field in 2017 

Treatments
† 

1000 grain weight (g) Mean 

Crop row 
1 

Crop row 
2 

Crop row 
3 

Crop row 
4 

Crop row 
5 

Crop row 
6 

Crop row 
7 

Crop row 
8 

STP 335a 328a 327a 339a 340a 341a 336a 339a 336a 

LTP 331a 335a 344a 345a 339a 341a 339a 340a 339a 

Mean 333ab 332a 336abc 342c 339abc 341bc 337abc 339abc  

20 and 168 
DF 

SEM P value LSD 
(0.05) 

CV (%)      

TIP 2.19 0.25 6.47 2.50      

CR 2.62 0.04 7.32 4.20      

TIP × CR 4.10 0.18 11.4       

 
†TIP- Tyre inflation pressure, STP-standard tyre inflation pressure, LTP-low tyre inflation 

pressure and CR – crop row. Means with the same letter are not significantly different (P = 0.05) 

from each other.  
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The 2017 results given in Figs. 5.11 - 5.13 showed that across all tillage treatments tyre inflation 

pressure had a significant effect on the combine harvested grain yield of maize (P = 0.005, n = 

15), but tillage system and its interaction with tyre inflation pressure were not significant (P = 

0.32 and 0.58, respectively). The grain yield was significantly 4.31% higher in LTP treatment 

(15.02 Mg ha-1) as compared to STP treatments (14.40 Mg ha-1) (Fig. 5.11). The mean combine 

harvested grain yield of maize in DT, ST and NT systems were 14.90, 14.70 and 14.52 Mg ha-1 

(n = 10, Fig. 5.12). No significant interaction between tyre inflation pressure and tillage system 

showed that mean grain yields of the interaction between LTP×DT, LTP×ST and LTP×NT were 

recorded 15.27, 15.10 and 14.67 Mg ha-1 respectively (n = 5). Mean grain yields of the 

interaction between STP×DT, STP×ST and STP×NT were 14.53, 14.30 and 14.36 Mg ha-1, 

respectfully (Fig. 5.13).  

 

 
 

Figure 5.11. Effect of tyre inflation pressure on the combine harvested grain yield of maize, in 

the South field in 2017.  

Note: The ends of boxes are the upper and lower quartiles, the median is marked by a vertical 

line inside the box. The whiskers are the two lines outside the box that extends the highest and 

lowest observations. 

 

P value: 0.005 
SEM: 0.14 
LSD:0.42 
CV (%): 3.70  

b 

a 
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Figure 5.12. Effect of tillage system on the combine harvested grain yield of maize, in the South 

field in 2017.  

 
 

Figure 5.13. Effect of tyre inflation pressure and tillage system on the combine harvested grain 

yield of maize, in the South field in 2017.  

P value: 0.32 

SEM: 0.17 

LSD: 0.51 

CV (%): 3.70 

 

a 

a a 

P value: 0.58 

SEM: 0.25 

LSD: 0.72 

CV (%): 3.70 a a a 

a a 

a 
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Note: In Figs. 5.11-5.13, the ends of boxes are the upper and lower quartiles, the median is 

marked by a vertical line inside the box. The whiskers are the two lines outside the box that 

extends the highest and lowest observations. 

 

The crop yield results from 2018 demonstrate that the tillage system and crop row had a 

significant effect on the 1000 grain weight (P = 0.005 and <0.001, respectively) and hand 

harvested grain yield of maize (P = <0.001 and <0.001, respectively) while tyre inflation 

pressure (P = 0.478 and 0.125) and it’s interaction with tillage system (P = 0.696 and 0.95) were 

not significant (Tables 5.13 - 5.14 and Appendix 5.12). Among the tillage system, the highest 

1000 grain weight and hand harvested grain yield of maize was recorded in the DT treatment 

(309 g and 12.81 Mg ha-1, respectively) that was significantly different from the ST (286 g and 

11.49 Mg ha-1, respectively) and NT treatments (285 g and 10.68 Mg ha-1, respectively)  (n = 80; 

Table 5.13). Among crops rows, the 1000 grain weight was recorded higher in the CR5 (308 g) 

than CR1 (283 g), CR8 (285 g) and CR2 (288 g). Higher 1000 grain weight in the crop row 5 in 

2018, significantly increased the grain yield by 10.64% in the crop row 5 (12.37 Mg ha-1, P = 

<0.001, n = 30) as compared to the trafficked crop row 1 (11.18 Mg ha-1) and also significantly 

different from the CR3 (11.36 Mg ha-1),  CR8 (11.37 Mg ha-1) and CR2 (11.59 Mg ha-1) (Table 

5.14b). The mean 1000 grain weight of maize showed that the LTP treatment led the STP 

treatment by 296 to 292 g. The mean hand harvested grain yields of maize were 11.41 and 

11.91 Mg ha-1 in STP and LTP treatments respectively and were not significantly different (Table 

5.14). These results are similar to the results recorded in 2017, where LTP was non-significantly 

higher than the STP treatment.  

Table 5.13a. Effect of tyre inflation pressure and tillage system on 1000 grain weight of maize, 

in the North field in 2018 

Treatments†  

 
1000 grain weight (g) Mean 

DT ST NT 

STP 305a 287a 283a 292a 
LTP 314a 285a 288a 296a 
Mean 309a 286b 285b  
20 and 168 DF   SEM P value LSD (0.05) CV (%) 
TIP 4.18 0.47 12.3 5.50 
TS 5.12 0.005 15.1  
TIP × TS 7.24 0.69 21.3  

†TIP- Tyre inflation pressure, STP-standard tyre inflation pressure, LTP-low tyre inflation 

pressure, DT-deep tillage, ST-shallow tillage and NT- no-till. Means with the same letter are not 

significantly different (P = 0.05) from each other.  
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Table 5.13b. Effect of tyre inflation pressure and tillage system on hand harvest grain yield of 

maize, in the North field in 2018 

Treatments†  

 
Hand harvest grain yield (Mg ha-1) Mean 

DT ST NT 

STP 12.5a  11.3a  10.4a  11.4a 
LTP 13.1a 11.6a  10.9a  11.9a 
Mean 12.8b 11.4a 10.6a  
20 and 168 DF SEM P value LSD (0.05) CV (%) 
TIP 0.21 0.12 0.64 7.20 
TS 0.26 <.001 0.78  
TIP × TS 0.37 0.95 1.11  

 

†TIP- Tyre inflation pressure, STP-standard tyre inflation pressure, LTP-low tyre inflation 

pressure, DT-deep tillage, ST-shallow tillage and NT-No- till. Means with the same letter are not 

significantly different (P = 0.05) from each other.  

 

Table 5.14a. Effect of tyre inflation pressure and crop row on 1000 grain weight of maize, in the 

North field in 2018 

Treatments† 1000 grain weight (g)  

Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Crop 
row 5 

Crop 
row 6 

Crop 
row 7 

Crop 
row 8 

Mean 

STP 277a 284a 290a 300a 307a 295a 292a 287a 292a 

LTP 290a 292a 297a 301a 309a 295a 298a 284a 296a 

Mean 283a 288ab 294abc 300bc 308c 295abc 295abc 285ab  
20 and 168 DF SEM  P value LSD 

(0.05) 
CV (%) 

     

TIP 4.18 0.47 12.3 5.50      

CR 3.54 <.001 9.89 6.60      

TIP × CR 6.28 0.75 17.6       
 

†TIP- Tyre inflation pressure, STP-standard tyre inflation pressure, LTP-low tyre inflation 

pressure, CR-crop row. Means with the same letter are not significantly different (P = 0.05) from 

each other. 
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Table 5.14b. Effect of tyre inflation pressure and crop row on hand harvest grain yield of maize, 

in the North field in 2018 

Treatments† Hand harvest grain yield (Mg ha-1)  

Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Crop 
row 5 

Crop 
row 6 

Crop 
row 7 

Crop 
row 8 

Mean 

STP 10.9a 11.2a 10.7a 11.7a 12.3a 11.3a 11.6a 11.3a 11.4a 

LTP 11.4a 11.9a 12.0a 12.2a 12.3a 12.0a 11.8a 11.3a 11.9a 

Mean* 11.2a 11.5ab 11.3b 12.0bc 12.3c 11.6abc 11.7abc 11.3ab  

20 and 168 DF SEM P value LSD 
(0.05) 

CV (%)      

TIP 0.218 0.125 0.642 7.20      

CR 0.178 <.001 0.498 8.40      

TIP × CR 0.321 0.184 0.903       
 

†TIP- Tyre inflation pressure, STP-standard tyre inflation pressure, LTP-low tyre inflation 

pressure and CR-crop row. Means with the same letter are not significantly different (P = 0.05) 

from each other. 

 
In 2018, the combine harvested yield results, given in Figs. 5.14-5.16 indicated that tyre inflation 

pressure and tillage system had a significant effect on the grain yield of maize (P = 0.019 and 

<0.001, respectively) while their combined effect was not significant (P = 0.85). Higher grain 

yield of maize was recorded in the LTP treatment (14.13 Mg ha-1) as compared to STP (13.76 

Mg ha-1). The yield increment of maize in LTP plots was 2.70% compared to STP plots (n = 15; 

Fig. 5.14). Across both tyre inflation pressure treatments, the highest grain yield of maize was 

obtained in DT (15.11 Mg ha-1) that was followed by ST (13.98 Mg ha-1) and lowest yield was 

found in NT systems (12.73 Mg ha-1) (Fig. 5.15, n = 10). The mean grain yield of STP×DT, 

STP×ST and STP×NT were recorded 14.87, 13.81 and 12.59 Mg ha-1. The mean grain yields of 

the interaction between LTP×DT, LTP×ST and LTP×NT were recorded as 15.35, 14.15 and 

12.88 Mg ha-1 (n = 5, Fig. 5.16). This indicates that the yield benefit of low tyre inflation pressure 

tyres for maize production consistent for all tillage treatments.  
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Figure 5.14. Effect of tyre inflation pressure on the combine harvested grain yield of maize, in 

the North field in 2018.  

 

 
 

Figure 5.15. Effect of tillage system on the combine harvested grain yield of maize, in the North 

field in 2018.  

P value: 0.019 
SEM: 0.15 
LSD: 0.30 
CV (%): 2.90 

P value: <0.001 
SEM: 0.18 
LSD: 0.37 
CV (%): 2.90 

c 

b 
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a 
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Figure 5.16. Effect of tyre inflation pressure and tillage system on the combine harvested grain 

yield of maize, in the North field in 2018. 

Note: In figures 5.14 – 5.16, the ends of boxes are the upper and lower quartiles, the median is 

marked by a vertical line inside the box. The whiskers are the two lines outside the box that 

extends the highest and lowest observations. 

 

The three years field study showed that tyre inflation had had a significant effect in 2017 and 

2018 with no significant effect on yield in the normalization year of 2016.  Soane et al. (1982) 

reported that soil compaction increases with high tyre inflation pressure. Researchers showed 

that soils with a resistance greater than 2 MPa is considered to limit root growth (e.g. Hamza & 

Anderson, 2005). In the present study, soil penetrometer resistance data in 2016 was greater 

than 2 MPa in both STP and LTP treatments, however, there was no significant effect on yield 

while in 2017, PR was less than 2 MPa and in 2018 more than 2 MPa but higher in STP than 

LTP contributed to the negative effect on crop growth and grain yield to both years. The present 

findings are in agreement with the finding of others e.g. (Kulkarni et al., 2010) who reported that 

soil resistance on a loam soil as low as 1.6 MPa (measured range 1.6–2.9 MPa) affected crop 

growth but did not show any yield penalty. Another study showed that soils with a resistance of 

less than 2 MPa reduced crop yield (Carter and Tavernetti, 1968). The findings are in 

agreement with the findings that that field trafficking with low-pressure tyres can cause 

P value: 0.85 
SEM: 0.25 
LSD: 0.53 
CV (%): 2.90 
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significantly less soil compaction and increase crop yield (Boguzas and Hakansson, 2001; 

Ridge, 2002). The higher PR and lower soil MC values in crop row 3 and crop row 1 as 

expected because of the additional wheel traffic on these rows before planting of crops and 

heavily trafficked region close to crop row 3 caused soil compaction which is in agreement that 

traffic frequency and tyre inflation pressure had strong effects on the soil condition, which 

increased bulk density and penetration resistance of soil (Solgi et al., 2016). Reduction in 

growth and yield of crops due to higher contact pressures and traffic intensity as explained in 

several findings (Raghavan et al., 1979c; Soane et al., 1980; Horn et al., 2003; Chyba, 2012) 

are in line with the present studies.  

5.6. Conclusions 

1) The results of the preliminary assessment of the field showed that despite a minor area 

of Thorp series in the North field, the selected experimental field (Drummer series) had a 

low BD (<1.30 Mg g-3), an optimum total porosity (>50%) and low PR (>1.30 MPa) with 

no evidence of residual soil compaction. The uniformity of the site was further confirmed 

by the crop responses and crop yield for each of the tyre inflation pressures with a CV of 

1.70%. 

2) Tyre inflation pressure and across soil depth had a significant effect on PR of soil in 

2016 (P = 0.006 and 0.004) where, lower values of PR were recorded in the LTP 

treatment as compared to the STP treatment with a peak PR of the soil of 3.35 MPa and 

3.48 MPa at depths 275 and 300 mm, respectively. In 2017, tyre inflation pressure did 

not produce a significant difference in soil MC and PR of soil at 35-40 DAP of maize. 

However, in 2018, the results showed that across all tillage treatments, reduced tyre 

inflation pressure and its effect across soil depth had a significantly lower PR of soil than 

that of STP with a peak PR of the soil was of 3.16 MPa and 3.39 MPa, respectively (P = 

<0.001).   

3) The effect of tillage in 2017 (P = 0.001) and across soil depth in 2017 and 2018 (P = 

0.001 and <0.001) significantly affected the PR of soil in the maize field. The PR of soil 

in 2017 was overall in the order of NT>ST>DT while in 2018, initially, NT had a 

significantly higher PR of soil from soil depths of 25mm to 75mm than ST and DT. After 

that PR values were in the order of DT>ST>NT but significantly increased in DT from the 
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depths of 325mm to 450mm than ST and NT. There was no significant interaction 

between tyre inflation pressure and tillage system for soil MC and PR of soil.  

4) The effect of crop row across all tyre inflation pressures and tillage systems had a 

significant effect on both soil MC  and PR of soil in 2017 (P = <0.001 and <0.001) and 

2018 (P = <0.001 and <0.001), where heavily trafficked crop row CR3 had the lowest soil 

MC than inter-row 4 & 5, CR8 and CR7 and the CR3 had the highest PR values of soil in 

varying depths with a peak PR of 1.77 MPa and 3.28 MPa at a depth of 75 mm and 275 

mm in 2017 and 2018, respectively compared to other crop rows. Reducing tyre inflation 

pressure and field trafficked and non-trafficked crop row (P =004) resulted in reduced 

soil compaction in comparison to standard tyre inflation pressure. 

5) Tyre inflation pressure had a significant effect on the plant establishment (P = 0.013) 

and the number of plants ha-1 (P = 0.012) but not significant on the plant heights at 30 

and 45 DAP of maize, with the exception of plant height at 30 DAP (P = <0.001), where 

crop row due to field trafficking showed a significant variation in the year 2016. In 2017, 

both tyre inflation pressure and tillage system did not show any significant effect on plant 

establishment (%) in maize with the exception of plant height (P = 0.04) where tyre 

inflation pressure, and the number of plants per ha (P =<0.001), where tillage system 

had shown a significant influence. Crop row had a significant effect on the plant height of 

maize in 2017 (P = 0.002). In 2018, reducing tyre inflation pressure had a significant 

influence on the plant establishment (%) (P = 0.007), the number of plants per ha (P = 

0.005), plant height (P = 0.004), ear height (P = 0.05) and ear length (P = <0.001) of 

maize. There was no significant effect of the main effect of tillage system and the 

interaction between tyre inflation pressure and tillage system on these growth 

parameters in 2018 with the exception of plant height (P = 0.04) and ear height (P = 

0.02), where tillage system had shown a significant influence.  

6) Tyre inflation pressure, tillage system and their interaction had no significant effect upon 

1000 grain weight and hand harvested yield of maize with the exception in 2018, where 

deep tillage system had a significantly higher 1000 grain weight and hand harvested 

grain yield maize than ST and NT (P = 0.005 and <0.001). The subplot effect of crop row 

had a significant influence on the 1000 grain weight in 2017 and 2018 (P = 0.04 and 

<0.001) and hand harvest grain yield of maize in 2018 (P = <0.001) with no significant 

interaction between tyre inflation pressure, tillage system and crop row.   
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7) Reduced tyre inflation pressure had a significant effect on the combine harvested grain 

yield of maize in 2017 (P = 0.005) and 2018 (P = 0.019) but not in the pilot study in 2016 

(P = 0.32). In 2017, the grain yield in the low tyre inflation pressure treatments across all 

tillage treatments (15.02 Mg ha-1) was 4.31% higher than that of the standard tyre 

inflation pressure treatments (14.40 Mg ha-1). In 2018, the grain yield of maize in the low 

tyre inflation pressure treatments (14.76 Mg ha-1) was 2.70% greater than that of the 

standard tyre inflation pressure treatments (13.76 Mg ha-1). 

8) The main effect of tillage system had a significant (P = <0.001) influence on the combine 

harvested grain yield of maize in 2018, where the grain yield of maize was recorded 

8.08% and 18.32% higher for the deep tillage treatment (15.11 Mg ha-1) than shallow 

tillage (13.98 Mg ha-1) and no-till (12.73 Mg ha-1), respectively. There was no significant 

effect in 2017 or with the interaction between tyre inflation pressure and tillage system 

on the grain yield of maize in 2017 and 2018.   
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CHAPTER 6: SOIL PROPERTIES AND CROP DEVELOPMENT OF 

SOYBEAN 

6.1. Introduction 

To feed > 9.6 billion people by 2050, the two big challenges are to ensure sufficient and 

sustainable food production and secure food security. Farm machinery saves timeliness of field 

operations and labour and costs and helps to promote sustainable production (FAO, 2017b). 

Mechanization was one of the key components of the success of the Green Revolution. 

However, the use of heavy machinery and excessive field trafficking causes compaction of soil 

that changes soil structure and reduces soil and crop productivity. Soil compaction a physical 

form of soil degradation, changes the soil structure and influences soil productivity and causes 

damage to the environment (Raghavan et al., 1976; Mueller et al., 2011). The average tractor 

weight has increased threefold from 1950 to 2000 (Soane and van Ouwerkerk, 1998; Sidhu and 

Duiker, 2006) but the continuous increase in equipment size and weight of heavier machinery 

are significant threats to soil compaction (Chamen, 2011). Field traffic and heavy machinery 

passes create soil compaction by increasing BD, PR, and also result in reduced porosity, soil 

hydraulic properties, and stability index (Alakukku, 1996a; b; Hula et al., 2009). Increased in 

both dynamic load (vertical load) of the tractor and tyre inflation pressure increased the peak 

soil stresses and  BD of soil  (Bailey et al., 1996; Abu-Hamdeh et al., 2000). Subsoil compaction 

increased with loads to the soil, and is difficult to remove (Kroulík et al., 2009). Increased traffic 

frequency and high ground pressure had significant negative effects on soil physical properties 

as these increased higher BD and PR values (Solgi et al., 2016).  

Compaction creates physical (e.g. soil structural damages, reduction in porosity), chemical (e.g. 

reduction of plant available water and nutrient) and biological changes (e.g. reduction of soil 

biota) in the soil that negatively impact on crop performance (Chyba, 2012; Horn et al., 2003). 

Cone index values in excess of 2 MPa have been shown to restrict, to varying degrees, crop 

root development (Taylor and Gardner, 1963; Aase et al., 2001). It restricts plant root growth 

and accessibility of nutrients due to an increase in BD and reduced pore size (Nawaz et al., 

2013) and reduces plant growth as it limits root growth (Rosolem et al., 2002). High contact 

pressures and multiple vehicles pass caused 40–50% reduction of grain yield of maize 

(Raghavan et al. 1979b) while in soybean, a yield reduction ranging from 0.25 - 0.45 Mg ha-1 
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under light to heavy equipment traffic (Botta et al., 2010). Farm equipment equipped with 

Ultraflex tyres run at low tyre inflation pressure and provide a longer footprint which aims at 

reduce soil compaction and improve crop yield (Michelin, 2017). Low ground pressure systems 

transmit reduced ground contact stress (Trautner and Arvidsson, 2003) and area suitable 

approach to minimise soil compaction (Smith et al., 2014b). They can have a significant positive 

effect in reducing soil compaction whilst increasing crop production (Millington, 2019). Currently, 

no research has been conducted on the effect of Ultraflex low ground pressure tyres with 

different tillage practices a silty clay loam soils in mid-west farming operations in the United 

States. Hence, the present field-scale studies were undertaken to improve the understanding of 

the effect of low inflation tyre inflation pressure systems on soil conditions and crop growth and 

yield of soybean in central Illinois, USA. 

6.2. Hypothesis  

It is possible to increase the yield of soybean by improving crop growth and development by 

reducing soil compaction using reduced tyre inflation pressure systems. 

6.3. Aim and Objectives 

The main aim of the study is to determine the effect of tyre inflation pressure on soil properties, 

and crop development and yield of soybean for three tillage systems. The overall objectives are 

as follows: 

a) To determine the effects of tyre induced inflation pressure, by comparing ultra-flex high 

and low inflation tyre systems, on soil structure, crop development and yield of soybean 

for 2 tillage depths (deep tillage and shallow tillage) and no-till through field-scale studies 

in a silty clay loam soil in Illinois, the United States. 

b) To correlate the effects of the different tyre inflation pressure and tillage systems on soil 

structure, whilst correlating to soil and crop parameters. 

6.4. Materials and Methods 

The experiment was established at the Agricultural Engineering farm of the Department of 

Agricultural and Biological Engineering, the University of Illinois at Urbana-Champaign, 

Champaign County, Illinois, the United States (lat/lon: 40.070965, -88.217538) from November 
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2015 to October 2018. Design and treatments of the experiment, plot layout and area, trafficked 

and un-trafficked crop rows (Table 3.5 and Appendices 3.5-3.7), variety of soybean, field 

operations, sampling, weather data, collection of data on soil and crop and approach, and 

statistical procedures of analyses of these data were described in Chapter 3: General 

Methodology. 

6.5. Results and Discussion 

6.5.1. Initial Soil Properties Assessment 

Assessment of soil uniformity was conducted through analysis of BD, soil MC, PR and EC, and 

selected chemical properties of soil and presented in Tables 6.1 - 6.2, and Figs. 6.1 - 6.2. The 

result showed that the mean initial soil MC (%) at three depths of 0-100, 101-200 and 201-300 

mm were 27, 26 and 28%, respectively (Table 6.1). The dry BD at 3 depths of 0-100, 101-200 

and 201-300 mm was 1.19, 1.30 and 1.31 Mg m-3 at respectively. These data indicate that the 

BD of the soil in the experimental field was below the critical BD of a silty clay loam soil of 1.40 

Mg m-3 which when exceeded can restrict water storage, root penetration and growth of the 

plant (USDA NRCS, 2019d). The mean particle density of this silty clay loam soil was recorded 

2.62. The mean total porosity of the soil in the Drummer soil series was 52% with slightly higher 

porosities in the topsoil of 0-100 mm depth (54%).  

Table 6.1. Initial bulk density, particle density, porosity and soil MC at three different depths of 

soil in the South field in April 2016 

Series Soil 
properties 

Unit Soil deptha Mean 

0-100 mm 101-200 mm 201-300 mm 

152A- 
Drummer 

BD Mg m-3 1.19±0.02 1.30±0.02 1.31±0.02 1.27±0.02 
PD Mg m-3 2.62±0.01 2.62±0.01 2.62±0.01 2.62±0.01 
Porosity % 54.3±0.67 50.2±0.63 50.1±0.61 51.5±0.64 

Soil MC % 26.5±0.78 26.4±0.53 27.6±1.01 26.8±0.77 
 

aAverage of 25 samples at each depth (Mean ± SE) 
  

The data in Fig 6.1a-b showed that experimental block (n = 15) and overall mean (n = 75) PR 

values in the south field gradually increased to values from zero at the soil surface to 1.23 MPa 

and 1.10 MPa at a depth of 350 mm, respectively then remained relatively consistent, with some 

fluctuations, to values of 0.96 - 1.23 MPa and 1.09 – 1.15 MPa, respectively. Lower bulk density 
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and lower PR in the south field indicate that the field had no residual compaction from the 

previous year’s cultivation or if there was, deep ripping operations at 450 mm soil depth had 

effectively removed the residual compaction. 

Figure 6.2. shows that initial EC data in the South field recorded in April 2016 were in the range 

of 13.24 – 46.00 mS/m Although, a few data points indicated higher EC values of 46-55 mS/m at 

the western boundary of the field, however, the EC values were similar to the values of North 

field as described in Chapter 5. 
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Figure 6.1. Initial penetrometer resistance of soil for block (a) and overall mean (b) data in the 

South field in 2016. Error bar indicates the standard error of mean.  

 
 

Figure 6.2. Electrical conductivity digital terrain map laid onto the NRCS soil survey map in the 

South field in 2016. 152A and 206 indicate the Drummer and Thorp soil series, respectively. 
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The results of the analysis of the chemical properties of soil are presented in Table 6.2. These 

results revealed that the soil pH at two depths 0-150 and 151-300 mm were 6.26 and 6.47. The 

OM of the soil was 3.41% and 3.37% at these two respective depths. The mean cation 

exchange capacity (CEC) was 28 meq/100g soils with a range of 26.88-28.56 meq/100g soils. 

The soil nutrient analysis data showed that Nitrate (NO3-N) and Ammonium (NH4
+N) in soils 

were higher (13.80 and 5.00 ppm) in the topsoil than the deeper depth of 151-300 mm (10.80 

and 4.20 ppm) respectively. The mean values of primary nutrient such as P, K, Ca and Mg were 

64, 254, 8465 and 1110 Kg ha-1, respectively. Mean values of base saturation of Ca, Mg, K and 

H were 68, 14.9, 1.10 and 15.70 respectively. Results of other micronutrients showed that the 

mean values of S, Zn and B were 15.57, 4.73 and 1.57 Kg ha-1, respectively. The pH and CEC 

are in agreement with the typical values of the Drummer soil series (USDA NRCS, 2019d) as 

between 5.6-7.8 and 24-35 (meq/100g of soils) respectively. However, OM values are lower 

than the typical values of 4.0-7.0%. The present assessment of the soil showed that values of 

these parameters are (with the exception of the OM levels) within or sometimes higher than 

their ranges which indicated that soil quality of the present experimental field was homogenous 

and favourable for plant establishment and growth. These results are in agreement with the 

findings of Fernández et al. (2012) who reported that P, K, Ca and Mg of Illinois soil were 71, 

214, 2027 and 297 kg ha-1, respectively, which are similar or in some cases lower than the 

values recorded in the present assessment of the South field.  

Table 6.2. Chemical properties of soil in the South field in April 2016 

Soil properties Unit Deptha 

0-150 mm 150-300 mm 

Soil pH - 6.26±0.11 6.47±0.07 
OM  % 3.41±0.03 3.37±0.05 
CEC  meq/100g of soils 28.5±1.31 26.8±1.24 
NO3

- N ppm 13.8±0.97 10.8±1.65 
NH4

+ N ppm 5.00±0.318 4.20±0.20 
P3-  kg/ha 87.1±7.64 41.45±7.5 
K+ kg/ha 294.2±14.2 213.9±11.6 
Ca2+ kg/ha 8454.7±416.1 8477.3±463 
Mg2+      kg/ha 1105.6±68.7 1114.4±69.2 
Ca2+      % 66.2±3.28 70.3±1.66 
Mg2+ % 14.4±0.79 15.2±0.52 
K+       Base saturation   % 1.28±0.06 0.92±0.04 
H+ % 17.9±4.05 13.4±1.90 
S2- kg/ha 17.2±0.45 13.8±0.45 
Zn2+ kg/ha 5.15±0.97 4.30±0.94 
B3+ kg/ha 1.48±0.21 1.65±0.15 

aAverage of 25 samples at each depth (Mean ± SE) 
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6.5.2. Effect of Tyre Inflation Pressure and Tillage System on Soil Properties  

Penetrometer resistance data in the soybean field (South field) in the year 2016 are presented 

in Figs. 6.3a – 6.3c. The results revealed that tyre inflation pressure and the interaction effect 

with trafficked location had no significant effect on PR in the soybean field (P = 0.69 and 0.63, 

respectively). However, the subplot effect of trafficked location had a significant effect on PR in 

the soybean field (P = <0.001, n = 570). Fig 6.3c shows that the PR values in HT location were 

higher at all soil depths up to 450 mm in comparison to UT location with a peak PR of soil at 

depth 75 mm were 2.27 MPa and 1.66 MPa, respectively (n = 30) while at depth 250 mm, the 

peak PR values were of 2.18 MPa and 2.00 MPa, respectively. The differences of PR values 

between the trafficked locations were much higher at depths from 75 mm to 325 mm and then 

decreased slowly down to the 450 mm soil depth. The mean whole profile PR values in the HT 

location was 1.91 MPa while in the UT location it was 1.68 MPa. 

   
 

Figure 6.3a. Effect of tyre inflation pressure on the penetrometer resistance in the South field in 

2016. Error bar indicates the standard error of mean. 
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Figure 6.3b. Effect of tyre inflation pressure on the penetrometer resistance in the heavily 

trafficked and un-trafficked locations in the South field in 2016. Error bar indicates the standard 

error of mean. 

     

Figure 6.3c. Effect of heavily trafficked and un-trafficked locations on the penetrometer 

resistance in the South field in 2016. Error bar indicates the standard error of mean. 
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Soil physical data recorded during rooting depth study (un-replicated) are shown in Appendices 

6.1 - 6.3. The result shows that the mean BD of soil in STP and LTP treatments was recorded 

as 1.52 Mg m-3 and 1.49 Mg m-3, respectively. The mean gravimetric soil MC in the STP and 

LTP treatments was 16.85% and 15.08%, respectively. As expected, from the BD results, the 

mean total porosity of soil was increased in the LTP treatment (43%) than STP (42%). These 

data indicate that standard tyre inflation pressure plot especially soils of crop rows 3 and 4 near 

to wheel traffic had higher BD due to compaction in the STP plots.  

Soil MC data in June 2017 presented in Figs. 6.4a-b show that the subplot effect of crop row 

had a significant influence on Soil MC in the North field (P = 0.001, n = 30). There was no 

significant effect of tyre inflation pressure, tillage system and the interaction between them and 

crop row on soil MC in the soybean field. Fig. 6.4a shows that the un-trafficked inter-row 

between CR4 & CR5 (centre line of the plot) had a significantly higher soil MC (43%) that was 

significantly different from other crop rows. The mean soil MC was marginally higher in LTP 

treatment (35%) than STP (34%) while in tillage system, mean values of soil MC in DT, ST and 

NT were recorded as 34, 35 and 33%, respectively (Fig. 6.4b).  

 

Figure 6.4a. Effect of crop row (CR) on soil moisture content in the North field in 2017. Means 

with the same letter are not significantly different (P = 0.05) from each other. Error bar indicates 

the standard error of mean. 
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Figure 6.4b. Effect of tyre pressure, tillage system and crop row on soil moisture content in the 

North field in 2017. Error bar indicates the standard error of mean. 

The PR data for 2017 are shown in Figs. 6.5a - 6.5e. The results indicate that irrespective of soil 

depth, tyre inflation pressure and tillage system and their interaction had no significant effect on 

the PR of soil in the soybean field. However, the effect of tillage system across depth, crop row 

and crop row across depth had a significant influence on the PR of soil (P = <0.001, <0.001 and 

<0.001, respectively) with no significant interaction. Among the tillage systems, initially, NT had 

significantly higher PR values to depths of 25 mm, however, values of PR were in the order of 

NT>ST & DT up to a depth 50 mm. After that, the PR values were significantly higher in DT from 

the depth 75 to 175 mm than NT and ST treatments where the trends of PR were in the order of 

DT>NT>ST to the depth of 450 mm with a few exceptions at depths from 250-300 mm (n = 90; 

Fig. 6.5a). The peak PR of soil was recorded higher in DT treatment (2.03 MPa) at soil depths 

100-125 mm that was followed by ST and NT with the peak PR of 1.77 MPa and 1.72 MPa, 

respectively. Among crop rows, the highest PR of soil was recorded in the CR1 (1.79 MPa) that 

was significantly different from the inter-row between 4 & 5, CR4, CR5 and CR8. Un-trafficked 

inter-row CR4 and CR5 had the lowest PR of soil (1.10 MPa) than others (n = 570; Fig. 6.5b). 

Fig. 6.5c shows that the highest PR values were recorded in CR3 up to 75 mm depth (2.20 

MPa) which was the region of HT areas and after that higher PR of soil was recorded in CR1 

(2.05 MPa), which was also the region of extra compaction areas with some fluctuations to 
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higher PR of soil (n = 30). These results indicate that field trafficking causes more soil 

compaction in the HT location than that of UT areas which are in align with reports of others that 

PR values exceeding 2 MPa restrict varying degrees to crop root developments (Hamza and 

Anderson, 2005; Aase et al., 2001) and matched with other similar results (Raper and Kirby, 

2006; Hula et al., 2009; Hamza et al., 2011). The results are also in line with the findings that 

increasing traffic frequency and tyre inflation pressure contributes to the higher BD  and PR of 

soil (Solgi et al., 2016).  

 

Figure 6.5a Effect of tillage system on the penetrometer resistance in the North field in 2017. 

Error bar indicates the standard error of mean. 
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Figure 6.5b. Effect of crop row on the mean penetrometer resistance in the North field in 2017. 

Means with the same letter are not significantly different (P = 0.05) from each other. Error bar 

indicates the standard error of mean. 

 
 

Figure 6.5c. Effect of crop row on the penetrometer resistance in the North field in 2017. Error 

bar indicates the standard error of mean. 
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Figure 6.5d. Effect of tyre inflation pressure and tillage system on the penetrometer resistance 

in the North field in 2017. Error bar indicates the standard error of mean. 

 

 
 

Figure 6.5e. Effect of tyre inflation pressure on the penetrometer resistance in the North field in 

2017. Error bar indicates the standard error of mean. 
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On the contrary, in 2018, the results showed that crop row had a significant effect on soil MC in 

soybean field (P = 0.004, n = 30) but the main effect of tyre inflation pressure and tillage system 

and their interaction were not significant on soil MC at depths of 200 mm in the soybean field (n 

= 5; Fig. 6.6a-b). The highest soil MC was recorded in the CR4 (32.74%) which was significantly 

different from the CR3 (29.13%). The mean soil MC in the LTP and STP treatments were 35% 

and 34%, respectively.  

 
 

Figure 6.6a. Effect of crop row on soil moisture content at 200 mm depth at 55-60 DAP in the 

South field in 2018. Means with the same letter are not significantly different (P = 0.05) from 

each other. Error bar indicates the standard error of mean. 
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Figure 6.6b. Effect of tyre inflation pressure, tillage system and crop row on soil moisture 

content at 200 mm depth at 55-60 DAP in the South field in 2018. Error bar indicates the 

standard error of mean. 
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between the depths 100-150 mm, where ST had higher PR values with a peak PR of 2.46 MPa 

at depth 125 mm as compared to others tillage treatments (n = 90; Fig. 6.7c). The PR values 

from the depth 275 mm were recorded in the order of DT>ST &NT down to the depth of 450 mm 

with a peak PR of 2.46 MPa at depth 275 mm. The mean PR of soil in STP with NT, ST and DT 

treatment combinations was 2.22, 2.08 and 2.04 MPa, respectively while the PR values in LTP 

with DT, ST and NT treatment combinations were 1.89, 1.90 and 1.88 MPa respectively (n = 

855; Fig. 6.7d),. 

 

 
 

Figure 6.7a. Effect of tyre inflation pressure on mean penetrometer resistance in the South field 

in 2018. Means with the same letter are not significantly different (P = 0.05) from each other. 

Error bar indicates the standard error of mean. 
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Figure 6.7b. Effect of tyre inflation pressure on penetrometer resistance in the South field in 

2018. Error bar indicates the standard error of mean. 

 
 

Figure 6.7c. Effect of tillage system on penetrometer resistance in the South field in 2018. Error 

bar indicates the standard error of mean. 

0

100

200

300

400

500

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50
S

o
il

 D
e

p
th

 (
m

m
)

Penetrometer Resistance (MPa)

STP

LTP

P value: <0.001
SEM: 0.05
LSD: 0.18
CV (%): 16.70

0

100

200

300

400

500

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

S
o

il
 D

e
p

th
 (

m
m

)

Penetrometer Resistance (MPa)

 DT

 ST

 NT

P value: <0.001
SEM: 0.06
LSD: 0.22
CV (%): 16.70



 

HARPER ADAMS UNIVERSITY 203 M. R. SHAHEB, 2020 
 

 
 

Figure 6.7d. Effect of tyre inflation pressure and tillage system on mean penetrometer 

resistance in the South field in 2018. Means with the same letter are not significantly different (P 

= 0.05) from each other. Error bar indicates the standard error of mean. 
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Figure 6.7e. Effect of crop row (CR) on mean penetrometer resistance in the South field in 

2018. Means with the same letter are not significantly different (P = 0.05) from each other. Error 

bar indicates the standard error of mean. 

 
 

Figure 6.7f. Effect of crop row at different soil depths on mean penetrometer resistance in the 

South field in 2018. Error bar indicates the standard error of mean. 
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Figure 6.7g. Effect of tyre inflation pressure at different crop row on mean penetrometer 

resistance in the South field in 2018. Means with the same letter are not significantly different (P 

= 0.05) from each other. Error bar indicates the standard error of mean. 

Results of the three-year field-scale studies showed that there was no significant difference 

between the tyre inflation pressure treatments in the first two years for both soil MC and PR of 

soil but had a significant effect in 2018. However, PR values were observed more in STP than 

LTP treatment in 2018 is in line with the findings that high tyre inflation pressure increased 

compaction of soil (Soane et al., 1982). Soybean received a substantial amount of precipitation 

during the vegetative growth of stages in 2016 that may have allowed soils to preserve moisture 

that was eventually used by the crop for normal growth and development. In 2017, PR data in 

STP was narrowly higher than the LTP treatment but it was not significant, however, the PR at 

all depth was below 2.00 MPa. Thus, it can be assumed that less PR in 2017 and significantly 

lower PR in 2018 in LTP treatment in comparison to the STP treatment indicate that soils under 

low inflation tyre system cause less compaction than STP tyre system. The results are in 

agreement in part with the observation that field trafficking with low-pressure tyres can 

significantly decrease soil compaction and increase crop yield (Boguzas and Hakansson, 2001; 

Ridge, 2002). The higher PR values in CR3 and CR1 as expected because of the wheel 

trafficked areas, which were near to the CR3 and CR6, and the additional compaction applied 

on the crop row 1 and 3 before planting of crops. Hence, these crop rows had higher soil 
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strength due to compaction by machinery trafficked under tyre inflation pressures which in turn 

had higher PR across 450 mm soil depths and lower soil MC at 200 mm soil depth.  

6.5.3. Effect on Growth and Yield of Soybean 

Crop growth and development and grain yield of soybean as influenced by the tyre inflation 

pressure and tillage system are presented in Tables 6.3 - 6.14.  

6.5.3.1. Growth Parameters of Soybean 

Plant establishment (%), the number of plants ha-1 and plant height of soybean for 2016 are 

shown in Tables 6.3 and 6.4.  The results showed that tyre inflation pressure had no significant 

effect on plant establishment (%), the number of plants ha-1 and plant height at 30 DAP but had 

an effect on plant height at 45 DAP of soybean (P = 0.003, n = 60). Although not significantly 

different, the mean values of plant establishment for STP and LTP treatments were 92.8 and 

92.5%, respectively while the number of plants ha-1 was 0.4% more in STP (293821) treatment 

than that of LTP treatment (292565) (Table 6.3). The results revealed that LTP treatment had a 

small (3.20% higher) but a significant effect on plant height of soybean at 45 DAP (0.354 m) 

than that of STP (0.343 m). Tables 6.3 and 6.4 show that crop row had a significant effect on 

the plant establishment (%) (P = 0.03, n = 30), the number of plants ha-1 (P = 0.030, n = 30) and 

plant height at 45 DAP (P = <0.001, n = 30) and had no significant effect on plant height of 

soybean at 30 DAP (P = 0.581). The results indicate that the highest plant establishment (%) 

(93.84%), the number of plants ha-1 (296961) and plant height of soybean (0.355 m) were 

recorded in crop row 2 which was significantly different from the crop row 1 for plant 

establishment and plants ha-1 (91.53% and 289677 respectively) and crop row 3 (0.340 m) for 

plant height of soybean.  Non-replicated rooting depth study revealed that the rooting depth of 

all the LTP crop rows was more than that of the STP treatment plot, with mean depths of 0.97 m 

and 0.88 m, respectively (Appendix 6.4), which is comparable to typical soybean rooting depth 

of 0.99 m found in the Midwest soils in the USA (Merrill et al., 2002). Vegetative growth and 

harvesting of soybean are shown in Fig. 6.8.   
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Table 6.3. Effect of tyre inflation pressure and crop row on plant establishment and number of 

plants ha-1 of soybean, in the South field in 2016 

Treatments† Plant establishment (%) Number of plants ha-1 

Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Mean Crop  
row 1 

Crop  
row 2 

Crop  
row 3 

Crop  
row 4 

Mean 

STP 91.0a  93.7a  92.6a  93.9a  92.8a 288002a 296709a 293193a 297379a 293821a 
LTP 92.0a  93.9a  91.3a  92.4a  92.4a 291351a 297212a 289174a 292523a 292565a 
Mean 91.5a 93.8b 92.0ab 93.2ab  289677a 296961b 291184ab 294951ab  
24 and 80 DF SEM P 

value 
LSD CV 

(%) 
 SEM P value LSD CV (%)  

TIP 0.40 0.52 1.57 1.00  127 0.52 4992 1.00  
CR 0.56 0.03 1.64 1.90  178 0.03 5200 1.90  
TIP × CR 0.79 0.33 2.32   252 0.33 7348   
 

†TIP- Tyre inflation pressure, CR-crop row, STP-standard tyre inflation pressure, LTP-low tyre 

inflation pressure; CVs (%) are for the main effect and subplot effects, respectively. Means with 

the same letter are not significantly different (P = 0.05) from each other.  

 

Table 6.4. Effect of tyre inflation pressure and crop row on the plant height of soybean, in the 

South field in 2016 

Treatments† Plant height at 30 DAP (m) Plant height at 45 DAP (m) 

Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Mean Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Mean 

STP 0.224a 0.222 a 0.250 a 0.221 a 0.229 a  0.348 a 0.347 a 0.335 a 0.341 a 0.343a 
LTP 0.224 a 0.222 a 0.219 a 0.224 a 0.222 a  0.357 a 0.362 a 0.344 a 0.352 a 0.354b 
Mean 0.224a 0.222a 0.235a 0.222a  0.352b 0.355b 0.340a 0.347ab  
24 and 80 DF SEM P value LSD CV (%)  SEM P value LSD CV (%)  
TIP 0.005 0.45 0.02 5.70  0.001 0.003 0.005 0.80  
CR 0.007 0.58 0.02 10.50  0.002 <0.001 0.007 2.20  
TIP × CR 0.01 0.34 0.03   0.003 0.73 0.009   

 
†TIP - Tyre inflation pressure, STP - standard tyre inflation pressure, LTP - low tyre inflation 

pressure, CR - crop row, DAP - Days after planting. Means with the same letter are not 

significantly different (P = 0.05) from each other. 
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a) Vegetative stage 

 
 

b) Rooting depth study 
 

  
 

c) Combine harvester and weigh wagon 
 

d) Harvesting of soybean 
 

Figure 6.8. Vegetative growth, rooting depth study and harvesting of soybean, in the South field 

in 2016. 

In 2017, the results showed that the main effect of tillage system and subplot effect of crop row 

had a significant influence on plant establishment (%) (P = 0.009 and 0.001, respectively), 

plants ha-1 (P = 0.01 and 0.004, respectively) and plant height of soybean (P = 0.001 and 0.01, 

respectively) and other were not significant (Fig. 6.9a-c and Tables 6.5 - 6.6 and Appendix 6.5). 

The highest plant establishment (%) of soybean was recorded for the NT system (89.7%), which 

was significantly different from the DT (88.5%) and ST treatments (85.10%) (n = 80; Fig. 6.9a). 

The highest number of plants ha-1 was observed in DT (263526) and NT (257540) which was 

significantly higher than ST (248236) (Table 6.5a). Stress provided by the STP and low soil MC 

in NT plots could have contributed to sporadic crop drying and could explain the reduction in 
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plant population for the NT treatments. Among crop rows, the highest plant establishment of 

soybean was recorded in crop row 8 (91%) that was significantly different from the crop row 3 

(85.87%) and crop row 2 (86.63%) (n = 30; Fig. 6.9b). Correspondingly, the number of plants 

ha-1  was recorded 2% higher in the crop row 8 (264433) than and significantly varied from the 

crop row 3 (250188) and crop row 7 (252588) (Table 6.5b).  

Table 6.6a shows that there was a small (4.04%) but significantly greater plant height was 

recorded in the DT treatment (1.03 m) as compared to the NT treatment (0.99 m) (n = 80). The 

effect of crop row 8 had the highest plant height that was 2.41% higher than some, but not all 

the remaining crops rows (Table 6.6b).  

 

Figure 6.9a. Effect of tillage system on plant establishment of soybean in the North field in 

2017. Means with the same letter are not significantly different (P = 0.05) from each other. Error 

bar indicates the standard error of mean. 
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Figure 6.9b. Effect of crop row on plant establishment of soybean, in the North field in 2017. 

Means with the same letter are not significantly different (P = 0.05) from each other. Error bar 

indicates the standard error of mean. 

 
 

Figure 6.9c. Effect of tyre inflation pressure, tillage system and crop row on plant establishment 

of soybean, in the North field in 2017. Error bar indicates the standard deviation of mean. 
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Table 6.5a. Effect of tyre inflation pressure and tillage system on the number of plants ha-1 of 

soybean, in the North field in 2017  

Treatments† 

 
Number of plants ha-1 Mean 

DT ST NT 

STP 266341a 247838a 261464a 258548a 
LTP 260711a 248634a 253615a 254320a 
Mean 263526b 248236a 257540ab  
20 and 168 DF SEM P value LSD (0.05) CV (%) 
TIP 2722.4 0.28 8031.1 4.10 
TS 3334.3 0.01 9836.1  
TIP × TS 4715.4 0.64 13910.3  

 

†TIP- Tyre inflation pressure, TS-Tillage systems, STP- standard tyre inflation pressure, LTP- 

low tyre inflation pressure, DT- deep tillage, ST- shallow tillage and NT- no-till. Means with the 

same letter are not significantly different (P = 0.05) from each other.  

 

Table 6.5b. Effect of tyre inflation pressure and crop row on the number of plants ha-1  of 

soybean, in the North field in 2017 

Treatments† Number of plants ha-1 Mean 

Crop row 
1 

Crop row 
2 

Crop 
row 3 

Crop row 
4 

Crop row 
5 

Crop row 
6 

Crop 
row 7 

Crop 
row 8 

STP 259035a 261602a 251165a 258421a 256858a 257639a 258477a 265186a 258548a 

LTP 264505a 247481a 249211a 257193a 255798a 249993a 246700a 263679a 254320a 

Mean 261770ab 254542ab 250188a 257807ab 256328ab 253816ab 252588a 264433b  

20 and 168 
DF 

SEM P value LSD 
(0.05) 

CV (%)      

TIP 2722 0.28 8031 4.10      

CR 2710 0.004 7566 5.80      

TIP × CR 4501 0.20 12616       
 

†TIP- Tyre inflation pressure, CR-crop row, STP-standard tyre inflation pressure, LTP-low tyre 

inflation pressure. Means with the same letter are not significantly different (P = 0.05) from each 

other.  
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Table 6.6a. Effect of tyre inflation pressure and tillage system on plant height of soybean at 

harvest, in the North field in 2017 

Treatments† 

 
Plant height (m) Mean 

DT ST NT 

STP 1.01a 1.01a 0.99a 1.01a 
LTP 1.04a 1.02a 0.98a 1.02a 
Mean 1.03b 1.01ab 0.98a  
20 and 168 DF SEM P value LSD (0.05) CV (%) 
TIP 0.006 0.28 0.07 2.20 
TS 0.007 0.001 0.02  
TIP × TS 0.01 0.04 0.03  

 

†TIP- Tyre inflation pressure, TS-Tillage systems, STP- standard tyre inflation pressure, LTP- 

low tyre inflation pressure, DT- deep tillage, ST- shallow tillage and NT- no-till. Means with the 

same letter are not significantly different (P = 0.05) from each other.  

 

Table 6.6b. Effect of tyre inflation pressure and crop row on plant height of soybean at harvest, 

in the North field in 2017 

Treatments† Plant height (m) Mean 

Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Crop 
row 5 

Crop 
row 6 

Crop 
row 7 

Crop 
row 8 

STP 1.008a 1.017a 0.991a 0.997a 1.000a 1.009a 1.003a 1.014a 1.005a 

LTP 1.015a 1.015a 1.003a 1.002a 1.018a 1.016a 1.022a 1.028a 1.015a 

Mean 1.012ab 1.016ab 0.997a 1.000a 1.009ab 1.013ab 1.013ab 1.021b  

20 and 168 
DF 

SEM P value LSD 
(0.05) 

CV (%)      

TIP 0.006 0.24 0.02 2.20      
CR 0.005 0.01 0.01 2.60      

TIP × CR 0.011 0.09 0.03       
 

†TIP- Tyre inflation pressure, TS-Tillage systems, STP- standard tyre inflation pressure, LTP- low 

tyre inflation pressure, DT- deep tillage, ST- shallow tillage and NT- no-till. Means with the same 

letter are not significantly different (P = 0.05) from each other. 

 

The plant establishment (%), the number of plants ha-1 and plant height of soybean in 2018 are 

shown in Tables 6.7 to 6.9, Figs 6.10 and 6.11, and Appendix 6.6. The results showed that tyre 

inflation pressure and crop row had a significant effect on plant establishment (P = <0.001 and 

<0.001, respectively), the number of plants ha-1 (P = 0.001 and 0.002, respectively) and plant 

height (P = <0.001 and <0.001, respectively) of soybean. The main effect of the tillage system 
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was also significant on both plant establishment (P = 0.03) and plant height (P = 0.03) while its 

interaction with tyre inflation pressure had a significant influence on plant establishment (%) (P 

= 0.008) and the number of plants ha-1 (P = 0.022). There was no significant effect of tillage 

system on the number of plant ha-1 and the interaction with tyre inflation pressure on plant 

height of soybean. The results showed that LTP treatment had a 2.45% higher plant 

establishment (92.1%) and 2.13% higher number of plants ha-1 of soybean (289488) in 

comparison to the STP treatment plot where plant establishment (%) and the number of plants 

ha-1 were 89.9% and 283464 respectively (n = 120; Table 6.7 and 6.8a). Similarly, the mean 

values of plant height of soybean were higher (5.98%) in LTP treatment (0.833 m) than that of 

the STP treatment plot (0.786 m) (n = 120; Table 6.9). These results indicate that STP 

treatment might have an effect on plant growth by causing soil compaction, which can be 

correlated with the higher PR data recorded in the STP plots than that of LTP (Fig. 6.7a-b). 

Among tillage systems, plant establishment (%) of soybean was recorded as marginally higher 

in DT (91.8%) that was significantly different from the NT system (90.1%) (n = 80; Table 6.7). A 

significantly 3.53% higher plant height of soybean was also found in the DT treatment (0.822 m) 

which was significantly different from the NT treatment (0.794 m). The effect of interaction 

between tyre inflation pressure and tillage systems showed that the higher plant establishment 

(92.9%) led the higher number of plants ha-1 of soybean (292031) in the treatment combination 

of LTP × DT that was significantly different from the treatment combination STP × NT with the 

lowest plant establishment of 88% and the number of plants ha-1 (278154) (n = 40; Tables 6.7 

and 6.8a).  

Data in Fig. 6.10 and Table 6.8b show that plant establishment (%) and the number of plants ha-

1 of soybean among the crop rows were recorded significantly higher in the non-trafficked crop 

row CR 7 (92.64% and 290179, respectively) than the trafficked CR3 (89.20% and 282965, 

respectively) and CR1 (89.65% and 283802, respectively) (n = 30). Fig. 6.11 shows that plant 

height of soybean was obtained the highest in the non-trafficked CR8 (0.824 m) which was 

significantly varied from the CR3 (0.788 m) and CR5 (0.804 m). Reasons of the lowest plant 

establishment, plant populations and plant height of soybean in CR3 compared to the non-

trafficked crop rows could be due to the vehicles wheeling run close to the CR3 and CR6 and a 

further application of additional compaction on the CR1 and CR3 possibly caused additional 

stressed in soils underneath of CR3 and CR1 which is explainable because the PR data 

recorded on the CR1 and CR3 had significantly higher compared to the UT crop rows (Figs. 

6.7e and 6.7f).  
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Table 6.7. Effect of tyre inflation pressure and tillage system on plant establishment of soybean, 

in the South field in 2018 

Treatments† 

 
Plant establishment (%) Mean 

DT ST NT 

STP 90.6ab 91.3b 88.1a 89.9a 
LTP 92.9b 91.3b 92.1b 92.1b 
Mean 91.8b 91.3ab 90.1a  
20 and 168 DF SEM P value LSD (0.05) CV (%) 
TIP 0.33 <.001 0.99 1.40 
TS 0.41 0.03 1.21  
TIP × TS 0.58 0.008 1.71  

 

†TIP- Tyre inflation pressure, TS-Tillage systems, STP- standard tyre inflation pressure, LTP- 

low tyre inflation pressure, DT- deep tillage, ST- shallow tillage and NT- no-till. Means with the 

same letter are not significantly different (P = 0.05) from each other.  

 
 

 

Figure 6.10. Effect of crop row (CR) on plant establishment of soybean, in the South field in 

2018. Means with the same letter are not significantly different (P = 0.05) from each other. Error 

bar indicates the standard error of mean. 
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Table 6.8a. Effect of tyre inflation pressure and tillage system on the number of plants ha-1 of 

soybean, in the South field in 2018 

Treatments† 

 
Number of plants ha-1 Mean 

DT ST NT 

STP 285606ab 286631ab 278154a 283464a 
LTP 292031b 286537ab 289896b 289488b 
Mean 288819a 286584a 284026a  
20 and 168 DF SEM P value LSD (0.05) CV (%) 
TIP 1120.7 0.001 3306.0 1.50 
TS 1372.5 0.070 4049.0  
TIP × TS 1941.1 0.022 5726.1  

 

†TIP- Tyre inflation pressure, TS-Tillage systems, STP- standard tyre inflation pressure, LTP- low 

tyre inflation pressure, DT- deep tillage, ST- shallow tillage and NT- no-till. Means with the same 

letter are not significantly different (P = 0.05) from each other.  

 

 

Table 6.8b. Effect of tyre inflation pressure and crop row on the number of plants ha-1 of 

soybean, in the South field in 2018 

Treatment
s† 

Number of plants ha-1 Mean 

Crop row 
1 

Crop row 
2 

Crop row 
3 

Crop row 
4 

Crop row 
5 

Crop row 
6 

Crop row 
7 

Crop row 
8 

STP 281221a 282700a 281277a 287165a 282979a 281221a 287053a 284095a 283464a 

LTP 286384a 290849a 284653a 293193a 290849a 289984a 293891a 286105a 289488b 

Mean 283802a 286774ab 282965a 290179b 286914ab 285602ab 290472b 285100ab  

20 and 
168 DF 

SEM P value LSD 
(0.05) 

CV (%)      

TIP 1120.7 0.001 3306.0 1.50      

CR 1463.9 0.002 4087.1 2.80      
TIP × CR 2237.4 0.701 6250.8       

 
†TIP- Tyre inflation pressure, TS-Tillage systems, STP- standard tyre inflation pressure, LTP- 

low tyre inflation pressure, DT- deep tillage, ST- shallow tillage and NT- no-till. Means with the 

same letter are not significantly different (P = 0.05) from each other.  
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Table 6.9. Effect of tyre inflation pressure and tillage system on the plant height of soybean at 

harvest, in the South field in 2018 

Treatments† 

 
Plant height (m) Mean 

DT ST NT 

STP 0.787ab 0.796ab 0.776a 0.786a 
LTP 0.857c 0.831bc 0.813ab 0.833b 
Mean 0.822b 0.813ab 0.794a  
20 and 168 DF             SEM P value LSD (0.05) CV (%) 
TIP 0.006 <.001 0.017 2.70 
TS 0.007 0.03 0.021  
TIP × TS 0.010 0.157 0.029  

 

†TIP- Tyre inflation pressure, TS-Tillage systems, STP- standard tyre inflation pressure, LTP- low 

tyre inflation pressure, DT- deep tillage, ST- shallow tillage and NT- no-till. Means with the same 

letter are not significantly different (P = 0.05) from each other.  

 

 
 

Figure 6.11. Effect of crop row (CR) on plants height of soybean at harvest, in the South field in 

2018. Means with the same letter are not significantly different (P = 0.05) from each other. Error 

bar indicates the standard error of mean. 
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6.5.3.2. Yield Parameters and Grain Yield  

In 2016, the results on yield parameters and yield data showed that tyre inflation pressure and 

crop row and their interaction had no significant effect on 1000 grain weight and hand harvested 

grain yield of soybean (Appendix 6.7). The mean hand harvest grain yields of soybean were 

6.13 and 5.66 Mg ha-1 in STP and LTP, respectively (n = 60). Likewise, the results showed that 

tyre inflation pressure had no significant effect on the combine harvested grain yield of soybean 

with mean values for the STP and LTP treatments were of 4.93 and  4.91 Mg ha-1, respectively 

(P = 0.55, n = 15; Fig. 6.12). 

  

 
 

Figure 6.12. Effect of tyre inflation pressure on the combine harvested grain yield of soybean in 

the South field in 2016.  

Note: The ends of boxes are the upper and lower quartiles, the median is marked by a vertical 

line inside the box. The whiskers are the two lines outside the box that extends the highest and 

lowest observations. 

 
The 2017 hand harvest data of soybean are given in Table 6.10 and Appendix 6.8.  The results 

showed that tyre inflation pressure and interaction between tyre inflation pressure and crop row 

had a significant effect on the hand-harvested grain yield of soybean (P = 0.030 and 0.020, 

P value: 0.55 
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respectively) but had no significant effect on 1000 grain weight. However, the main effect of 

tillage system and the sub plot effect of crop row and their effects of interaction were significant 

neither on 1000 grain weight nor on hand harvested grain yield of soybean. The hand-harvested 

grain yield showed a small (+5.97%) but significantly higher yield in the LTP tyre system (5.96 

Mg ha-1) compared to the STP tyre system (5.63 Mg ha-1) (n = 120; Table 6.10a). The mean 

hand harvested grain yields were not significantly different between DT, ST and NT systems 

with values of 5.67, 5.89 and 5.83 Mg ha-1, respectively (n = 80). It is noteworthy to mention that 

the low quantity of hand-harvested sampling (5 plants/crop row) was possibly not adequately 

represent the whole 160 m length of a crop row and thus, the yield difference between tyre 

inflation pressure treatments was minimized. Hence, to observe the main effects of tyre inflation 

pressure and tillage system, it would be more meaningful to focus on combine harvested grain 

yield. Correspondingly, the interaction results between tyre inflation pressure and crop row 

showed that the highest hand harvested grain yield was recorded in the treatment combination 

of LTP × CR1 (6.23 Mg ha-1) that was significantly different from the treatment combination of 

STP × crop row 3 with the lowest value of 4.99 Mg ha-1 (n = 15; Table 6.10b). 

Table 6.10a. Effect of tyre inflation pressure and tillage system on hand harvest grain yield of 

soybean, in the North field in 2017 

Treatments† 

 
Hand harvest grain yield (Mg ha-1) Mean 

DT ST NT 

STP 5.66a 5.68a 5.55a 5.63a 
LTP 5.67a 6.10a 6.11a 5.96b 
Mean 5.67a 5.89a 5.83a  
20 and 168 DF SEM P value LSD (0.05) CV (%) 
TIP 0.09 0.03 0.28 6.50 
TS 0.120 0.41 0.35  
TIP × TS 0.16 0.25 0.49  

 

†TIP- Tyre inflation pressure, TS-Tillage systems, STP- standard tyre inflation pressure, LTP- 

low tyre inflation pressure, DT- deep tillage, ST- shallow tillage and NT- no-till. Means with the 

same letter are not significantly different (P = 0.05) from each other.  
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Table 6.10b. Effect of tyre inflation pressure and crop row on hand harvest grain yield of 

soybean, in the North field in 2017 

Treatments† Hand harvest grain yield (Mg ha-1) Mean 

Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Crop 
row 5 

Crop 
row 6 

Crop 
row 7 

Crop 
row 8 

STP 5.63ab 5.72ab 4.99a 5.55ab 5.56ab 5.45ab 6.22b 5.94ab 5.63 a 

LTP 6.23b 5.66ab 6.05ab 5.84ab 6.21b 5.97ab 5.98ab 5.69ab 5.96b 

Mean 5.93a 5.69a 5.52a 5.70a 5.89a 5.71a 6.10a 5.82a  

20 and 168 DF SEM P value LSD 
(0.05) 

CV (%)      

TIP 0.09 0.03 0.28 6.50      

CR 0.15 0.19 0.41 14.2      

TIP × CR 0.22 0.02 0.61       

 
†TIP- Tyre inflation pressure, TS-Tillage systems, STP- standard tyre inflation pressure, LTP- 

low tyre inflation pressure, DT- deep tillage, ST- shallow tillage and NT- no-till. Means with the 

same letter are not significantly different (P = 0.05) from each other. 

  

Figure 6.13 – 6.15 shows that tillage system had a significant effect on the combine harvested 

grain yield of soybean (P = 0.001, n = 10), however, tyre inflation and interaction with tillage 

system were not significant in 2017 (P = 0.48 and 0.96, respectively). The combine harvested 

mean grain yields of soybean in STP and LTP were 4.76 and 4.73 Mg ha-1, respectively (n = 15, 

Fig. 6.13). Among the tillage systems, the highest combine harvested grain yield was recorded 

in the DT treatment (4.86 Mg ha-1) that was significantly different from the NT treatment with the 

lowest value of 4.65 Mg ha-1 (n = 10, Fig. 6.14). The grain yield in the DT treatment was 

increased by 2.75% and 4.52% as compared to the ST (4.73 Mg ha-1) and NT treatments, 

respectively. The mean grain yields of the interaction between tyre inflation pressure and tillage 

systems in the treatment combinations of LTP × DT, LTP × ST and LTP × NT were 4.85, 4.72 

and 4.63 Mg ha-1 while for the treatment combination of STP × DT, STP × ST and STP × NT, 

the yields were 4.87, 4.74 and 4.67 Mg ha-1, respectively (n = 5, Fig. 6.15). These results 

indicate that the yield benefit of LTP systems for soybean production in 2017 was consistent for 

all tillage treatments, although the combined effect was not significant. 
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Figure 6.13. Effect of tyre inflation pressure on the combine harvested grain yield of soybean, in 

the North field in 2017. 

 

Figure 6.14. Effect of tillage system on the combine harvested grain yield of soybean, in the 

North field in 2017. 

Note: In Figs. 6.13 - 6.14, the ends of boxes are the upper and lower quartiles, the median is 

marked by a vertical line inside the box. The whiskers are the two lines outside the box that 

extends the highest and lowest observations. 

 
 

P value: 0.48 
SEM 0.03 
LSD: 0.08 
CV (%): 2.30 

a 
a 

P value: 0.001 
SEM: 0.03 
LSD: 0.10 
CV (%): 2.30 

b 

a 
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Figure 6.15. Effect of tyre inflation pressure and tillage system on the combine harvested grain 

yield of soybean, in the North field in 2017.  

Note: The ends of boxes are the upper and lower quartiles, the median is marked by a vertical 

line inside the box. The whiskers are the two lines outside the box that extends the highest and 

lowest observations. 

 
Results in 2018 hand harvest data revealed that tyre inflation pressure, tillage system and their 

interaction had no significant effect on the 1000 grain weight of soybean (P = 0.339, 0.805 and 

0.139). However, the subplot effect of crop row and the interaction effect of tyre inflation 

pressure and crop row was significant (P = 0.006 and 0.049, respectively) (Table 6.11 and 

Appendix 6.9). The 1000 grain weight was the highest in the crop row 1 (155 g) which was 

significantly different from crop row 3 and 7 (n = 30). Likewise, the highest 1000 grain weight 

was recorded in the treatment combination of LTP × crop row 8 (157 g) which was significantly 

different from the treatment combinations of STP × crop row 3 (149 g) and LTP × crop row 3 

(149 g) (n = 15, Table 6.11). The results revealed that tyre inflation pressure had a significant 

effect on the biomass and hand harvested grain yields of soybean (P = 0.001 and 0.003; Tables 

6.12 and 6.13). The biomass and hand harvested grain yields of soybean in the LTP treatment 

were recorded 8.41% (8.64 Mg ha-1) and 8.35% (4.80 Mg ha-1) higher compared to the STP 

treatment (7.97 Mg ha-1 and 4.43 Mg ha-1, respectively) (n = 120). There was no significant 

a 
a 

a 

a 

a 
a 

P value: 0.96 
SEM: 0.05 
LSD: 0.14 
CV (%): 2.30 
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difference between tillage systems, crop rows and their interaction with tyre inflation pressure on 

the biomass and hand harvested grain yields of soybean in 2018 (Tables 6.12 and 6.13). 

Table 6.11. Effect of tyre inflation pressure and crop row on 1000 grain weight of soybean, in 

the South field in 2018 

Treatments† 1000 grain weight of soybean (g)  

Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Crop 
row 5 

Crop 
row 6 

Crop 
row 7 

Crop 
row 8 

Mean 

STP 154ab 153ab 149a 152ab 152ab 151ab 151ab 151ab 151a 

LTP 156ab 150ab 152ab 150ab 153ab 151ab 149a 157b 152a 

Mean 155b 151ab 151a 151ab 152ab 151ab 150a 154ab  

20 and 168 DF SEM P value LSD 
(0.05) 

CV (%)      

TIP 0.67 0.33 1.98 1.70      

CR 1.01 0.006 2.84 3.70      

TIP × CR 1.50 0.04 4.20       

 
†TIP- Tyre inflation pressure, TS-Tillage systems, STP- standard tyre inflation pressure, LTP- low 

tyre inflation pressure, DT- deep tillage, ST- shallow tillage and NT- no-till. Means with the same 

letter are not significantly different (P = 0.05) from each other.  

 

Table 6.12. Effect of tyre inflation pressure and tillage system on the biomass yield of soybean, 

in the South field in 2018 

Treatments† 

 
Biomass yield (Mg ha-1) Mean 

DT ST NT 

STP 8.06a 8.03a 7.82a 7.97a 
LTP 8.86a 8.67a 8.37a 8.64b 
Mean 8.46a 8.35a 8.10a  
20 and 168 DF     SEM P value LSD (0.05) CV (%) 
TIP 0.12 0.001 0.36 5.80 
TS 0.15 0.24 0.45  
TIP × TS 0.21 0.84 0.63  

 

†TIP- Tyre inflation pressure, TS-Tillage systems, STP- standard tyre inflation pressure, LTP- low 

tyre inflation pressure, DT- deep tillage, ST- shallow tillage and NT- no-till. Means with the same 

letter are not significantly different (P = 0.05) from each other. 
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Table 6.13. Effect of tyre inflation pressure and tillage system on the hand harvest grain yield of 

soybean, in the South field in 2018 

Treatments† 

 
Hand harvest grain yield (Mg ha-1) Mean 

DT ST NT 

STP 4.37a 4.42a 4.50a 4.43a 
LTP 4.87a 4.87a 4.66a 4.80b 
Mean 4.62a 4.65a 4.58a  
20 and 168 DF             SEM P value LSD (0.05) CV (%) 
TIP 0.07 0.003 0.22 6.40 
TS 0.09 0.86 0.27  
TIP × TS 0.13 0.40 0.39  

 

†TIP- Tyre inflation pressure, TS -Tillage systems, STP- standard tyre inflation pressure, LTP- 

low tyre inflation pressure, DT- deep tillage, ST- shallow tillage and NT- no-till. Means with the 

same letter are not significantly different (P = 0.05) from each other. 

  

On the contrary, Figs. 6.16 - 6.18 show that tyre inflation pressure and interaction between tyre 

inflation pressure and tillage system had a significant effect on the combine harvested grain 

yield of soybean in 2018 (P = 0.024 and 0.040, respectively) while the main effect of tillage 

system (P = 0.295) was not significant. A significantly 3.70% higher combine harvested grain 

yield of soybean was obtained in the LTP treatment (4.25 Mg ha-1) as compared to the STP 

treatment (4.10 Mg ha-1) (n = 15; Fig. 6.16). The combine harvested mean grain yields of 

soybean in the DT, ST and NT systems were 4.13, 4.16 and 4.24 Mg ha-1, respectively (n = 10; 

Fig. 6.17). The highest combine harvested grain yield of soybean was recorded in the treatment 

combination of LTP × NT (4.35 Mg ha-1) which was significantly different from STP × ST 

treatment combination with the lowest yield of 3.97 Mg ha-1 (n = 5; Fig. 6.18). These data like 

2017 indicate that LTP treatment had higher grain yields than STP in all three tillage systems in 

2018, even though the combined effect was not significant in that year. 
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Figure 6.16. Effect of tyre inflation pressure on the combine harvested grain yield of soybean, in 

the South field in 2018.  

 
 

Figure 6.17. Effect of tillage system on the combine harvested grain yield of soybean, in the 

South field in 2018. 

Note: The ends of boxes are the upper and lower quartiles, the median is marked by a vertical 

line inside the box. The whiskers are the two lines outside the box that extends the highest and 

lowest observations. 

a 
b 

P value: 0.02 
SEM: 0.04 
LSD: 0.13 
CV (%): 3.90 

Significant 
+3.70% 

P value: 0.29 
SEM: 0.05 
LSD: 0.15 
CV (%): 3.90 

a 
a a 
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Figure 6.18. Effect of tyre inflation pressure and tillage system on the combine harvested grain 

yield of soybean, in the South field in 2018.  

Note: In Fig 6.17b-c, the ends of boxes are the upper and lower quartiles, the median is marked 

by a vertical line inside the box. The whiskers are the two lines outside the box that extends the 

highest and lowest observations. 

 

The present field scale-study during the year 2017 to 2018 including a pilot study trial in 2016 

indicate that the yield of soybean in 2016 and 2017 was not influenced by the tyre inflation 

pressure with an exception in plant height at 45 DAP in 2016. However, a positive effect due to 

the use of low tyre inflation pressure tyres was observed on soil properties and crop growth and 

yield of soybean in 2018. PR >2.00 MPa that affect soil structure and limit the growth and yield 

of crops (Hamza & Anderson, 2005). Higher PR of soil (>2 MPa) under both standard and low 

tyre inflation pressures in 2016 (even though PR in LTP<STP) might have affected the soil 

structure. However, higher plant establishment (%) (>92) and the higher number of plants ha-1 

of soybean in both tyre inflation pressure treatments because of higher rainfall at 70-80 DAP in 

2016 contributed to the non-significant yield difference between them. In 2017, neither plant 

establishment (%) and the number of plants ha-1 nor the combine harvested grain yields were 

significant between the tyre inflation pressures. The amount of precipitation, especially during 

the vegetative growth stage of soybean in 2017 was lower than in 2016 and 2018 and thus, the 

P value: 0.04 
SEM: 0.073 
LSD: 0.216 
CV (%): 3.90 

a ab 
ab 

ab 

ab 

b 



 

HARPER ADAMS UNIVERSITY 226 M. R. SHAHEB, 2020 
 

year 2017 was considered to be a partial dry weather year. Therefore, the lack of response in 

2017 to reduced tyre inflation pressure with the soybean yield was possibly attributed to the 

negative effect of the moderately dry season which is in line with the report of Yang et al. 

(2003).  

The present finding is also in agreement with the findings of Kulkarni et al. (2010) who reported 

that soil resistance on a loam soil as low as 1.6 MPa (measured range 1.6–2.9 MPa) affected 

crop growth but did not show any yield penalty.  Conversely in 2018, higher grain yield of 

soybean in the LTP tyre system was attributed due to the higher plant establishment (%) and a 

higher number of plant ha-1 in comparison to STP tyre systems plot. Lower PR of soil in the LTP 

treatment in 2018, in turn, maintains soil porosity higher than the STP can be the main reason in 

increasing crop growth and grain yield higher than that of the STP treatment. These findings are 

in agreement with (Boguzas and Hakansson, 2001; Ridge, 2002). Restricted root growth and 

accessibility of nutrients due to an increase in soil strength (BD) and reduced pore size due to 

soil compaction (Nawaz et al., 2013; Kaspar et al., 2001) may be further reasons can be related 

to the present findings. 

6.6. Conclusions 

1) Initial assessment of the South field showed that the soil contains relatively high OM and 

had adequate plant nutrients. The low soil BD (<1.30 Mg g-3), relatively high porosity 

(>50%) and low PR of soil (peak PR 1.23 MPa) indicate that the experimental field was 

relatively uniform with no underlying residual compaction.  

2) Tyre inflation pressure had no significant effect on the PR of soil in 2016. The PR of the 

un-trafficked areas had a significantly lower than the heavily trafficked areas with a peak 

PR of soil at depth 75 mm (1.66 and 2.27 MPa, respectively) (P = <0.001). Low tyre 

inflation pressure had no significant effect on the soil MC in 2017 and 2018 and PR of 

soil in 2017 while in 2018, it had a significant effect on PR of soil with the peak value of 

2.29 MPa at soil depth 250 mm, was lower than that of standard tyre inflation pressure 

(2.51 MPa) (P = <0.001).  

3) The tillage system across soil depth had a significant effect on the PR of soil in both 

2017 and 2018 (P = <0.001 and <0.001) with no significant effect on soil MC in both 

years, however, reducing tillage (ST, depth 100 mm) was shown to have a benefit of 
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reducing soil compaction in the soybean field. In 2017, values of PR were recorded in 

the order of NT>ST & DT up to a depth 50mm. After that the values were observed in 

the order of DT>NT>ST to a depth 450 mm,  While in 2018, the PR of soil were recorded 

in the order of NT>ST>DT up to a depth of 225 mm, however, the values of PR were in 

the order of DT> ST & NT from the depth of 275 mm down to soil depth of 450 mm. No 

significant effects of the interaction between tyre inflation pressure and tillage system 

were found between PR and soil MC (%) in both 2017 and 2018. Regardless of tyre 

inflation pressure and tillage system, reducing field trafficked and UT crop row had 

shown a significant benefit over the HT crop rows by reducing soil compaction and 

creating an opportunity for soil to conserve more moisture in both 2017 and 2018. 

4) In 2016, tyre inflation pressure had no significant effect on the plant establishment (%), 

the number of plants per ha and plant height at 30 DAP of soybean except plant height 

at 45 DAP (P = 0.003). Crop row had a significant effect on the plant establishment (%) 

(P = 0.03), number of plants per ha (P = 0.03) and plant height at 45 DAP (P = <0.001) 

and others were not significant. There was also no significant interaction effects of the 

tyre inflation pressure and crop row on the growth parameters of soybean in 2016. 

5) There was no significant influence of tyre inflation pressure on crop development of 

soybean in 2017, but the effect of tillage system and crop row were significant on the 

plant establishment (%) (P = 0.009 and 0.001), the number of plants ha-1 (P =0 .01 and 

0.004) and plant height (P = 0.001 and 0.01). In 2018, reduced tyre inflation pressure 

was shown to have a significant effect on the plant establishment (%) (P = <0.001), 

number of plants per ha (P = 0.001) and plant height (P = <0.001) of soybean while 

tillage system had a significant effect on the plant establishment (%) (P = 0.03) and plant 

height (P = 0.03) of soybean. The interaction between tyre inflation pressure and tillage 

system had also found a significant influence on plant establishment (%) (P = 0.008) and 

the number of plants per ha (P = 0.02). Results revealed that crop row had a significant 

influence on the plant establishment (%), the number of plants ha-1 and plant height of 

soybean in 2007 (P = 0.001, 0.01 and 0.004, respectively) and in 2018 (P = <0.001, 

0.002 and <0.001, respectively) with no significant interaction neither with tyre inflation 

pressure nor with tillage systems on these growth parameters in both the year. 

6) Tyre inflation pressure, tillage system and their interaction had no significant effect on 

the 1000 grain weight and hand harvested yield of soybean except for grain yield in the 
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year 2017 where tyre inflation pressure (P = 0.03), and the interaction of the tyre inflation 

pressure and crop row (P = 0.02) show a significant influence on the hand harvested 

yield of soybean. Reduced tyre inflation pressure had a significantly higher biomass yield 

than standard tyre inflation pressure in 2018 (P = 0.001). 

7) Tyre inflation pressure had a significant influence on the combine harvested grain yield 

of soybean in 2018 (P = 0.021) but had no significant effects in 2016 and 2017 (P = 

0.553 and 0.083). The grain yield in the low tyre inflation pressure treatments (4.25 Mg 

ha-1) was 3.70% higher than that of the standard tyre inflation pressure treatment (4.10 

Mg ha-1).  

8) The tillage system had no significant effect on the grain yield of soybean in the year 

2018 (P = 0.295), however, this was significant in 2017 (P = 0.001) where higher grain 

yields of soybean were recorded for the deep tillage treatments (4.86 Mg ha-1) than 

shallow tillage (4.73 Mg ha-1) and no-till (4.65 Mg ha-1). The yield benefits from deep 

tillage system were 2.75% and 4.52% greater than that of shallow tillage and no-till 

systems, respectively. Both tyre inflation pressure and tillage system had a significant 

effect on the grain yield of soybean in 2018 (P = 0.04) but they were not significant in the 

year 2017 (P = 0.96). 
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CHAPTER 7: ECONOMIC ANALYSIS OF ALTERNATE TYRE SYSTEMS 

IN MAIZE-SOYBEAN ROTATION 

7.1. Introduction 

The economic profitability of a given cropping system is crucial to make the system viable and 

sustainable. Farmers adopt technology based on the visible short as well as long-term 

economic benefits while protecting the environment. Results from the earlier studies at Harper 

Adams University, UK found that low tyre inflation pressure systems had a positive benefit in 

increasing yield of crops in sandy loam soil compared to the standard tyre inflation pressure 

systems, but these studies have not considered on economic analysis of the benefit (Smith et 

al., 2014b; Millington, 2019). In another study, (Smith et al., 2014a) showed that there was no 

significant difference in contact pressures in soil between the standard and Ultraflex tyres when 

running at low inflation pressures. Economic analysis of the farming systems using different 

tyres and field trafficking systems are also scarce and robust experimental results are not 

available. The present study has focused here on the level of the economic benefit that can be 

obtained by the use of Ultraflex tyres operating at the rated lower tyre inflation pressures in 

comparison to standard tyre inflation pressures for three tillage systems in a maize/soybean 

rotation in Central Illinois.  

7.2. Hypothesis 

Reduced tyre inflation pressure systems increase the economic profitability for a  

maize/soybean rotation for three tillage systems.   

7.3. Objectives 

To determine the potential economic benefit of Ultraflex tyres on low inflation pressures for a 

maize/soybean rotation for 3 tillage systems (conventional deep tillage, shallow tillage and no-

till). 
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7.4. Assumptions 

The present study was emphasized to determine the effects of the 2 tyre inflation pressures for 

3 different soil conditions, provided by the 3 alternative tillage systems. Although the different 

tillage systems would have different costs and benefits due to cultivation and difference in fuel 

cost, these were not considered in the analysis. Standard pressure was used to simulate normal 

tyres without the need to change the tyres during the experiment as shown by Smith et al. 

(2014b). Studies showed that fuel consumption between standard and Ultraflex tyres operated 

at standard and low tyre inflation pressure systems in the UK were not significantly different 

(Arslan et al., 2014). Hence, it is assumed that fuel consumptions were same in both STP and 

LTP tyre inflation pressure systems. The assumptions are as follows: 

1) All raw yield data for 2017 & 2018 for both maize and soybean (four crop seasons) were 

considered irrespective of the statistical significance. The data of 2016 has not included 

as this was a preliminary study where all plots were deep tilled (450 mm depth).  

2) Two farm sizes of 200 and 809 ha were considered. The first is one third larger than the 

official quoted size of an average Illinois farm (c.150 ha, Illinois Department of 

Agriculture, 2019) and the second that of frequently found commercial farming 

operations (M. Pantaleo, Personal communication,  20 March 2019).  

3) The retail prices for the standard and Ultraflex tyres for the equipment required for the 

two farm sizes were provided by Michelin, North America Inc., (M. Pantaleo, Personal 

communication,  20 March 2019) and Michelin, UK (G. Brooks, Personal communication, 

12 March 2019). Tyre costs required for these two farms were given in Appendices 7.1 – 

7.2. 

4) Tyre life expectancy was considered as 5 years (M. Pantaleo, Personal communication, 

20 March 2019). A recent report showed that the longevity of Michelin Ultraflex tyres in 

the farmers’ field was 9,500 hours (Tillage & Soils, 2020). The news also highlighted that 

the tyre life may last even longer period with the benefits from a large footprint aiming at 

reducing soil compaction and rut formation. 

5) The annual mean prices of grains i.e. maize and soybean in 2018 in Illinois of the United 

States were taken from the farmdocdaily news journal. The prices were @ US$ 142.00 
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Mg-1 ($US 3.60 Bu.-1) and 323 Mg-1 ($US 8.80 Bu.-1) for maize and soybean respectively 

(Schnitkey and Swanson, 2019). 

6) Seed, fertilizer, herbicides, labour, tillage, fuel use, machinery depreciation, repair and 

overhead costs were assumed equal for both tyre inflation pressure treatments as these 

were applied equally to both tyre systems for each type of tillage. Straight-line method 

was used to measure depreciation cost for the two tyre systems. 

7) The mean of each rotation years assuming, typically, equal areas of maize and soybean 

(50:50) as suggested by Melvin (S. W. Melvin, Personal communication, 20 December 

2018)4 was also calculated. 

The economic component mainly total difference in tyre spend (Standard vs. Ultraflex tyres), the 

annual value of crops, yield increase/decrease, annual earnings increase over the tyre life and 

payback period were calculated for maize and soybean production using equations of 7.1 to 7.5. 

Difference in tyre spend 

(US$ha
-1

) = Total cost  for the Ultraflex tyres - Total cost for the standard tyre                           [7.1] 

 

GVC for STP or LTP = {
(FS×GYM ×PM)+(FS×GYS ×PS) 

2
}                                                         [7.2] 

 

AE increase / decrease (US$ ha
-1

) = (GVC in STP × Percent yield (+/-) in LTP) - 

{
Difference in tyre spend (US$ ha

-1
)

Tyre life (5 years)
}                                                                                                [7.3] 

 

Total income over the tyre life (US$ ha
-1

) = AE increase × Tyre life (5 years)                      [7.4] 

 

 
4 Dr. Stewart W. Melvin, Farmer and Consultation, Currie-Wille & Associates, Ames, Iowa and Emeritus 
Professor of Agricultural Engineering, Iowa State University, Ames, IA. 
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Payback period =  
Difference in GVC between LTP and STP (US$ ha

-1
)

Differences in tyre spend (US$ ha
-1

)
                                 [7.5] 

Where, 

TC = Total cost ($US/farm) 

GVC = Gross value of crops ($US/farm) 

FS = Farm size (ha) 

GYM = Grain yield of maize (Mg ha-1) 

GYS = Grain yield of soybean (Mg ha-1) 

PM = Unit price of maize ($US Mg-1) 

PS = Unit price of soybean ($US Mg-1) 

AE = Annual Earnings 

The experimental data mainly grain yield was processed for the economic analysis in term of 

annual cost difference, annual earnings increase or decrease, the payback period for LTP 

treatment over STP treatment for the maize and soybean production systems. Grain yields of 

both crops were analysed using Genstat statistical software18th Edition (VSN International, 

2015). Economic analysis was conducted by Microsoft Excel 2016 spreadsheet provided by 

Michelin, UK (G. Brooks, Personal communication, 12 March 2019) (Appendices 7.3 and 7.4).  

7.5. Results and Discussion 

7.5.1. Grain Yields of Crops in the Cropping Systems 

Two years mean yield data showed that the grain yield of maize was 3.52% higher in low tyre 

inflation pressure systems (14.58 Mg ha-1) as compared to standard tyre inflation tyre system 

(14.08 Mg ha-1). Similar to maize, the two years mean grain yield of soybean was 1.35 % higher 

in low tyre inflation pressure system (4.49 Mg ha-1) than standard tyre inflation tyre system (4.43 

Mg ha-1) (Table 7.1 and 7.2). 
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Table 7.1. Effect of standard (STP) and low (LTP) tyre inflation pressure on the grain yield of 

maize and soybean for 2 years cropping systems 

Year Crop/ 
Treatments* 

Grain yield (Mg ha-1) Yield difference 
(LTP-STP) 
(Mg ha-1) 

Yield increase in 
LTP over STP 
(%) STP LTP 

2017 Maize 14.40a 15.02b 0.62 4.31 
2018 Maize 13.76a 14.13b 0.37 2.69 
      

2017 Soybean 4.76a 4.73a -0.03 -0.63 
2018 Soybean 4.10a 4.25b 0.15 3.66 
      

2-y mean Maize 14.08 14.58 0.495 3.52 
2-y mean Soybean 4.43 4.49 0.06 1.35 

 
Note: STP and LTP represent the standard and low tyre inflation pressure, respectively. Means 

with the same letter in a row are not significantly different (P = 0.05) from each other. 
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Table 7.2. Effect of tyre inflation pressure and tillage system on the grain yield of maize and soybean for 2 years cropping systems 

(% differences between LTP and STP) 

Year Crops† Grain yield (Mg ha-1) 
 

Yield difference 
(Mg ha-1) 

Yield increase in 
LTP (%) over STP 

STP LTP 

DT ST NT Mean DT ST NT Mean DT ST NT DT ST NT 

2017 Maize 14.53a 14.30a 14.36a 14.40A 15.27a 15.10a 14.67a 15.02B 0.74 0.80 0.31 5.09 5.59 2.16 
2018 Maize 14.87a 13.81a 12.59a 13.76A 15.35a 14.15a 12.88a 14.13B 0.48 0.34 0.29 3.23 2.46 2.30 
                

2017 Soybean 4.87a 4.74a 4.67a 4.76a 4.85a 4.72 a 4.63a 4.73a -0.02 -0.02 -0.04 -0.41 -0.42 -0.86 
2018 Soybean 3.97a 4.20ab 4.14ab 4.10a 4.29ab 4.12ab 4.35b 4.25b 0.32 -0.08 0.21 8.06 -1.90 5.07 

                
2-year 
mean 

Maize 14.70 14.06 13.48 14.08 15.31 14.63 13.78 14.58 0.61 0.57 0.30 4.15 4.06 2.23 
Soybean 4.42 4.47 4.41 4.43 4.57 4.42 4.49 4.49 0.15 -0.05 0.09 3.39 -1.12 1.93 

 
Note: STP, LTP, DT, ST and NT represent the standard and low tyre inflation pressure, deep tillage, shallow tillage and no–till, 

respectively. Means with the same letter (capital and small letters are for tyre inflation pressure and interaction with tillage system, 

respectively) in a row are not significantly different (P = 0.05) from each other.  
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7.5.2. Annual Cost of Different Tyre System for Typical Farms 

The 5 year total and annual costs of LTP and STP systems and their differences for the 200 ha 

and 809 ha farms are given in Figs. 7.1 and 7.2 and Appendices 7.2 and 7.3. Fig. 7.1 shows 

that for a 200 ha of a farm, the total cost of using Ultraflex tyre was increased by 23.8% (US$ 

8,200.00) than that of the standard tyre. Likewise, the total cost for an 809 ha of typical Illinois 

farm using Ultraflex tyre was 20.1% higher as compared to the cost of the standard tyre system. 

The annual costs increased due to the use of Ultraflex tyres were US$ 1640 and $3400 for the 

farm of 200 and 809 ha, respectively (Fig. 7.2a). Thus, the annual per ha cost was US$ 4.20 for 

the 809 ha farm which was almost 50% less than the annual cost per ha (US$8.10) required for 

200 ha farm (Fig. 7.2b).  

 

 
 

Figure 7.1. Total (5 years) cost involved for standard and Ultraflex tyre systems for 200 and 809 

ha farms. 
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Figure 7.2. Annual (a) and per ha tyre (b) costs using Ultraflex tyre system for 200 and 809 ha 

of Illinois Farms. 

7.5.3. Annual Increase  

The results from the spreadsheet analysis (Appendix 7.1 and 7.2) for the annual earnings 

increase for 200 ha and 809 ha farms using LTP system over STP system are presented in 

Figs. 7.3 and 7.4. Also shown (hatched bar) is the mean value for the 2 years 2 crop rotation for 

each of the tillage systems and the grand mean. The grand mean is of little value to an 

individual farm, as few farms will have equal areas of maize and soybean split with equal areas 

of 3 tillage systems. It is of value when comparing the economics of the two different farm sizes 

and their machine systems.  

The results show that the annual earnings of both farms were higher for maize than soybean, 

reflecting the current low soybean price. The annual and per ha earnings for the 200 ha farm 

were found to be more using Ultraflex tyre for deep tillage system. The mean annual earnings of 

maize and soybean rotation were recorded as highest in deep tillage system (US$ 11867) and 

the lowest earnings were obtained in shallow tillage (US$ 4839). However, irrespective of the 

tillage system, the mean total and per ha of annual earnings were found US$ 7357 and US$37, 

respectively (Fig. 7.3). 
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Total annual earnings and annual earnings per ha for the 809 ha farm, followed a similar trend 

as that of 200 ha farm. Mean of maize and soybean rotation using Utraflex tyre system showed 

that annual earnings were found to be highest in the deep tillage system (US$ 51163) while the 

lowest earnings were obtained in the shallow tillage system (US$ 22808), which was marginally 

lower than no-till system (US$ 24937). The mean total earnings for the three tillage practices 

using the Ultraflex tyre system increased by US$ 32969 (Fig. 7.4). The overall per ha mean 

annual earnings was of US$ 41, which was close to that of a 200 ha farm meaning that the per 

ha annual earnings vary with farm sizes. Thus, it can be said that the mean benefit ha-1 for both 

farm sizes is close; namely $37 ha-1 and $41 ha-1 for the 200 ha and 809 ha farms, respectively. 

 

 

Figure 7.3. Annual earnings increase for a 200 ha farm. 
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Figure 7.4. Annual earnings increase for an 809 ha farm. 

7.5.4. Payback Period 

The payback period for using Ultraflex tyres as compared to the standard tyres for the 200 and 

809 ha farms are shown in Fig. 7.5. These results show that payback period for the three tillage 

systems and two farm sizes was less than two years, ranging from 0.31 years for the deep 

tillage system on the bigger farm to 1.27 years for the shallow tillage system on the smaller 

farm. Both farm sizes follow a similar trend for the different tillage systems, with the ratios for the 

809 ha farm being in excess of twice the ratio of the smaller farm.  
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Figure 7.5. Payback period of using reduced tyre inflation pressure systems for two sizes of 

farms. 

7.6. Conclusions 

1) The total cost increase of using Ultraflex tyre system for the 200 and 809 ha farms was 

the US $ 8200 and $ 17000 respectively, hence assuming a 5 years tyre life, the 

annual costs increased by the US $ 1640 and $ 3400, respectively. 

2) Despite the small reduction in soybean yield for all tillage systems in 2017 and the 

reduction in soybean yield for the shallow tillage system in 2018, there was an 

increase in the mean annual earnings of the maize and soybean cropping rotation for 

all tillage systems using Ultraflex as compared to standard tyre systems. The mean 

annual benefit using Ultraflex tyre systems for the 200 and 809 ha farms were US$ 

7357 and US$ 32969, respectively.  

3) The mean economic benefit for all tillage systems for the two farm sizes was similar 

close at $37 and $41 ha-1. This is valuable as it means that with careful selection of 

equipment and tyres it is possible to achieve financial benefit from Ultraflex tyres, 

across farm size. 
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4) The payback period for the three tillage systems and two farm sizes were less than 

two years, ranging from 0.31 years for the deep tillage system on the bigger farm to 

1.27 years for the shallow tillage system on the smaller farm. This indicates that 

investment in reduced tyre inflation pressure systems is economically profitable for 

many farmers. 
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CHAPTER 8: DISCUSSION 

The present three-years (2016 – 2018) field-scale study was implemented to determine the 

effects of Ultraflex tyres operating at low and standard tyre inflation pressure modes on soil 

properties, crop growth and yield in a maize/soybean rotation for three tillage systems (DT, 

450mm; ST, 100mm and NT) in Champaign County, Illinois, USA. A novel tool X-Ray Computed 

Tomography was used to investigate their effects on soil pore structural characteristics with high 

resolution (98 µm) of undisturbed soil core in 2017. Summary results of the effects of tyre 

inflation pressures and tillage systems on soil properties, growth and yield of crops are shown in 

Table 8.1 - 8.4. 

8.1. Initial Soil Properties Assessment 

Soils in good physical condition (e.g. loose, moist, and well-aerated with well-connected 

macropores) allows roots to grow unimpeded (Lal, 1996). Physical properties of soils have a 

definite deterministic effect on crop growth and yield (Cassel and Lal, 1992). These properties 

can be strongly influenced by management practices (Abawi and Widmer, 2000). Soil 

heterogeneity increases the chance of eliminating any positive effect of the applied 

treatments/managements if resources are limited. Given the current interest, the preliminary 

assessment of soils was conducted in the two experimental fields. The results showed that 

there was no such heterogeneity in the soil physical and chemical properties between the two 

fields. Soil moisture strongly affects the relationship between soil texture and the susceptibility 

of soils to compaction (Domżał et al., 1991). Initial soil MC (%) in 2016 in both fields indicates 

that the fields were at field capacity condition. The increased total porosity of soil (approximately 

53%) and dry BD (<1.40 Mg m-3) and PR of soil (<1.30 MPa) in both fields were lower than the 

threshold values of BD (> 1.40  Mg m-3) (USDA NRCS, 2019d) and PR of soil (<2.0 MPa) 

(Hamza and Anderson, 2005). This indicates that the experimental fields were well-structured 

with no residual soil compaction. The organic matter status (3.39-3.41%), soil pH and CEC of 

soils in both fields were aligned with the findings of USDA (USDA NRCS, 2015b). Soil nutrients 

of both fields were also similar or slightly lower than the earlier results found for Illinois soils 

(Fernández et al., 2012). Overall, the preliminary studies indicate that the experimental sites 

were relatively uniform with no underlying compaction prevailing from the previous cropping 

season.  
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8.2. Effect of Tyre Inflation Pressure and Tillage Systems on Soil Pore Structural 

Properties: X-ray Computed Tomography 

Soil pore structure changes with the induced soil management practices, e.g. land-use change, 

tillage, vehicle traffic, and fertilization (Schäffer et al., 2007; Lu et al., 2019). The changes of 

pore structure are likely to affect the soil aggregation, aeration, water retention, soil microbes 

and crop root growth (Papadopoulos et al., 2009; Ananyeva et al., 2013; Dal Ferro et al., 2014). 

X-ray computed tomography is a non-invasive technique that allows the study of morphological 

properties of the soil structure (Galdos et al., 2019; Pires et al., 2020). The X-ray CT scanned 

images of soil cores of this study showed a visible difference in the soil structure between the 

effects of the two tyre inflation pressure treatments, which is in agreement with the findings of 

Kooistra and Tovey (1994). However, the more compacted conditions for the HT location in STP 

system might be evidence of possible re-compaction after tillage, while the open structure with 

some cracks and pore spaces are more prominent in the LTP, which is in agreement with the 

results of the study by Millington (2019).  

The results show that the pore system of the silty clay loam soil was influenced by the tyre 

inflation pressure (Table 8.1), where as expected, the LTP system maintained a  higher CT 

measured macroporosity, number of pores and pore area than the STP treatment. This is 

mainly associated with the changes/damages in the soil structure especially at greater depths of 

soils under STP treatments and thus affects the larger pores and voids between soil particles 

and aggregates (Berisso et al., 2012). Schäffer et al. (2007) reported that compaction distinctly 

affects the macropore size and it’s distribution in the soil that results in a decrease in porosity 

and connectivity of the macropores. Due to similar reasons, the heavily trafficked location/zone 

had a lower mean CTp and number of pores than un-trafficked location/zone. Millington (2019), 

assessing differences in STP and LTP in a sandy loam soil in the UK, observed a decrease in 

CTp and macropore in STP compared to the LTP. Conversely, the higher pore area in the LTP 

treatment than the STP, and UT location than the HT further demonstrate that soils in STP 

treatments and HT locations were highly compressed, especially in the lower strata of soils. 

Soane et al. (1986) reported that soil under deep tilled has less strength to support field 

trafficking, which increases susceptibility to re-compaction of soil. The greater differences at the 

deeper depths in this study may be due to the possibility of re-compaction or subsoil compaction 

caused by tillage with an STP tyre system (Millington, 2019).  
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Pore size distribution in soil affects the growth of the plant (Cary and Hayden, 1973). It helps to 

describe the complexity of soil structure between treatments over percentage porosity (Nimmo, 

2013). Tyre inflation pressures and tillage systems were less likely to influence the pore size 

and cumulative frequency of pore size distribution. However, the average size of pores was 

higher in the lower strata of soil. A nonsignificant greater pore size distribution cumulative 

frequency in tilled soil as compared to NT are in agreement with the findings of both 

Mangalassery et al. (2014) and Millington (2019). The earlier, reported that the size of pores in 

tilled soil was higher (0.52 mm2) compared to no-tilled soils (0.27 mm2) (Mangalassery et al., 

2014). The overall pore size, perimeter, circularity, and solidity of pores in the LTP treatments 

show no marked difference compared with the STP treatments. Higher pore perimeter and 

circularity of pores in un-trafficked zones/location could be due to better soil aggregation, root 

activity and soil fauna than the heavily trafficked zone as explained (Rachman et al., 2005). It is 

also seen that the average size of pores, pore perimeter and circularity were proportional to soil 

depth. The circularity and solidity of pore were greater in the lower layer of soils (180-300 mm). 

These results are partially in accordance with the findings of Li et al. (2016), who found that 

larger the pores, the smaller the tendency of the pores to be circular. Rachman et al. (2005) 

reported that circularity of pores tended to be more in the deeper soil compared to a shallow 

depth which is partially in agreement to the present study. Pore circularity is important because 

it facilitates water transport in the soils (Yang et al., 2018).  

The classical soil physical properties of the soil from the data collected in 2017 showed that the 

lower dry BD and PR of soil at depths 50 - 325 mm, and greater total porosities of soil were 

associated in the LTP treatments as compared to the STP treatments of HT locations (Figs. 

4.43-4.45 and Table 8.2). These results further indicate that higher stress on soils due to STP 

tyre system caused a prominent soil structural change than the LTP. The findings are confirmed 

with the report that field trafficking with low pressure tyres significantly decreased soil 

compaction (Boguzas and Hakansson, 2001; Ridge, 2002). Similar findings were also reported 

by Whalley et al. (2008). They found that the application of stress on soil caused compaction of 

soil that in turn, resulted in an increase in BD, PR, and shear strength of the soil. Therefore, the 

three key pore parameters: the number of pores, CTP and pore area were substantially reduced 

in the STP system. The presence of higher CT measured macroporosity under LTP treatments 

could also reduce the stress from the entrapped air and volumetric change within the pore 

system  (Lu et al., 2019). 
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X-ray CT scanned images due to its resolution (98 µm) provides macroporosities of soil which 

generally led to an underestimate of porosity. Vaz et al. (2011) reported that even though 

scanning of soil with high resolution of 3.7 µm, CT measured porosity vastly underestimated the 

physically measured porosity of the soil. Studies are scarce about the relationship or any link 

between CTP to total porosity of the soil. The X-ray CT technique allowed determining the total 

porosity of soil by comparing CTP of tyre inflation pressure treatment means to porosities 

derived from BD measurements. The difference between BDP and CTP is constant (39±2.87%). 

The constant could be added to the CTP to provide the total porosity for a silty clay loam soil 

which partially corresponds to water-filled pore space for a silty clay loam soil as shown (Hall et 

al., 1977). The constant is in accordance with the report of Millington (2019), who found a value 

of 31% that was corresponded to the water-filled pore space for a sandy clay loam soils in the 

UK. However, the constant depends on soil type, the soil damage resulting from the collection of 

the so-called “undisturbed” soil cores, CT scanning resolution and the thresholding method. 

Nevertheless, the constant (39%) can be correlated and well fitted with the air-filled porosity at 

field capacity for silty clay loam soil as identified by others (Godwin and Dresser, 2003; Brady 

and Weil, 2008).  The study would suggest that X-ray CT technique can be useful to determine 

macroporosity, pore connectivity, pore size distribution and other pore characteristics of the soil. 

These are valuable, particularly for soil aeration, nutrition exploration, nutrient cycling and 

distribution to plants, root growth, soil gas fluxes and water dynamics (Allaire-Leung et al., 2000; 

Mooney, 2006; Antille et al., 2015; Galdos et al., 2019). Further study is needed with higher CT 

resolution to harness the relationship between CTP and field capacity porosity for other soil 

textures. 

8.3. Effect of Tyre Inflation Pressure and Tillage Systems on Soil Physical 

Properties 

The relationship between soil texture and susceptibility to compaction depends on soil moisture 

(Domżał et al., 1991). Volumetric soil MC data had shown a non-significant effect between the 

LTP and STP treatments in both 2017 and 2018. The soil MC ranged between 31% - 34% 

corresponds to the upper limit of the field capacity range for a silt loam to clay loam soil as 

indicated by Ward and Robinson (2000). The non-significant effect of traffic and tillage on soil 

MC during penetrometer data measurements also agree with the results of Botta et al. (2007) 

and Smith (2016).  
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Field trafficking under different tyre inflation pressures treatments increased the soil resistance 

in all years from 2016 - 2018 in comparison to the initial PR of soil (Table 8.2). However, the PR 

values of soil were found higher in the STP treatments as compared to the LTP treatments in 

2016, 2007 and 2018 for the maize fields (Figs. 4.45a, 5.3a-b, 5.7a-b and Appendix 4.6) and in 

2018 for the soybean field (Figs. 6.7a-b). These observations indicate that the soil density and 

soil penetrometer resistance was greater due to compaction of soil under STP treatments than 

in the LTP treatments, and is in agreement with the findings of Soane et al. (1982). The results 

confirm the research results that show that field trafficking with high tyre inflation pressure 

increases soil BD and PR of soil (Raper and Kirby, 2006; Hula et al., 2009; Hamza et al., 2011). 

The effect of compacting load increases the BD and thus reduces void ratio and porosity of soil 

(Keller, 2004), which is in agreement with the present results. However, the presence of higher 

soil moisture may be the reason for the lack of a significant difference between tyre inflation 

pressures on PR of soil at 35-40 DAP both in maize and soybean fields in 2017. Nonetheless, 

lower stress and decreased compaction of soil under LTP treatments may be the reasons of 

reduced dry BD and increased in total porosity of soil than in the STP systems after harvest of 

maize in 2017, which are in agreement with Soane et al. (1982), Boguzas and Hakansson 

(2001) and Ridge (2002). Similar to BD, lower PR values of soil from soil depths of 50 mm to 

225 mm are mainly related to the more uniformly distributed contact stresses on soils under the 

LTP treatments and are in agreement with the findings of Koolen et. al. (1992). The application 

of load and high tyre inflation pressure by machinery traffic caused cracks and reduced voids on 

arable soils (Kooistra and Tovey, 1994) and increased BD in soil (Keller, 2004). Therefore, it is 

evident that LTP treatments able to maintain soil porosity by reducing soil PR than STP 

treatments. Similar findings were also found in the work of Hamza and Anderson (2005), who 

reported that compaction of soil causes degradation in soil structure that results in a reduction in 

pore size, pore area and percentage porosity of the soil. 

Among tillage systems, higher PR values in the NT system throughout the soil depth in 2017 

and up to 75 mm depth in 2018 as compared to ST and DT systems plots maybe because of 

these plots were not tilled. Consequently, soils in the NT treatment are more dense, especially 0 

to 100 mm layer of soil (P =<0.001), which is in agreement with the findings of Cantero-Martinez 

and Lampurlanes (2003). Yet, the trend of PR among the tillage systems in soybean fields was 

similar to the maize fields both in 2017 (P = 0.04) and 2018 (P = 0.06). Poor soil structure in the 

NT system without having diverse crop rotation as reported (Munkholm et al., 2013) may be one 

of the reasons for higher PR and BD in the NT soil. PR of soil in DT (depth, 150-200mm) and 
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ST (depth, 50-100 mm) was also reported to be lower than the traffic zone and NT (Etana et al., 

2020). BD measurements of soil in the maize field in 2017 further confirmed that higher BD of 

soil adversely affected the total porosity in the NT system than DT and ST systems (Table 8.2). 

The increase in BD caused a reduction of soil aeration which might cause undesirable changes 

the pore size distribution in the NT system (Fageria, 1992). Galdos et al. (2019), assessing 

differences between NT and DT (Conventional tillage) in a Rhodudalf clay soil, in Brazil, showed 

that soil under long-term NT had higher BD and lower porosity as compared to the DT.  

Vehicle traffic and multiple passes caused compaction that resulted in increased soil strength 

and penetration resistance of soil (Soane et al., 1982; Raghavan et al., 1990; Hula et al., 2009; 

Hamza et al., 2011). Therefore, irrespective of tyre inflation pressure and tillage systems, as 

expected; the HT treatment had a significantly higher PR of soil at 35-40 DAP in both maize and 

soybean fields than the UT treatment in 2016. As can be seen, the PR of soil in HT locations 

was also increased after the harvest of maize in 2017 and a peaked strength indicated by PR 

was notably absent in UT locations. These findings are confirmed with the results of Chamen 

(2011) and Etana et al. (2020). Due to similar reasons heavily trafficked CR3 and CR1 had 

higher PR values of soil in 2017 and 2018 as compared to the UT zone/inter-row of 4 and 5 of 

both crops field. This is mainly because of the maximum amount of wheel traffic which was 

observed near to the CR3 and additional compaction that was applied to the CR3 and CR1. The 

results also showed that PR values of soil in heavily trafficked zones/locations/crop rows 

increased with a decrease in soil MC (Cassel and Lal, 1992). Etana et al. (2020), assessing the 

differences between trafficked and un-trafficked zones, observed higher soil strength in traffic 

zones as compared to the un-trafficked or less trafficked crop zones. The findings also match 

the data from Solgi et al. (2016) which showed that traffic frequency and tyre inflation pressure 

caused adverse effects on the soil condition, increasing soil strength, BD and PR of soil (Table 

8.2).  

In summary, it can arguably be said that field trafficking under standard tyre inflation pressure 

treatments markedly change the soil and pore structures and soil aggregates. The no-till system 

in general and heavily trafficked zones/crop rows deteriorate soil structure as measured by 

higher BD and PR of soil. The combination of tyre inflation pressure and tillage system is likely 

to have a less significant effect on soil properties. Overall, the above results are in line that soil 

compaction is demonstrated by a decrease in the total and air-filled porosity and soil volume 

and as a result, it causes deterioration of soil functions (Liebig et al., 1993; Li et al., 2001; Huber 

et al., 2008). Further work is required to explore the effect of soil compaction of each vehicle 
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pass during the crop growing season and its relationship with weather conditions. The effects of 

compaction in early crop growth, flowering and fruiting stages and the corresponding effects on 

root growth, crop development and yield are worthy of further investigation in other soil textures.  

8.4. Effect of Tyre Inflation Pressure and Tillage Systems on Growth and Yield of 

Crops 

The agronomic results show that tyre inflation pressure influenced the growth and yield of 

maize. Comparing the STP treatments, the LTP treatments had increased the plant 

establishment (%) and the number of plant ha-1 in 2016 and 2018 and plant height in 2017 and 

2018 (Table 8.3). The number of plants is a determining factor for the higher yield of maize that 

was consistently shown over the last 7 decades (Duvick and Cassman, 1999). Although, high 

population density adversely affect the yield of maize (Tokatlidis and Koutroubas, 2004), 

however, optimum plant population due to its contribution on yield is considered as one of the 

seven wonders of maize world (Below, 2008). Deformation and compression of soil (Berisso et 

al., 2013) may be one of the reasons under STP treatments that resulted in reduced porosity 

and hydraulic properties (Alakukku, 1996a; b), which in turn, caused an adverse effect on crop 

growth and yield of maize compared to the LTP treatments. Shreds of evidence of such 

situations in the STP treatments are higher dry BD in 2017 and PR of soil in 2017 and 2018 

than LTP treatments. Thus, it is evident that the increased plant height in 2017 and 2018 and 

plant establishment (%) and the number of plants ha-1 in 2018 led to significant yield benefits for 

the LTP treatments of 4.31% and 2.70% over those of the STP treatments in 2017 and 2018, 

respectively. The results are in agreement with the findings that soil compaction causes 

negative impacts on soil properties and crop performance (Horn et al., 2003; Chyba, 2012) as it 

increases dry BD of soil and reduces pore size, restricts root growth and accessibility of 

nutrients (Nawaz et al., 2013). Larger macroporosity is beneficial to water transmission and 

substance exchange in soils (Lu et al., 2019), therefore, the higher CT derived macroporosity 

and total porosity of the soil, for an e.g. in 2017 in the LTP treatments should lead to improved 

air and water movement in the soils which in turn, should have an advantage to the growth and 

yield of maize. The results are in agreement with the findings that repeated traffic with high 

contact pressures caused 40–50% yield reductions of maize (Raghavan et al., 1979b). In Ohio, 

reductions in yield by 25% in maize due to compaction of soils was reported over seven years 

(Lal, 1996). These results are in agreement with McKyes et al. (1979 and Negi et al., 1981) who 

demonstrated that increases in BD and PR of the soil decreased the maize yield.  
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Among tillage systems, NT system in 2017 had a marginally higher number of plant ha-1 than 

others. However, with time, some plants were found dried up due to lower available soil 

moisture at times of low precipitation (Fig. 3.10). This was partially reflected by the slightly lower 

1000 grain weight of maize in the NT treatment than ST and DT treatments. Lower BD and PR 

in the upper soil layers in DT treatment indicate that the soil in DT was well aerated and had a 

good structure, which might have a beneficial effect on maize both in 2017 and 2018, especially 

in later stages of maize growth in both years. However, increased plant height and ear height, 

and greater ear length (resulting in more kernels) and 1000 grain/kernel weight in DT as 

compared to ST and NT systems might be evidenced of positive crop response of maize and 

hence, increased grain yield in 2018. Yield is a function of kernel number and kernel weight 

while the number of kernels per ear is a function of ear length and kernel rows per ear (Subedi 

and Ma, 2005; Iowa State University, 2020). Thus, it is evident that greater ear length and 1000 

grain weight enhanced the grain yield of maize in 2018. The results are supported by the 

findings that favourable structure of the soil in the upper layer had the greatest influence on 

yield (Seehusen et al., 2014). Soil compaction due to higher soil BD in the upper 0-50 mm soil 

strata caused a reduction in biomass, possibly through the increased impedance of root 

penetration (Wolkowski, 1990). 

Irrespective of tyre inflation pressure and tillage systems, increased PR values of soil were 

associated with the heavily trafficked CR3 and CR1 in 2017 and 2018. This might be due to the 

increase in wheel traffic and additional compaction which in turn reduced soil MC and increased 

soil resistance (Kaspar et al., 2001; Etana et al., 2020). Consequently, plant height in 2017 and 

1000 grain weight in 2017 and 2018, and grain yield in 2018 were decreased in highly trafficked 

CR1 and CR3 compared to some but not all un-trafficked and less trafficked crop rows. The 

results partially agree with Hamlett et al. (1990) who found that the trafficked crop row had a 

higher soil strength than the un-trafficked crop rows. However, Reeves et al. (1992) reported 

that the lack of yield response of maize to the wheel trafficked inter-rows could be compensated 

due to the positive effect of the un-trafficked crop rows.  

Conversely, for soybean, responses of growth and yield varied across years (Table 8.4). 

Comparing with STP treatments, the LTP treatments had a higher plant establishment and the 

number of plant ha-1 in 2018. These determining factors might be led to an enhanced biomass 

and grain yield of soybean in 2018 (Van roekel and Purcell, 2016). Well structured soils 

characterised with low BD and low PR and well aeration disrupt due to compaction of soil 

(Chamen, 2011) and thus, the increased PR of soil under STP treatment may be the evidence 
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of causing compaction which had an adverse effect on soil structure and soybean crop 

performance. The favourable structure of the soil as measured by decreased PR under LTP 

treatments resulted in a 3.70% yield increase of soybean compared to the STP treatments. 

These results confirmed with the findings of Busscher et al. (2000), who found that a 1 MPa PR 

decrease in the mean soil profile enhance the yield of soybean by 1.5 Mg ha-1. Similar results on 

a fine clay soil were also reported by Botta et al. (2010). Farm equipment under LTP treatments 

may spread the weight on soil and increase the contact area, resulting in a larger footprint that 

reduces the compaction of soils (Raper, 2005; Michelin, 2017). Nonetheless, a reason for the 

lack of response of grain yield in 2017 in LTP treatments could be because of the partial dry 

season. Comparing 2016 and 2018, the year 2017 had decreased precipitation and increased 

temperatures (Fig. 3.10). Therefore, growth and yield of soybean possibly equally respond to 

both treatments due to moderately dry year (Yang et al., 2003). The effect of compaction was 

also reported to be lower in soybean in a dry year than maize, however, root growth of soybean 

reduced in the dry year (Buttery et al., 1998). Another reason could be that the soybean plant 

may be slightly more tolerant to compaction, agreeing with the report found in a Kentucky soil by 

Schwab et al. (2004). Therefore, the response of soybean to the soils under the STP treatments 

was observed in the 3rd year of this experiment. 

Contrarily, the lower soil PR in the 0-50 mm depths in the DT in 2017 could be the reason for 

the enhanced number of plant ha-1 of soybean than ST and NT systems. As the number of 

plants is a determining factor, it played a significant role in increasing the grain yield of soybean 

in DT over that other tillage system (Van roekel and Purcell, 2016). The findings agree with the 

report that higher soil dry BD in the upper 0-50 mm soil strata caused a reduction in yield in the 

NT treatments, possibly through the increased impedance of root penetration (Wolkowski, 

1990). The results are in agreement with the findings that deep tillage for high strength soil 

management led to 0.36 Mg ha-1 higher grain yield of soybean than non-deep tilled soil 

(Busscher et al., 2006). The results also align with the results of Seehusen et al. (2014) who 

found that a favourable soil structure at the upper strata of soil had a great influence on crop 

yield. Similar to maize increased soil strength as measured by PR of soil and reduced soil MC 

(%) in the trafficked crop rows compared to un-trafficked and less traffic rows (Kaspar et al., 

2001; Etana et al., 2020), in general, caused adverse effects on the growth of soybean in 2017 

and 2018. However, the trafficked and less trafficked crop rows are less likely to have a 

significant effect on the yield of soybean in both years. 
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Soane et al. (1980b) suggested that soil compaction resulted from high tyre contact pressure 

and low soil strength which was confirmed by Hula et al. (2009) who demonstrated that soil 

compaction had an adverse effect on soil properties and crop growth and yield. Nawaz et al. 

(2013) outlined that increased soil strength as measured by BD restricted root growth and 

accessibility of nutrients to plants. Overall, the present study showed that field trafficking under 

STP system is likely to affect the soil properties and growth and yield of crops. However, its 

effect would vary with the season due to moisture differences in soils.  

The literature showed that soils with a PR >2 MPa can limit root growth and causes a reduction 

in crop yield (e.g.Hamza & Anderson, 2005). In the present study, the profile mean PR of soil in 

2016 and 2018 were >2 MPa in both the STP and LTP treatments. However, there were no 

significant effects between tyre inflation pressure treatments on crop growth and yield in 2016 

while in 2018 it was evident. In 2017, the PR of soil in both STP and LTP treatment plots was < 

2 MPa (STP>LTP). However, the STP treatments had shown an adverse effect on maize yield 

while it was less likely to affect the growth and yield of soybean. Since both tyre inflation 

pressure treatments received the equal amounts of seed, fertilizer (maize) and care, it can be 

assumed that not always in all environment circumstances soil resistance >2.0 MPa can affect 

crop growth and yield. Rather, PR of soil depends on soil texture, soil and weather conditions 

especially timing and amounts of precipitation, size and weight of machinery and tyre inflation 

pressure  (Wolfe et al., 1995; Eliasson, 2005; Sakai et al., 2008). In the paper by Carter and 

Tavernetti (1968), it is shown that soils with a resistance of <2 MPa even reduce crop yield. It is 

also observed that soil resistance as low as 1.6 MPa (measured range 1.6–2.9 MPa) adversely 

affected the crop growth but did not show any yield penalty (Kulkarni et al., 2010).  

In summary, the benefit of the use of low inflation pressure tyres over standard pressure tyres 

are in helping to maintain soil porosity and to reduce soil damage (Hamza and Anderson (2005), 

to reduce compaction of soils as it spread the weight of farm machinery and increases the 

contact area with a larger footprint  (Raper, 2005; Ansorge and Godwin, 2007), and eventually 

enhances crop growth and yield (Hamza and Anderson, 2005; Godwin et al., 2015; Millington, 

2019). The study helped to identify the possible reasons behind the soil structural changes and 

crop response under field trafficking under different tyre inflation pressure and tillage systems. 

However, further work is required to explore the effect of compaction on root growth, root 

architecture, and development and the changes in crop physiology that results from the effects 

of compaction.  
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8.5. Economic Analysis of the Maize - Soybean Rotation 

The economic analysis of the present two-year (four crop seasons) maize/soybean rotation 

excluding the preliminary trial/pilot season showed that the total cost of using Ultraflex tyre was 

20.10% and 23.84% more than the cost of the standard tyre system for the two typical 200 and 

809 ha farms respectively. Nonetheless, the annual earnings of using low tyre inflation tyre 

increased approximately $37 and $41 ha-1 for the 200 and 809 ha of farms, respectively as 

compared to the cost of the standard tyre system. Focusing on the payback period for the three 

tillage systems and two farms sizes, the low inflation pressure tyre systems i.e. Ultraflex tyre 

was found to be economically profitable. The use of low pressure tyres was reported to be 

advantageous over standard inflation pressure tyres agreeing with the results of Vermeulen and 

Perdok (1994). The results are also in agreement with the findings that the use of low inflation 

pressure field traffic systems reduces the incidence of soil compaction and has potential positive 

effects on farm economic profitability (Tijink et al., 1995). Reducing soil compaction, rolling 

resistance (40%) and less fuel use, the low tyre inflation pressure system clearly showed a 

financial advantage (Stranks, 2006) by increasing crop yield (Smith et al., 2014b; Millington, 

2019) and farm income.   
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Table 8.1. Summary table of the effect of different treatments on pore parameters at 5 different depths of soil in 2017 

Treatmentsa HT Locationb # Obs./ 
mean (n)c 

HT and UT Locationsb # Obs/ 
mean 
(n)c 

NoP CTP TA APS Perim. Cir. Sol. NoP CTP TA APS Perim. Cir. Sol. 

TIP * ** ** ns ns ns ns 75 ns (P=0.10) ** ** ns ns ns ns 150 
TIP*D ** ** ** ns ns ns ns 15 ns ns ns ns (P=0.10) ns ns ns 30 
TS ns ns ns ns ns ns ns 50 ns ns ns ns ns ns ns 100 
TS*D ns ns ns ns ns ns ns 10 ns ns ns ns ns ns ns 20 
TIP*TS * ns ns ns ns ns ns 25 ns ns ns ns ns ns ns 50 
TIP*TS*D * ns ns ns ns ns ns 5 ns (P=0.06) ns ns ns ns ns ns 10 
D-Depth *** *** *** *** ** *** *** 30 *** *** *** *** *** *** *** 60 

TL - - - - - - - - *** *** *** ns ns ns (P=0.10) * 150 
TL*D - - - - - - - - *** *** *** ns (P=0.06) ** ns (P=0.08) ns (P=0.06) 30 
TIP*TL - - - - - - - - ns ns ns ns ns ns ns 75 
TIP*TL*D - - - - - - -  ns ns ns ns ns ns ns 15 
TS*TL - - - - - - - - ns ns ns ns ns ns ns 50 
TS*TL*D - - - - - - - - ns ns ns ns ns (P=0.10) ns (P=0.09) ns 10 
TIP*TS*TL - - - - - - - - ns ns ns ns ns ns ns 25 
TIP*TS*TL*D - - - - - - - - ns ns ns ns ns ns ns 5 

 
Here, ns – not significant (p>0.05), * denotes p≤0.05, ** denotes p≤0.01 and *** denotes p≤0.001. 

 

aTIP, TS, TL and D represent tyre inflation pressure, tillage system, trafficked location and soil depth (0-60mm, 60-120mm, 120-180mm, 180-240mm 

and 24-300mm), respectively.  

bNoP, CTP, TA, APS, Perim. Cir., Sol. represent the number of pores, CT measured macroporosity, total area of pores, average pore size, pore 

perimeter, circularity, and solidity of pores, respectively 

 

cNumber of observations per mean (n). 
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Table 8.2. Summary table of the effect of different treatments on soil properties during 2016 - 2018 

Treatmentsa Maize field Soybean field Number of observations per 
mean (n) 2016 2017 2018 2016 2017 2018 

Soil 
MC 

PRV Soil 
MC 

PRv PR ss BD TP Soil 
MC 

PR Soil 
MC 

PR Soil 
MC 

PRv Soil 
MC 

PRv Soil 
MC 

PRv/ 

2016 
PRv PRss BD 

&TP 

TIP (2) - ** ns ns ns 
(P=0.07) 

*** *** ns *** - ns ns ns ns ** 135 570 2565 570 150 

TIP*D - ** - ns * ns ns - *** - ns - ns  - *** - 30 135 30 30 
TS (3) - - ns *** *** * * ns ns - - ns ns 

(P=0.10) 
ns ns 90 - 1710 380 100 

TS*D - - - *** ns ns ns - *** - - - *** - *** - - 90 20 20 
TIP*TS - - ns ns ns ns ns ns ns - - ns ns ns ns 45 - 855 190 50 
TIP*TS*D - - - ns ns * * - Ns 

(P=0.06) 
- - - ns - ns - - 45 10 10 

Depth (D, 19) - *** - *** *** ns ns - *** - *** - *** - *** - 60 270 60 60 
CR (9, incl. inter-row 
4 & 5)/TL (2) 

- ** *** *** *** *** *** *** *** - *** *** *** *** *** 30 570 570 570 150 

CR/TL*D - *** - *** *** ns ns - *** - *** - *** - *** - 30 30 30 30 
TIP*CR/TL - ns ns ns ns *** *** ns ** - ns ns ns ns ** 15 285 285 285 75 
TIP*CR/TL*D - ns - ns * ns ns - ns - ns - ns - ns - 15 15 15 15 
TS*CR/TL - - ns ** ns ns ns ns ns - - ns *** ns ns 10 - 190 190 50 
TS*CR/TL*D - - - ns ** ns ns - ns - - - ns 

(P=0.06) 
- ns - - 10 10 10 

TIP*TS*CR/TL - - ns ns ns ns ns ns ns - - ns ns ns ns 5 - 95 95 25 
TIP*TS*CR/TL*D - - - ns ns ns ns - ns - - - ns - ns - - 5 5 5 

 
Here, ns – not significant (p>0.05), * denotes p≤0.05, ** denotes p≤0.01 and *** denotes p≤0.001. The experimental block was 5. 

 

Note: TIP, TS, D, CR and TL represent tyre inflation pressure, tillage systems, soil depth, crop row and trafficked location, respectively.  

MC, PRv and PRss, represent the soil moisture content, penetrometer resistance at the vegetative stage of both crops and during soil sampling 

(after harvest of maize) for X-ray CT study, respectively. BD and TP represent the bulk density and total porosity of the soil, respectively. 
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Table 8.3. Summary table of the effect of different treatments on growth and yield of maize during 2016 - 2018 

Treatments Growth parameters Yield parameters and yield Number of observations 
per mean (n) 2016 2017 2018 2016 2017 2018 

 P
E 

P/H PH (30 
DAP) 

PH (45 
DAP) 

PE P/H PH PE P/H PH EH EL TG
W 

HHY CH
Y 

TG
W 

HH
Y 

CH
Y 

TG
W 

HH
Y 

CH
Y 

HHDa 
 

CHYa 
 

HHDb CHYb 

TIP (2) ** ** ns 
(P=0.08) 

ns ns ns 
(P=0.09) 

* ** ** ** * *** ns ns ns ns ns ** ns ns * 60 15 120 15 

TS (3) - - - - ns *** ns ns ns * * ns - - - ns ns ns ** *** *** - - 80 10 

TIP*TS - -   ns ns ns ns ns 
(P=0.08) 

ns ns ns - - - ns ns ns ns ns ns - - 40 5 

CR (4/8) ns ns *** ns ns ns ** ns ns ns ns ns ** * - * ns - *** *** - 30 - 30 - 

TIP*CR ns ns ns ns ns ns ns ns ns ns ns ns ns ns 
(P=0.09) 

- ns ns - ns ns - 15 - 15 - 

TS*CR - - - - ns ns ns ns ns ns * ns - - - ns ns - ns ns - - - 10 - 

TIP*TS*CR - - - - ns ns ns ns ns ns ns ns - - - ns ns - ns ns - - - 5 - 

 
Here, ns – not significant (p>0.05), * denotes p≤0.05, ** denotes p≤0.01 and *** denotes p≤0.001. 

Table 8.4. Summary table of the effect of different treatments on growth and yield of soybean during 2016 - 2018 

Treatments Growth parameters Yield parameters and yield 

2016 2017 2018 2016 2017 2018 

PE P/H PH  
(30 
DAP) 

PH  
(45 
DAP) 

PE P/H PH PE P/H PH TGW HHY CHY TGW HHY CHY TGW HHY BMY CHY 

TIP ns ns ns ** ns ns ns *** *** *** ns ns ns ns * ns ns ** *** * 
TS - - - - ** ** *** * ns 

(p=0.07) 
* - - - ns ns *** ns ns ns ns 

TIP*TS - - - - ns ns ns (p=0.07) ** * ns - - - ns ns ns ns ns ns * 
CR * * ns *** *** ** ** *** ** *** ns ns - ns ns - ** ns ns - 
TIP*CR ns ns ns ns ns ns ns (p=0.09) ns ns ns ns ns - ns * - * ns ns - 
TS*CR - - - - ns ns ns ns ns ns - - - ns ns - ns ns ns - 
TIP*TS*CR - - - - ns ns ns ns ns ns - - - ns ns - ns ns ns - 

Here, ns – not significant (p>0.05), * denote p≤0.05, ** denotes p≤0.01 and *** denotes p≤0.001. 
 
Note: In table 8.3-8.4, the TIP, TS, D, TL and CR represent tyre inflation pressure, tillage systems, soil depth, trafficked location and crop row, 
respectively. PE, P/H, PH, EH, EL, TGW, HHY and CHY denote plant establishment, plants ha-1, plant height, ear height, ear length, 1000 grain 
weight, hand harvest and combine harvest grain yield, respectively.  
 

aHHD - hand harvest data and CHY – combine yield in 2016 and b2017 and 2018 for both crops.
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CHAPTER 9: CONCLUSIONS 

 
1) In comparison to standard tyre inflation pressures, the use of low inflation pressure tyre 

systems has shown significant benefits when managing soil physical conditions in a 

maize/soybean rotation in silty clay loam soils in Illinois. This has been achieved by 

maintaining greater total soil porosity following tillage, together with lower soil 

penetrometer resistance. The penetration resistance in the upper soil layers in the two 

experimental fields in 2017 and 2018 were in the order of no-till > shallow tillage > deep 

tillage. This trend was observed throughout the 450 mm depth in the maize field in 2017. 

2) The non-trafficked inter-row 4 and 5 had significantly higher soil moisture content (P = 

<0.001) in maize fields in 2017 and 2018 and in the soybean field in 2017 (P = <0.001) 

and lower penetrometer resistance (P = <0.001) than the trafficked crop row 3 (P = 

<0.001) in maize and crop row 1 in soybean fields (P = <0.001), respectively. Crop row 4 

had significantly higher soil moisture content (P = 0.004) and lower penetrometer 

resistance (P = <0.001) than the trafficked crop row 3 in soybean in 2018. In general, 

penetrometer resistance of soil was higher in the heavily trafficked zones (location)/crop 

rows than zero traffic. Penetrometer resistance of soil increases with a decrease in soil 

moisture content. 

3) In comparison to standard tyre inflation pressures, reducing tyre inflation pressure 

increased: a) the plant height of maize in 2017 and 2018 (P = 0.04 and 0.004, 

respectively), b) plant establishment in 2016 and 2018 ((P = 0.01 and  0.007, 

respectively) and c) the number of plants ha-1 of maize in 2016 and 2018 ((P = 0.012 

and 0.005, respectively). Similarly for soybean: a) the plant height in 2016 and 2018 (P = 

0.003 and <0.001, respectively), b) plant establishment (P = <0.001) and c) the number 

of plants per ha in 2018 (P = 0.001) were increased in the low tyre inflation pressure tyre 

treatments. 

4) The depth of tillage had a significant effect on the growth of maize and soybean in 2017 

and 2018. Where the results for the maize crop showed that: no-till had a significantly 

greater number of plants per ha in 2017 (P = <0.001) and b) deep tillage had a 

significantly greater plant and ear heights in 2018 (P = 0.004 and 0.05, respectively). 

Similarly the soybean crop showed: a) the no-till and deep tillage systems increased the 

plant establishment in 2017 (P = 0.009), b) deep tillage had a significantly greater plant 
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establishment in 2018 (P = <0.001) and c) the number of plants ha-1 in 2017 (P = 0.01) 

and plant height in 2017 and 2018 (P = 0.001 and 0.03, respectively). 

5) Reducing the tyre inflation pressure increased the grain yield of maize by 4.31% (15.02 

Mg ha-1) in 2017 and 2.70% (14.13 Mg ha-1) in 2018 compared to the standard tyre 

pressure treatments (14.40 and 13.76 Mg ha-1, respectively) (P = 0.005 and 0.019, 

respectively). While for soybean, low inflation pressure increased the grain yield by 

3.70% in 2018 (4.25 Mg ha-1) compared to the standard inflation pressure tyre treatment 

(4.10 Mg ha-1) (P = 0.021). The lack of response of soybean yield in 2017 to reduced 

tyre inflation pressure was attributed to the negative effect of partial dry year to 2018, 

which is in agreement with research reported by Yang et al. (2003) and Buttery et al. 

(1998). 

6) Deep tillage and shallow tillage systems resulted in significant yield advantages to no-till 

for soybean in 2017 and maize in 2018 (P = 0.001 and <0.001, respectively). The yield 

of maize for deep (15.11 Mg ha-1) and shallow tillage systems (13.98 Mg ha-1) was 18.69 

% and 9.82 % greater than that of the no-till system (12.73 Mg ha-1). The grain yield of 

soybean for both deep (4.86 Mg ha-1) and shallow tillage systems (4.73 Mg ha-1) was 

4.52 % and 1.72 % greater than that of no-till (4.65 Mg ha-1).  

7) Compared to heavily trafficked crop rows, the less and non-trafficked crop rows of maize 

had a significantly greater: a) plant height in 2016 and 2017 (P = <0.001 and 0.002), b) 

1000 grain weight in all years (P = 0.005, 0.04 and <0.001) and c) hand harvest yield in 

2016 and 2018 (P = 0.03 and <0.001). Similarly for soybean: a) the plant establishment 

(P = 0.03, 0.001 and <0.001), b) number of plants per ha (P = 0.03, 0.004 and 0.002), c) 

plant height (P = <0.001, 0.01 and <0.001) in all three years, d) 1000 grain weight in 

2017 and 2018 (P = 0.04 and <0.001) and e) hand harvest yield in 2018 (P = <0.001) 

were significantly higher.  

8) X-ray Computed Tomography has proven to be a valuable tool by increasing the 

resolution, in comparison with classical soil physics to determine the macroporosity 

differences between the various traffic systems for different tillage practices. The low 

inflation pressure tyre systems resulted in a significant increase in the mean profile pore 

count (105.2) (P = 0.05) and CT measured macroporosity (4.66%) (P = 0.004) and total 

pore area (92.6 mm2) (P = 0.004) compared to the standard inflation pressure tyre 
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systems with the pore count of 75.8, CT measured macroporosity of 2.87% and pore 

area of 56.8 mm2.  

9) Comparing the X-ray Computed Tomography data and that from the classical soil 

physical analysis confirm the hypothesis reported by Millington (2019) that the addition 

of the field capacity porosity of silty clay loam soil (39%) to the CT measured 

macroporosity (3.77%) gives the total porosity of the soil.  

10) The cost-benefit analysis of the maize/soybean farming system showed that Ultraflex 

low inflation pressure tyres had greater economic benefits over standard inflation 

pressure tyres. The annual cost of using Ultraflex tyres was 23.8% and 20.1% more for 

the 200 ha and 809 ha of farm respectively when compared to the cost of a standard 

tyre system. However, the mean annual benefit of using Ultraflex tyre systems for the 

two farms were US$7357 (US$37 ha-1) and US$32969 (US$41ha-1), respectively. The 

payback period for the three tillage systems using Ultraflex low inflation tyres for the two 

farms sizes were less than two years. Ranging from 0.31 years for the DT systems on 

the 809 ha farm to 1.27 years for the shallow tillage system on the 200 ha farm. 

 

This study for a typical maize and soybean rotation demonstrates that, following a pilot season 

with a uniform deep tillage treatment, to remove any underlying compaction, the use of low 

inflation pressure tyre systems had a positive effect on soil structure, crop yield and profitability. 

While the use of reduced tyre inflation pressures has been recommended for several decades, 

this is the first major field experiment to quantify these benefits for high flexion tyres by linking 

the resulting soil conditions to crop yield and the economic benefit in so doing. Hence, the 

present experiment confirms the hypothesis that reducing tyre inflation pressure field traffic 

system improves crop development and yield by reducing soil compaction in a maize and 

soybean rotation in silty clay soil in central Illinois.  

To put this into context, the Drummer soil series is the most common soil in Illinois and covers 

more than 0.6 million ha with significant areas in Indiana, Ohio and Wisconsin. The Thorp series 

whilst less common than the Drummer series is a significant soil series in the north and central 

Illinois and in Iowa. It would be valuable for extension purposes to undertake a number (possibly 

3) of simplified experiments at various locations in Illinois and neighbouring states to 

demonstrate the benefits to farmers. 
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This work has also extended the frontier of the X-Ray Computed Technology by introducing the 

technique to the University of Illinois. Where the Beckman Institute for Advanced Science and 

Technology is now collaborating with the Departments of Agricultural and Biological Engineering 

and Natural Resources and Environmental Sciences use the technique in a detailed study of the 

soils of the Morrow Plots, the oldest experimental field (since 1876) in the USA.   
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CHAPTER 10: RECOMMENDATIONS FOR FURTHER WORK 

Based on the observations from the present study, there are a number of other areas that are 

worthy of further investigation. These are as follows: 

1) Determine the effect of tyre inflation pressures and the number of traffic passes for the 

different tyre inflation pressures on tyre footprint area, soil structure, soil hydraulic 

properties and stability index at different soil moisture regimes. 

2) Determine the effect of the magnitude and intensity of vehicle traffic compaction for 

different tyre inflation pressures and tillage systems on infiltration rate, porosity, 

aggregates stability, bulk density and penetrometer resistance, root development and 

maize ear characterization during the growing season. 

3) Determine the long-term effect of traffic on potential changes in the chemical and 

biological properties of the soil. 

4) Investigate the long-term weather effects for the different traffic and tillage systems on 

soil properties and crop development.  

5) Determine the distribution of soil stresses for both the ultra-flex and standard tyre 

systems in both laboratory and field conditions.  

6) Model the effects of tyre inflation pressure on soil behaviour and compaction. 

7) Determine the percentage of compacted field areas and the number of repeatedly 

compacted areas for the different traffic systems for the three tillage practices.  

8) Repeat the current study with larger plots to also include controlled traffic farming. 

9) Increase the resolution of the X-ray CT scan, to improve the assessment of soil 

porosity, pore size distribution, and pore connectivity. Including further verification of 

the different threshold methods of segmentation and the adoption of algorithms for 

image stack processing, analysis and data visualisation using MATLAB software. 

10) Determine the plant root and soil interactions under different compaction treatments 

using X-ray computed tomography (CT) to investigate soil macro-pore distribution and 
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connectivity with samples taken across a wheel track transect both vertically and 

horizontally.  

11) Include variable and overhead costs in future economic studies for the three tillage 

practices with the alternative tyre systems. 

12) Quantify the seasonal changes in soil structure to assist in the development of 

management strategies to minimize the risks of soil degradation by compaction-

induced erosion. 

13) Define the impact of soil compaction on whole farm economics and natural resource 

management through sustainable soil and crop management options. 
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APPENDICES 

Appendix A: General 

Appendix 1: Examples of farm equipment currently available in the farmers field of the US and 

other region.  

Agricultural 
machinery 

John Deere CNH Industrial AGCO 

Model Weight (Mg) Model Weight 
(Mg) 

Model Weight 
(Mg) 

Tractor JD 7930 
Tractor 

10.3 Steiger 270 
wheeled 

17.5 Challenger 
MT585D 

7.7 

JD 7700 
Tractor 

9.0 Case IH 470 
Steiger 

18.1 Challenger 
MT645E 

10.8 

JD 8335R 
Tractor 

12.3 Csae IH 580 
Steiger 

22.8 MF 8730 10.8 

JD 9740R 
Tractor 

9.10 AFS Connect 
Steiger370 

17.5 MF 8737 11.0 

JD 8R280 
Tractor 

11.7 Magnum 220 
MFD 

9.8 MF 7726 14.0 

Trac tractor JD 9420 RX 24.5 Case IH, Steiger 
580 Quadtrac 

24.6 - - 

Combine JD 4930 
combine 

18.4 Case IH 
Axial Flow 6150 

16.8 MF ACTIVA 
7344 

12.8 

JD 9870 
Combine 

16.4 Case IH 
Axial Flow 7150 

17.2 MF 9545  

 
5Source: T. Lecher, Personal communication, 15 October 2018 

  

 
5Other sources: https://www.deere.com; https://www.agcocorp.com; https://www.caseih.com. 

 

https://www.deere.com/
https://www.agcocorp.com/
https://www.caseih.com/
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Appendix 2.1: US national and Illinois tillage practices (%), 2012 and 2017 US Census of 

Agriculture  

 
Tillage 
practicesƗ 

2012 2017 Percent change in 2017 

US national Illinois US national Illinois US national Illinois 

No-till 35 37.50 37 28 2 -9.50 
Reduced 
tillage 

27 35.20 35 43 8 7.80 

Conventional 
tillage 

38 27.30 28 29 -10 1.70 

Total (%) 100 100 100 100 0 0 

 
Adapted from Zulauf and Brown (2019) 

 
Appendix 2.2: A summary of the effect of compaction on soil and crop productivity (Example. 

Maize crop) 

 

  

 

 

Fig. 6. A summary of the effect of soil compaction on agricultural productivity (e.g. 

Corn plant).  
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Appendix 3 
 

Appendix 3.1. Typical tillage practices in Central Illinois  

 
Tillage practices Fall Tillage (450 mm 

depth) 
Spring Tillage 
(100mm depth) 

Planting 

Deep Tillage × × × 
Shallow tillage  × × 
No-till   × 

 
 
 

Appendix 3.2. Coordinate points for plot layout and soil sampling 

 
 

 

 
  

North field 

South field 
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Appendix 3.3. Specifications of tillage tools, disc ripper and planter used 

Name Manufacturer Model Spacing (m) Working 
width (m) 

Total Weight 
(Mg) 

Spring tillage Tool 
(Disc gang/disc 
reel) 

Sunflower 
/AGCO 

6221-20 Disc blade - 
0.2 

6.20 4.23 

Disc Ripper 
(Autumn tillage tool) 
– shanks-5 

Case/IH Ecolo-Tiger 
527B 

0.69m 3.43m 2.72 

Planter John Deere 7200 Max 
Emerge 2 

0.75m 6m  

 

Appendix 3.4a. Crop production and data recording timeline of events in 2016 

Field operations Date of Field Operations Remarks 
Maize (North field) Soybean 

Deep tillage (450mm 
depth) 

01 Nov. 2015 01 Nov. 2015 - 

Layout of fields 10-12 April 2016 10-12 April 2016  
Soil sample collection 15 April 2016 15 April 2016 Initial soil sample analysis 
Data recording- 
Penetrometer 
resistance 

16-18 April 2016 16-18 April 2016 - 

Shallow tillage (100mm 
depth) 

25 April 2016 25 April 2016 Ultraflex tyres were fitted 
before tillage 

Data recording- 
Electrical Conductivity  

28 April 2016 28 April 2016 - 

Pre-emergence 
spraying  

16 May 2016 18 May 2016 Applied perpendicular to the 
plots (North-south direction) 

Levelling 19 May 2016 19 May 2016 Chemical incorporation 
Planting of crops 20 May 2016 20 May 2016 - 
Data recording-Plant 
establishment 

02-03 June 2016 03-04 June 
2016 

15 DAP 

Post emergence 
spraying  

17 June 2016 21 June 2016 Applied perpendicular to the 
plots (North-south direction) 

Data recording- 
Plant counts 

18-19 June 2016 22-23 June 
2016 

28-33 DAP 

Data recording- 
Plant height  

20 June 2016 23-24 June 
2016 

20 DAP and 33 DAP 

Data recording-
Penetration resistance 

25 – 30 June 2016 30 June - 03 
July 2016 

35-40 DAP 

Data recording- 
Plant height  

06-07 July 2016 07-08 July 2016 45 DAP 

Cutting of plant in the 
alleyways 

10-11 July 2016 11-12 July 2016 - 

Rooting depth study 26-27 July 2016 26-27 July 2016 - 
Hand harvest sample 
collection 

01-03 Oct. 2016 05-07 Oct. 2016 5 plants for maize and 0.5 m 
for soybean 

Data recording-
Combine harvest 

07 Oct. 2016 01 Nov. 2016 Rainfall delayed the harvesting 
of soybean 

Data recording-Hand 
harvest samples  

01-06 Nov. 2016 07-09 Nov. 2016 Shelling (maize)/ threshing 
(soybean) 
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Appendix 3.4b. Crop production and data recording timeline of events in 2017 

 
Field operations Date of Field Operations Remarks 

Maize (South field) Soybean (North field) 
Deep tillage (450mm 
depth) 

19 Feb. 2017 19 Feb. 2017 - 

Shallow tillage (100mm 
depth) 

29 Mar. 2017 29 Mar. 2017 - 

Adding compaction 
(using planting tractor) 

20 April 2018 20 April 2018 Applied on the crop row 1 
and 3 to all plots 

Pre-emergence 
spraying  

25 April 2017 15 May 2017 Applied perpendicular to 
the plots (North-south 
direction) 

Chemical 
incorporation/Levelling 

26 April 2017 16 May 2017 - 

Planting of crops 15 May 2017 18 May 2017 - 
Data recording- 
Plant establishment 

30-31 May 2017 01-02 June 2017 15-16 DAP 

Data recording- 
Plant counts 

15-16 June 2017 18-19 June 2017 30 and 32-33 DAP 

Post emergence 
spraying (North-south 
direction) 

21 June 2017 28 June 2017 Applied perpendicular to 
the plots 

Cutting of plant in the 
alleyways 

24-25 June 2017 26-27 June 2017 Headlands were 10m 

Data recording-
Penetration resistance 

28 June – 01 July 
2017 

03-06 July 2017 Avoided sprayer wheel 
ways 

Data recording-Soil 
moisture content (%) 

28 June – 01 July 
2017 

03-06 July 2017 Avoided sprayer wheel 
ways 

Collection of trial soil 
core samples for X-ray 
CT study 

31 July 2017 - - 

Data recording-Plant 
height at harvest  

01-05 Oct. 2017 10-15 Oct. 2017 Maize – from base to flag 
leaf; Soybean – from base 
to tip 

Hand harvest 01-05 Oct. 2017 10-15 Oct. 2017 Maize- 5 plants 
Soybean – plants of 0.5 m 

Combine harvest 10 October 2017 20 Oct. 2017 - 
Deep tillage (450mm 
depth) 

27 Oct. 2017 04 Nov. 2017 - 

Data recording-Hand 
harvest samples 
shelling (maize)/ 
threshing (soybean) 

12-17 Nov. 2017 05-08 Nov. 2017 - 

Data recording-
Penetrometer 
resistance  

02-03 Nov. 2017 - HT and UT locations 

Collection of soil core 
samples  

04 Nov. 2017 - For X-ray CT study 

Soil cores X-ray CT 
scanning  

11-15 Dec and 18-20 
Dec. 2017 

- MIL, Beckman Institute of 
UIUC 
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Appendix 3.4c. Crop production and data recording timeline of events in 2018 

 
Field operations Date of Field Operations Remarks 

Maize (North field) Soybean (South field) 
Soil cores X-ray CT 
scanning  

03-05 and 22-26 Jan. 
2018 

- MIL, Beckman Institute 
of UIUC 

Soil cores X-ray CT 
scanning  

06-08 and 12-13 Feb. 
2018 

- - 

Shallow tillage (100mm 
depth) 

27 April 2018 13 May 2018 - 

Adding compaction 
(using planting tractor) 

26 April 2018 26 April 2018 Applied on the crop row 
1 and 3 to all plots 

Pre-emergence 
spraying (North-south 
direction) 

28 April 2018 14 May 2018 Applied perpendicular to 
the plots 

Chemical 
incorporation/Levelling 

30 April 2018 05/15/2018 - 

Planting of crops 01 May 2018 16 May 2018 - 
Data recording- 
Plant establishment 

17-18 May 2018 30-31 May 2018 17-18 DAP and 14-15 
DAP 

Data recording- 
Plant counts 

01-03 and 08 June 
2018 

17-21 June 2018 30-33 DAP 

Post emergence 
spraying (North-south 
direction to the plots) 

04 June 2018 27 June 2018 Applied perpendicular to 
the plots 

Cutting of plant in the 
alleyways 

28-29 June 2018 01-02 July 2018 Headlands were 10m 
each side 

Data recording-
Penetration resistance 

10-14 Aug. 2018 11-16 July 2018 95-100 DAP/55-60 DAP; 
Avoided sprayer wheel 
ways 

Data recording-Soil 
moisture content (%) 

10-14 Aug. 2018 11-16 July 2018 95-100 DAP/55-60 DAP; 
Avoided sprayer wheel 
ways 

Data recording-Plant 
height at harvest  

18-22 Sept. 2018 01-03 Oct. 2018 Maize – from base to 
flag leaf and soybean – 
from base to tip 

Data recording-Ear 
height 

18-22 Sept. 2018 - From base to maize ear 

Data recording-Hand 
harvest 

18-22 Sept. 2018 06-08 Oct. 2018 5 plants for maize and 
plants of 0.5 m for 
soybean 

Data recording-
Combine harvest 

Mid October 2018 22 Oct. 2018 160 DAP and 157 DAP; 
Rainfall events delayed 
the harvest 

Data recording-Hand 
harvest samples 
shelling (maize)/ 
threshing (soybean) 

01-06 Nov. 2018 07-09 Nov. 2018 - 
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Appendix: 3.5a. Summary of the % of width of trafficked and un-trafficked zones of deep tillage 

plot in 2017 and 2018 

 
 

 

Appendix 3.5b. Width of trafficked and un-trafficked zones of deep tillage plot (from left to 

center line) 

 Width 
trafficked/ 
Passes (#) 

Deep tillage plot (From left to centre line) 

0 1 2 3 4 3 2 1 0 1 2 3 4 4 3 2 3 5 7 8 9 8 7 7 8 6 4 3 2 1 0 Widt
h 

Width  
trafficked 
(inch) 

3.5 1.5 10 2 2.5 3.5 8 2.3 5.5 12 0.5 2 13.5 2 0.5 1.3 4.5 2.1 1.4 1.5 1.3 3.7 1.7 2.3 2 2.2 1.3 3.5 5 2 15 120 

Width 
trafficked 
(m) 

0.0
9 

0.04 0.25 0.05 0.06 0.09 0.20 0.06 0.14 0.30 0.01 0.05 0.34 0.05 0.01 0.03 0.11 0.05 0.04 0.04 0.03 0.09 0.04 0.06 0.05 0.06 0.03 0.09 0.13 0.05 0.38 3.00 

 

 
 
  

1.3

2.0

5.8

3.7

3.5
5.0

15.0

1.5
1.3

1.9
1.6

1.4

4.5

Tillage tractor (3)

10.0
3.5

2.3
1.3

1.8

2.0 5.5

Guard row

combine wheels (7)

2.0

86.0

Leveling DT plots

by tillage tractor (2)

2.3

53.5

86.0

3.5

13.5

0.5

2.0
13.5

2.0

12.0
0.5

58.0

5.5

240.0

15.5

2.0

0.5

101.5

71.8

14.0

3.5

83.0

15.0

2.3

5.0

162.5
Plot combine

wheels (6)

133.5

15.5

2.0

102.5

R8
1.5

R4

B

86.0

0.0

2.1

133.5

1.72.5

1.5
2.0

1.3

90.0

120.0

30.5

R7

2.3

2.3

R3
b1

R6

14.0

R2
b2

R5

6.3

R1

15.0

30.5

30.5

30.5

18.3

R1

162.5

R4

15.5

R3R2

102.5

15.5

R8R7

1.3

30.5

R6

58.0

R5

15.5

B

B

a1

A

a2

A
2.2

A

2.0

15.5

18.3

2.0

58.0

0.5

19.5

12.0

5.5

8.0

14.0

Add extra

compaction by

Planter (4)

Deep tillage

tractor-2 passes (1)

Option 3: Travel the selected rows

(1, 3) with planter (DT)

Planter (5)

101.5

120.0

101.5

86.0
18.3

14.0

90.0

58.0

18.3 18.3

90.0

19.5

102.5

14.0

44.0

90.0

14.5

51.0

14.5

30.5

133.5

162.5
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Appendix 3.5c. Width of trafficked and un-trafficked zones of deep tillage plot (from right to 

center line) 

Width 
trafficked/Passes 
(#) 

Deep tillage plot (From right to centre line) 

0 1 2 1 0 1 2 3 4 3 2 1 2 5 6 6 6 7 8 6 4 3 2 1 0 Width 

Width  trafficked 
(inch) 15 2 14 2.3 5.5 12 0.5 2 13.5 2 0.5 5.8 1.9 1.6 1.5 1.3 5.5 2.3 1.8 2.2 1.3 3.5 5 2 15 120 

Width trafficked 
(m) 

0.38 0.05 0.35 0.06 0.14 0.30 0.01 0.05 0.34 0.05 0.01 0.15 0.05 0.04 0.04 0.03 0.14 0.06 0.05 0.06 0.03 0.09 0.13 0.05 0.38 3.00 

 

 
Appendix 3.5d. Total and % of width of trafficked and un-trafficked zones of deep tillage plot 

From left to centre line (3m) From right to centre line (3m) % Width 
trafficked/ 
plot (6m) 

Number of 
passes 

Width trafficked  Number of 
passes 

Width trafficked  

Inches m % Inches m % 

0 24.0 0.60 19.9 0 35.5 0.89 29.6 24.8 
1 17.8 0.45 14.8 1 24.1 0.60 20.1 17.4 
2 24.8 0.62 20.6 2 21.9 0.55 18.2 19.4 
3 16.0 0.40 13.3 3 7.50 0.19 6.23 9.78 
4 19.3 0.48 16.1 4 14.8 0.37 12.3 14.2 
5 2.10 0.05 1.75 5 1.60 0.04 1.33 1.54 
6 2.20 0.06 1.83 6 10.6 0.27 8.83 5.33 
7 5.40 0.14 4.50 7 2.30 0.06 1.92 3.21 
8 7.20 0.18 6.00 8 1.80 0.05 1.50 3.75 
9 1.30 0.03 1.08 9 0.00 0.00 0.00 0.54  

120.1 3.00 100.0 
 

120.1 3.00 100.0 100.0  
Total area trafficked 80.0 Total area trafficked 

 
70.4 75.2 

 Un-trafficked 19.9 Un-trafficked  29.6 24.8 

 
 

Appendix 3.5e. Number of vehicle passes in deep tillage plot 

Crop Row Total number of 
vehicle passes 
(a+b+c) 

Number of vehicle passes  

On the crop row (a) Edge of tyre at centre 
line of crop row (b) 

Edge of tyre 60mm 
from centre line of crop 
row (c) 

Crop row 1 2 1 1 0 
Crop row 2 1 1 0 0 
Crop row 3 5 2 1 2 
Crop row 4 1 0 1 0 
Crop row 5 1 0 1 0 
Crop row 6 3 1 2 0 
Crop row 7 1 1 0 0 
Crop row 8 1 0 1 0 



 

HARPER ADAMS UNIVERSITY 295 M. R. SHAHEB, 2020 
 

Appendix: 3.6a. Summary of the % of width of trafficked and un-trafficked zones of shallow 

tillage plot in 2017 and 2018 

 
  
 
Appendix 3.6b. Width of trafficked and un-trafficked zones of shallow tillage plot (from left to 

center line) 

Width 
trafficked/
Passes (#) 

Shallow tillage plot (From left to centre line) 

0 1 2 1 0 1 1 3 4 4 3 2 3 4 5 6 7 6 5 4 4 3 2 1 0 Width 

Width  
trafficked 
(inches) 

3.5 1.5 14.5 3.5 15.7 12 0.5 2 13.5 2 0.5 1.3 4.5 2.1 1.4 1.5 1.3 3.7 1.7 2.3 2 2.2 1.3 3.5 22 120 

Width 
trafficked 
(m) 

0.09 0.04 0.36 0.09 0.39 0.30 0.01 0.05 0.34 0.05 0.01 0.03 0.11 0.05 0.04 0.04 0.03 0.09 0.04 0.06 0.05 0.06 0.03 0.09 0.55 3.00 
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 Appendix 3.6c. Width of trafficked and un-trafficked zones of shallow tillage plot (from right to 

center line) 

Width trafficked/ 
Passes (#) 

Shallow tillage plot (From right to centre line) 

0 1 2 3 4 4 4 5 4 3 2 3 2 3 4 3 2 1 0 Width 

Width trafficked 
(inches) 

22.0 3.5 1.3 2.3 1.8 2.3 5.5 1.3 1.5 1.6 1.9 5.8 0.5 2.0 13.5 2.0 0.5 12.0 38.8 120.1 

Width trafficked 
(m) 

0.6 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.3 0.1 0.0 0.3 1.0 3.0 

  
Appendix 3.6d. Total and % of width of trafficked and un-trafficked zones of shallow tillage plot 

From left to centre line (3m) From right to centre line (3m) % Area 
trafficked/ 
plot (6m) 

Number of 
passes 

Width trafficked  Number of 
passes 

Width trafficked  

Inches m % Inches m % 

0 41.2 1.03 34.3 0 60.8 1.52 50.6 42.5 
1 21.0 0.53 17.5 1 15.5 0.39 12.9 15.2 
2 17.1 0.43 14.2 2 4.20 0.11 3.50 8.87 
3 9.20 0.23 7.67 3 13.7 0.34 11.4 9.54 
4 21.9 0.55 18.3 4 24.6 0.62 20.5 19.4 
5 3.10 0.08 2.58 5 1.30 0.03 1.08 1.83 
6 5.20 0.13 4.33 6 0 0.00 0.00 2.17 
7 1.30 0.03 1.08 7 0 0.00 0.00 0.54  

120.0 3.00 100.0  120.1 3.00 100 100.0  
Total area trafficked 65.7    49.4 57.5 

 Un-trafficked 34.3    50.6 42.5 

 
Appendix 3.6e. Number of vehicle passes in shallow tillage plot 

Crop Row Total number of 
vehicle passes 
(a+b+c) 

Number of vehicle passes  

On the crop row (a) Edge of tyre at 
centre line of crop 
row (b) 

Edge of tyre 60mm 
from centre line of 
crop row (c) 

Crop row 1 1 1 0 0 
Crop row 2 1 1 0 0 
Crop row 3 4 2 1 1 
Crop row 4 0 0 0 0 
Crop row 5 0 0 0 0 
Crop row 6 3 1 1 1 
Crop row 7 1 1 0 0 
Crop row 8 0 0 0 0 
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Appendix 3.7a: Summary of the % of width of trafficked and un-trafficked zones of no-till plot in 

2017 and 2018 

 
 
Appendix 3.7b. Width of trafficked and un-trafficked zones of no-till plot (from left to center line) 

Width 
trafficked/ 
Passes (#) 

No-Till Plot  (From left to centre line) 
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Appendix 3.7c. Width of trafficked and un-trafficked zones of no-till plot (from right to center 

line) 

Width trafficked/ 
Passes (#) 

No-Till Plot (From right to centre line) 

0 1 2 3 2 1 2 3 4 3 2 1 0 Width 

Width trafficked 
(inches) 

22 3.5 13.3 1.3 1.5 9.3 0.5 2 13.5 2 0.5 12 38.8 120 

Width trafficked 
(m) 

0.55 0.09 0.33 0.03 0.04 0.23 0.01 0.05 0.34 0.05 0.01 0.30 0.97 3.00 

  
 

Appendix 3.7d. Total and % of width of trafficked and un-trafficked zones of no-till plot 

From left to centre line (3m) From right to centre line (3m) % Area 
trafficked per 
plot (6m) 

Number 
of passes 

Width trafficked  Number 
of passes 

Width trafficked  

Inches m % Inches m % 

0 41.2 1.03 34.3 0 60.8 1.52 50.6 42.5 
1 20.5 0.51 17.1 1 24.8 0.62 20.6 18.9 
2 24.6 0.62 20.5 2 15.8 0.40 13.1 16.8 
3 13.7 0.34 11.4 3 5.3 0.13 4.41 7.91 
4 18.7 0.47 15.6 4 13.5 0.34 11.2 13.4 
5 1.3 0.03 1.08 5 0 0 0 0.54 
 120 3.00 100.0  120.2 3.01 100.0 100.0  

Total area trafficked 65.67    49.4 57.5 
 Un-trafficked 34.33    50.7 42.5 

 
 
Appendix 3.7e. Number of vehicle passes in no-till plot 

Crop Row Total number of 
vehicle passes 
(a+b+c) 

Number of vehicle passes  

On the crop row 
(a) 

Edge of tyre at 
centre line of crop 
row (b) 

Edge of tyre 
60mm from centre 
line of crop row (c) 

Crop row 1 1 1 0 0 
Crop row 2 1 1 0 0 
Crop row 3 3 1 1 1 
Crop row 4 0 0 0 0 
Crop row 5 0 0 0 0 
Crop row 6 2 1 0 1 
Crop row 7 1 1 0 0 
Crop row 8 0 0 0 0 
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Appendix 3.8. Air and soil temperatures and rainfall data during soil core collection for X-ray  

CT study from 16 October – November 04, 2017 
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Appendix B: Additional Statistics 

Appendix 4.1. Effect of tyre inflation pressure and tillage system on the number of pores, in the 

HT location in 2017 

Statistics Tyre inflation pressure Tillage system Tyre inflation pressure × tillage 
system 

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 

P value 0.354 <0.001 0.006 0.28 0.13 0.328 0.336 0.208 0.43 0.58 0.122 0.006 0.058 0.08 0.19 
SEM  
(df 2, 20) 

15.11 8.83 11.2 6.61 10.4 18.5 10.8 13.7 8.09 12.7 26.1 15.3 19.4 11.4 18.0 

LSD 44.5 20.0 23.3 19.4 30.7 54.5 31.9 28.6 23.8 37.6 77.2 45.1 40.4 33.7 53.2 
CV (%) 37.0 40.1 43.9 44.8 49.0 37.0 40.1 43.9 44.8 49.0 37.0 40.1 43.9 44.8 49.0 

 
Note: D1, D2, D3, D4 and D5 represent the soil depth of 0-60mm, 60-120mm, 120-180mm, 180-

240mm and 240-300mm, respectively. 

 
Appendix 4.2. Effect of heavily trafficked and un-trafficked locations on mean pore count of soil 

in 2017 
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Appendix 4.3. Effect of tyre inflation pressure and tillage system on CT Measured 

macroporosity (%), in the HT location in 2017 

Statistics
/Treatme
nts 

Tyre inflation pressure Tillage system Tyre inflation pressure × 
tillage system 

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 

P value 0.18 0.013 0.012 0.47 0.05 0.51 0.789 0.522 0.58 0.66 0.69 0.254 0.265 0.37 0.59 
SEM  
(df 2, 20) 

0.54 0.66 0.624 0.61 0.76 0.66 0.81 0.77 0.75 0.94 0.94 1.15 1.08 1.06 1.33 

LSD 1.60 1.96 1.84 1.81 2.26 1.96 2.37 2.26 2.22 2.77 2.77 3.39 3.19 3.14 3.92 
CV (%) 52.9 61.8 62.7 76.8 79.1 52.9 61.8 62.7 76.8 79.1 52.90 61.8 62.7 76.80 79.1 

 
Note: D1, D2, D3, D4 and D5 represent the soil depth of 0-60mm, 60-120mm, 120-180mm, 180-

240mm and 240-300mm, respectively. 

 
 

 

Appendix 4.4. Effect of tyre inflation pressure and tillage system on Total Pore Area (mm2), in 

the HT location in 2017 

Statistics
/Treatme
nts 

Tyre inflation pressure Tillage system Tyre inflation pressure × 
tillage system 

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 

P value 0.17 0.012 0.012 0.46 0.05 0.52 0.79 0.52 0.57 0.66 0.68 0.25 0.26 0.34 0.59 
SEM  
(df 2, 20) 

10.7 13.1 12.4 12.2 15.2 13.1 16.1 15.2 14.9 18.6 18.6 22.8 21.5 21.1 26.4 

LSD 31.7 38.8 36.6 36.0 44.9 38.8 47.6 44.8 4.11 55.1 54.9 67.1 63.4 62.3 77.9 
CV (%) 53.0 61.9 62.8 77.1 79.2 53.0 61.9 62.8 77.1 79.2 53.0 61.9 62.8 77.1 79.2 

 
Note: D1, D2, D3, D4 and D5 represent the soil depth of 0-60mm, 60-120mm, 120-180mm, 180-

240mm and 240-300mm, respectively. 
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Appendix 4.5. Effect of tyre inflation pressure (a), trafficked location (b) and soil depth (c) on 

Total Pore Area (mm2) of soil in 2017 

 

 
 
 
 

 
 

  

a) b) 
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Appendix 4.6. Effect of tyre inflation pressure (a), tillage system (b), trafficked locations (c) and 

interaction of tyre inflation pressure and tillage system (d) on the mean penetrometer resistance 

of soil in 2017 (during soil sampling for X-ray CT study) 

 

  

 

  

 

 

Means with the same letter are not significantly different (α =0.05) from each other.  

Note: The ends of boxes are the upper and lower quartiles, the median is marked by a vertical 

line inside the box. The whiskers are the two lines outside the box that extends the highest and 

lowest observations.  
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Appendix 5.1. Effect of tyre inflation pressure on bulk density of soil at different depths down to 

240 mm in the North field in 2016. 

 

 
 
Appendix 5.2. Effect of tyre inflation pressure on soil moisture content of soil at different depths 

down to 240 mm in the North field in 2016. 

 

 
 
 

 

Appendix 5.3. Effect of tyre inflation pressure on total porosity of soil at different depths down 

to 240 mm in the North field in 2016. 
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Appendix 5.4. Effect of tyre inflation pressure and crop row on plant establishment and plants 

height of maize, in the North Field in 2016 

 
Treatments† Plant establishment (%) Plant height at 45 DAP 

(base to tip, m) 
Plant height at 45 (base to 
flag leaf, m) 

SEM  P 
value 

LSD CV 
(%) 

SEM  P 
value 

LSD CV 
(%) 

SEM  P 
value 

LSD CV 
(%) 

TIP 0.306 0.109  1.20  0.009 0.077 0.037 1.10 0.008 0.86 0.033 2.40 
CR 0.463 0.573   0.006 0.090 0.018 2.40 0.009 0.44 0.029 4.10 
TIP × CR 0.644 0.805  2.70  0.012 0.768 0.039  0.014 0.73 0.043  
 

 
Note: 

DF – Degrees of freedom: 24 and 80. CV’s are main effect and subplot effects, respectively.  

TIP and CR represent tyre inflation pressure and crop row, respectively.  
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Appendix 5.5. Effect of tyre inflation pressure and crop row on plant height of maize at 45 DAP, 

in the North field in 2016 

Treatments† Plant height at 45 DAP (m)  
(Base to tip) 

Plant height at 45 DAP (m)  
(Base to flag leaf) 

Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Mean Crop 
row 1 

Crop 
row 2 

Crop 
row 3 

Crop 
row 4 

Mean 

STP 1.89 1.88 1.88 1.90 1.89 1.29 1.30 1.29 1.30 1.30 
LTP 1.91 1.89 1.88 1.90 1.89 1.30 1.29 1.28 1.32 1.29 
Mean 1.90 1.88 1.88 1.90  1.29 1.29 1.29 1.31  
24 and 84 DF SEM P value LSD CV 

(%) 
 SEM P 

value 
LSD CV 

(%) 
 

TIP 0.009 0.78  1.90  0.009 0.86  2.60  
CR 0.006 0.06  1.80  0.009 0.34  3.80  
TIP × CR 0.012 0.74    0.014 0.66    

 
Note: 

DF – Degrees of freedom: 24 and 80. CV’s are main effect and subplot effects, respectively.  

TIP and CR represent tyre inflation pressure and crop row, respectively.  

 
 
Appendix 5.6. Rooting depth of maize for STP and LTP tyre inflation pressures in the North 

field in 2016 
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Appendix 5.7. Effect of tyre inflation pressure, tillage system and crop row on number of plants 

ha-1 and plant height of maize, in the South Field in 2017 

  
Treatments† Number of plants ha-1  Plant height (m) 

SEMa P value LSD CV (%) SEMa P value LSD CV (%) 

TIP 100.0 0.099 294 0.40 0.007 0.045 0.019 1.20 
TS 122.4 <0.001 361  0.008 0.446 0.023  
CR 279.8 0.386 781 1.70 0.007 0.002 0.018 1.70 
TIP × TS 173.1 0.279 510  0.011 0.186 0.033  
TIP × CR 383.4 0.701 1069  0.011 0.110 0.030  
TS × CR 469.6 0.247 1310  0.013 0.336 0.037  
TIP × TS × 
CR 

664.1 0.539 1.852  0.019 0.946 0.053  

 
 
 
Appendix 5.8. Effect of tyre inflation pressure, tillage system and crop row on plant 

establishment, plants ha-1 and plant height of maize, in the North Field in 2018 

 
Treatments† Plant establishment (%) Number of plant ha-1 Plant height  

SEMa P 
value 

LSD CV 
(%) 

SEM P 
value 

LSD CV 
(%) 

SEM  P 
value 

LSD CV 
(%) 

TIP 0.286 0.007 0.597 0.90 111 0.005 328 0.50 0.009 0.004 0.028 1.40 
TS 0.350 0.269 0.731  136 0.473 402  0.012 0.047 0.034  
TIP × TS 0.496 0.955 1.03  193 0.085 569  0.016 0.329 0.048  
CR 0.695 0.282 1.37 3.00 209 0.370 582 1.40 0.008 0.423 0.022 1.70 
TIP × CR 0.962 0.860 1.89  298 0.115 830  0.014 0.499 0.039  
TS × CR 1.18 0.771 2.32  364 0.766 1016  0.017 0.402 0.048  
TIP×TS×CR 1.66 0.851 3.28  515 0.516 1437  0.024 0.191 0.068  
 

Note: In appendices 5.7 and 5.8, TIP, TS, CR, STP, LTP, DT, ST and NT represent tyre inflation 

pressure, tillage system, crop row, standard tyre inflation pressure, low tyre inflation pressure, 

deep tillage, shallow tillage and no-till, respectively.  

 

aDF represents degrees of freedom: 20 and 168. CV’s are main effect and subplot effects, 

respectively.  
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Appendix 5.9. Effect of tyre inflation pressure, tillage system and crop row on ear height and 

ear length of maize, in the North Field in 2018 

 
Treatments Ear height (m) Ear length (m) 

SEMa P value LSD CV (%) SEMa  P value LSD CV (%) 

TIP 0.007 0.05 0.021 2.30 0.002 <.001 0.006 4.20 
TS 0.009 0.02 0.026  0.002 0.44 0.007  
TIP × TS 0.013 0.63 0.037  0.003 0.37 0.010  
CR 0.009 0.32 0.025 4.10 0.003 0.22 0.009 10.10 
TIP × CR 0.014 0.32 0.039  0.005 0.37 0.013  
TS × CR 0.017 0.001 0.048  0.006 0.23 0.016  
TIP×TS×CR 0.024 0.18 0.067  0.008 0.69 0.023  

 
 

 

Appendix 5.10. Effect of tyre inflation pressure, tillage system and crop row on 1000 grain 

weight and hand harvest grain yield of maize, in the South field in 2017 

 
Treatments 1000 grain weight (g)  Hand harvest grain yield (Mg ha-1)  

SEMa P value LSD CV (%) SEMa P value LSD CV (%) 

TIP 2.19 0.250 6.47 2.50 0.181 0.796 0.535 4.00 
TS 2.68 0.414 7.92  0.222 0.142 0.655  
TIP × TS 3.79  0.312 11.2  0.314 0.317 0.926  
CR 2.62 0.049 7.32 4.20 0.214 0.398 0.596 6.70 
TIP × CR 4.10 0.189 11.4  0.336 0.764 0.939  
TS × CR 5.02 0.702 14.1  0.411 0.283 1.150  
TIP×TS×CR 7.10 0.908 19.8  0.582 0.881 1.626  
 

Note: In Appendices 5.9 and 5.10, TIP, TS, CR, STP, LTP, DT, ST and NT represent tyre inflation 

pressure, tillage system, crop row, standard tyre inflation pressure, low tyre inflation pressure, 

deep tillage, shallow tillage and no-till, respectively.  

 

aDF – Degrees of freedom: 20 and 168. CV’s are main effect and subplot effects, respectively.  
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Appendix 5.11. Effect of tyre inflation pressure and tillage system on 1000 grain weight and 

hand harvest grain yield of maize, in the South field in 2017 

 
Treatments† 

 
1000 grain weight (g) Hand harvested grain yield (Mg ha-1) 

DT ST NT Mean DT ST NT Mean 

STP 335 335 337 336 17.12 17.16 17.72 17.33 
LTP 345 335 338 339 17.74 16.87 17.59 17.40 
Mean* 340 335 337  17.43 17.01 17.65  
20 and 168 
DF 

SEM P value LSD 
(0.05) 

CV (%) SEM P value LSD 
(0.05) 

CV (%) 

TIP 2.19 0.250 6.47 2.50 0.181 0.796 0.535 4.00 
TS 2.68 0.414 7.92  0.222 0.142 0.655  
TIP × TS 3.79 0.312 11.2  0.314 0.317 0.926  

 
 
 
Appendix 5.12. Effect of tyre inflation pressure, tillage system and crop row on 1000 grain 

weight and hand harvest grain yield of maize, in the North field in 2018 

 
Treatments 1000 grain weight (g)  Hand harvest grain yield (Mg ha-1)  

SEMa P value LSD CV (%) SEMa  P value LSD CV (%) 

TIP 4.18 0.478 12.33 5.50 0.218 0.125 0.642 7.20 
TS 5.12 0.005 15.10  0.267 <.001 0.786  
TIP × TS 7.24 0.696 21.36  0.377 0.950 1.112  
CR 3.54 <.001 9.89 6.60 0.178 <.001 0.498 8.40 
TIP × CR 6.28 0.759 17.66  0.321 0.184 0.903  
TS × CR 7.69 0.304 21.62  0.393 0.038 1.106  
TIP×TS×CR 10.88 0.331 30.58  0.556 0.611 1.565  

 
Note: TIP, TS, CR, STP, LTP, DT, ST and NT represent tyre inflation pressure, tillage system, 

crop row, standard tyre inflation pressure, low tyre inflation pressure, deep tillage, shallow tillage 

and no-till, respectively.  

 

aDF – Degrees of freedom: 20 and 168. CV’s are main effect and subplot effects, respectively.  
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Appendix 6.1. Effect of tyre inflation pressure on the soil bulk density at different depths down 

to 240 mm in the South field in 2016. 

 

 

 

Appendix 6.2. Effect of tyre inflation pressure on soil moisture content at different depths down 

to 240 mm in the South field in 2016. 

 

 
 
Appendix 6.3. Effect of tyre inflation pressure on total porosity of soil at different depths down 

to 240 mm in the South field 2016. 
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Appendix 6.4. Effect of tyre inflation pressure on the rooting depth of soybean in the South field 

in 2016 
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Appendix 6.5. Effect of tyre inflation pressure, tillage systems and crop row on number of 

plants ha-1 and plant height of soybean, in the North field in 2017 

 

Treatments† Number of plants ha-1  Plant height (m) 

SEMa P value LSD CV (%) SEM P value LSD CV (%) 

TIP 2722 0.285 8031 4.10 0.006 0.248 0.017 2.20 
TS 3334 0.014 9836  0.007 0.001 0.021  
TIP × TS 4715 0.642 13910  0.010 0.074 0.029  
CR 2710 0.004 7566 5.80 0.005 0.010 0.014 2.60 
TIP × CR 4501 0.200 12616  0.009 0.814 0.024  
TS × CR 5513 0.142 15451  0.011 0.099 0.029  
TIP×TS×CR 7796 0.709 21851  0.015 0.192 0.042  
 

 

Appendix 6.6.  Effect of tyre inflation pressure, tillage system and crop row on plant 

establishment, number of plants ha-1 and plant height of soybean, in the South field in 2018 

 

Treatments Plant establishment (%)  Number of plants ha-1 Plants height (m)  

SEMa P 
value 

LSD CV 
(%) 

SEMa P 
value 

LSD CV 
(%) 

SEMa  P 
value 

LSD CV 
(%) 

TIP 0.335 <.001 0.99 1.40 1120.7 0.001 3306.0 1.50 0.006 <.001 0.017 2.70 
TS 0.411 0.027 1.21  1372.5 0.070 4049.0  0.007 0.032 0.021  
TIP × TS 0.581 0.008 1.71  1941.1 0.022 5726.1  0.010 0.157 0.029  
CR 0.591 <.001 1.65 3.60 1463.9 0.002 4087.1 2.80 0.004 <.001 0.012 3.00 
TIP × CR 0.851 0.913 2.37  2237.4 0.701 6250.8  0.008 0.262 0.023  
TS × CR 1.042 0.226 2.91  2740.3 0.022 7655.7  0.010 0.052 0.028  
TIP×TS×CR 1.474 0.316 4.11  3875.4 0.743 10826.8  0.014 0.784 0.040  

 
 

Appendix 6.7. Effect of tyre inflation pressure and crop row on the 1000 grain weight and hand 

harvest grain yield of soybean, in the South field in 2016 

Treatments† 1000 grain weight (g)  Hand harvest grain yield (Mg ha-1) 

SEMa P value LSD CV (%) SEMa  P value LSD CV (%) 

TIP 1.53 0.61 2.17 3.80 0.197 0.1645 0.775 7.50 
CR 1.42 0.21 2.00 4.80 0.176 0.782 0.516 9.50 
TIP × CR 2.31 0.78 3.27  0.293 0.797 0.880  

 
Note: In Appendices 6.5 - 6.7, TIP, TS, CR, STP, LTP, DT, ST and NT represent tyre inflation 

pressure, tillage system, crop row, standard tyre inflation pressure, low tyre inflation pressure, 

deep tillage, shallow tillage and no-till, respectively.  

 

aDF – Degrees of freedom: 20 and 168. CV’s are main effect and subplot effects, respectively.   
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Appendix 6.8. Effect of tyre inflation pressure, tillage systems and crop row on 1000 grain 

weight and hand harvest grain yield of soybean, in the North field in 2017 

 

Treatments 1000 grain weight (g) Hand harvest grain yield (Mg ha-1) 

SEMa P value LSD CV (%) SEMa P value LSD CV (%) 

TIP 0.794 0.501 2.343 1.70 0.098 0.030 0.288 6.50 
TS 0.973 0.188 2.870  0.120 0.411 0.353  
TIP × TS 1.376 0.764 4.059  0.169 0.256 0.499  
CR 0.898 0.706 2.506 2.70 0.150 0.197 0.419 14.20 
TIP × CR 1.429 1.429 3.99  0.221 0.020 0.618  
TS × CR 1.750 0.412 4.89  0.271 0.326 0.757  
TIP×TS×CR 2.474 0.370 6.92  0.384 0.612 1.071  
 

 
 
Appendix 6.9. Effect of tyre inflation pressure, tillage system and crop row on 1000 grain 

weight, biomass and grain yields of soybean, in the South field in 2018 

 
Treatments 1000 Grain weight (g)  Biomass yield (Mg ha-1)  Hand harvested grain yield 

(Mg ha-1)  

SEMa P 
value 

LSD CV 
(%) 

SEMa P 
value 

LSD CV 
(%) 

SEMa  P 
value 

LSD CV 
(%) 

TIP 0.674 0.339 1.987 1.70 0.125 0.001 0.368 5.80 0.076 0.003 0.225 6.40 
TS 0.825 0.805 2.433  0.153 0.249 0.451  0.094 0.864 0.276  
TIP × TS 1.167 0.139 3.441  0.216 0.841 0.637  0.132 0.407 0.390  
CR 1.019 0.006 2.845 3.70 0.183 0.114 0.511 12.10 0.121 0.081 0.337 14.30 
TIP × CR 1.507 0.049 4.207  0.227 0.778 0.761  0.177 0.759 0.494  
TS × CR 1.846 0.307 5.153  0.334 0.235 0.932  0.217 0.289 0.605  
TIP×TS×CR 2.610 0.619 7.287  0.472 0.446 1.318  0.307 0.51 0.856  
 

 

Note: In Appendices 6.5 - 6.6, TIP, TS, CR, STP, LTP, DT, ST and NT represent tyre inflation 

pressure, tillage system, crop row, standard tyre inflation pressure, low tyre inflation pressure, 

deep tillage, shallow tillage and no-till, respectively.  

 

aDF – Degrees of freedom: 20 and 168. CV’s are main effect and subplot effects, respectively.  
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Appendix C: Spreadsheet Analysis for Economic Assessment of the Use of Ultraflex Tyres  

Appendix 7.1. Spreadsheet analysis of value to cost ratio for 200 ha farms under farm equipment with tyre systems (G. Brooks, 

Personal communication, 12 March 2019). 

 
  

Example: For 200 ha farm

Number of machines 1 Number of machines 1 Number of machines 1 Number of machines 0 Number of machines 1

Cost of standard tyres / machine $6,400 Cost of standard tyres / machine $6,400 Cost of standard tyres / machine $10,200 Cost of standard tyres / machine $13,054 Cost of standard tyres / machine $11,400

Cost of Ultraflex LGP tyres / machine $7,600 Cost of Ultraflex LGP tyres / machine $7,600 Cost of Ultraflex LGP tyres / machine $14,400 Cost of standard tyres / machine $18,075 Cost of standard tyres / machine $13,000

Total Difference $1,200 Total Difference $1,200 Total Difference $4,200 Total Difference $0 Total Difference $1,600

Total Difference in Tyre Spend $8,200

Crops area (ha) 200

Tyre life (years) 5

Standard Pressure yield / ha (Tonnes) 4.14

Harvest value / Tonne $323

Annual value of crops $267,444

Yield increase/decrease from LGP % 5.10%

Annual Earnings increase $12,000

Over the tyre life $59,998

Value to Cost Ratio 50          

Chaser wagon

Michelin Ultraflex Tyre          Value to 

Cost Analysis

Main Cultivation Tractor > 220HP General Duties Tractor > 126HP Combine Harvester 5000 lts Self-Propelled Sprayer
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Appendix 7.2. Spreadsheet analysis of value to cost ratio for 809 ha farms under farm equipment with tyre systems (G. Brooks, 

Personal communication, 12 March 2019). 

 

 

Example: For 809 ha farm

Number of machines 2 Number of machines 1 Number of machines 1 Number of machines 0 Number of machines 2

Cost of standard tyres / machine $15,600 Cost of standard tyres / machine $15,600 Cost of standard tyres / machine $15,000 Cost of standard tyres / machine $13,054 Cost of standard tyres / machine $11,400

Cost of Ultraflex LGP tyres / machine $19,200 Cost of Ultraflex LGP tyres / machine $19,200 Cost of Ultraflex LGP tyres / machine $18,000 Cost of standard tyres / machine $18,075 Cost of Ultraflex LGP/Machine $13,000

Total Difference $7,200 Total Difference $3,600 Total Difference $3,000 Total Difference $0 Total Difference $3,200

Total Difference in Tyre Spend $17,000

Crops area (ha) 809

Tyre life (years) 5

Historic yield / ha (Tonnes) 14.36

Harvest value / Tonne $142

Annual value of crops $1,649,648.08 Crop area*yield*price

Yield increase from LGP 2.20%

Annual Earnings increase $32,892 $32,892.26 $36,292.26

Over the tyre life $164,461

Value to Cost Ratio 23                  

Chaser wagon

Michelin Ultraflex Tyre          Value 

to Cost Analysis
Main Cultivation Tractor > 350HP General Duties Tractor > 300HP Combine Harvester 5000 lts Self-Propelled Sprayer
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Appendix 7.3. Annual cost of using low tyre inflation tyre system over standard tyre inflation tyre system for a 200 ha farm at the 

University of Illinois. 

Tyre 
systems 

Equipment Quantity  Axle tyre Model Brand 
name 

Retail 
price 
(US$)† 

Tyres 
needed 

Cost/ 
Tyre # 

Price total 
(US$) 

% cost 
increase 

STP Tillage tractor 
(>220 HP) 

1 Front tyre 380/85R34 Agribib $1,100 2 $2,200 $6,400 
 

- 
Rear tyre 480/80R46 Agribib $2,100 2 $4,200 

Planting tractor 
(>126 HP) 

1 Front tyre 380/85R34 Agribib $1,100 2 $2,200 $6,400 
 

- 
Rear tyre 480/80R46 Agribib $2,100 2 $4,200 

Combine 
harvester 

1 Front tyre 800/65R32 Megaxbib $4,000 2 $8,000 $10,200 - 
Rear tyre 14.9R24 Agribib $1,100 2 $2,200 

Chaser wagon 1 Front tyre 900/60R32 Megaxbib $5,700 2 $11,400 $11,400 - 

Total cost of STP tyres (A) $34,400 $34,400 - 
LTP Tillage tractor 

(>220 HP) 
2 Front tyre VF380/85R34 Yieldbib $1,300 2 $2,600 $7,600 

 
18.75% 

Rear tyre VF480/80R46 Yieldbib $2,500 2 $5,000 
Planting tractor 
(>126 HP) 

1 Front tyre VF380/85R34 Yieldbib $1,300 2 $2,600 $7,600 
 

18.75% 
Rear tyre VF480/80R46 Yieldbib $2,500 2 $5,000 

Combine 
harvester 

1 Front tyre IF800/65R32 Cerexbib $5,500 2 $11,000 $14,400 
 

41.18% 
Rear tyre 480/65R24 Multibib $1,700 2 $3,400 

Chaser wagon 2 Front tyre VF900/60R32 Cerexbib2 $6,500 2 $13,000 $13,000 14.04% 
Total cost of LTP tyres (B) $42,600 $42,600 23.84% 

 Difference (C) =(A-B) $8,200  
 Annual cost for 5 years (US $) (D) = (C/5) $1,640  
 Annual cost for 200 ha (US $/ha) (E) = (D/200) $8.10  

 
† Prices of tyres were collected from Michelin (G. Brooks, Personal communication, 12 March 2019; M. Pantaleo, Personal 

communication, 20 March 2019) 
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Appendix 7.4. Annual cost of using low tyre inflation tyre system over standard tyre inflation tyre system for an 809 ha hypothetical 

Illinois Farm 

Tyre 
systems 

Equipment Quantity  Axle tyre Model Brand 
name 

Retail price 
(US$)† 

Tyres 
needed 

Cost/ 
Tyre # 

Price total 
(US$) 

% cost 
increase 

STP Tillage tractor 
(>350HP) 

2 Front tyre 420/85R34 Agribib2 $1,400 8 $11,200 $31,200 - 
Rear tyre 480/80R50 Agribib2 $2,500 8 $20,000 

Planting tractor 
(>300 HP) 

1 Front tyre 420/85R34 Agribib2 $1,400 4 $5,600 $15,600 - 
Rear tyre 480/80R50 Agribib2 $2,500 4 $10,000 

Combine 
harvester 

1 Front tyre 520/85R42 Agribib2 $2,400 4 $9,600 $15,000 
 

- 
Rear tyre 750/65R26 Megaxbib $2,700 2 $5,400 

Chaser wagon 2 Front tyre 900/60R32 Megaxbib $5,700 4 $22,800 $22,800 - 
Total cost in STP (A) $84,600 $84,600 - 

LTP Tillage tractor 
(>350HP) 

2 Front tyre VF420/85R34 Yieldbib $1,700 8 $13,600 $38,400 
 

23.08% 
 Rear tyre VF480/80R50 Yieldbib $3,100 8 $24,800 

Planting tractor 
(>300 HP) 

1 Front tyre VF420/85R34 Yieldbib $1,700 4 $6,800 $19,200 
 

23.08% 
 Rear tyre VF480/80R50 Yieldbib $3,100 4 $12,400 

Combine 
harvester 

1 Front tyre VF520/85R42 Cerexbib $2,900 4 $11,600 $18,000 
 

20.00% 
 Rear tyre VF750/65R26 Cerexbib $3,200 2 $6,400 

Chaser wagon 2 Front tyre VF900/60R32 Cerexbib2 $6,500 4 $26,000 $26,000 14.04% 
 Total cost of LTP (B) $101,600 $101,600 20.09% 
 Difference (C) =(A-B) $17,000  
 Annual cost for 5 years (US $) (D) = (C/5) $3,400  
 Annual cost for 809 ha (US $/ha) (E) = (D/809) $4.20  

 
†Prices of tyres were collected from Michelin (G. Brooks, Personal communication, 12 March 2019; M. Pantaleo, Personal 

communication, 20 March 2019) 
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Appendix D: Trial Photographs 
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