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The intensification of agricultural land use has brought 
about increased diffuse source pollution within water 
catchments, the breakdown of natural biogeographical 
barriers and reduced landscape heterogeneity within 
agroecosystems (Macfarlane and Bredin 2017; Cresswell 
2018). The introduction and management of vegetative 
strips around agricultural fields (hereafter termed field 
margin strips) in these agricultural systems have been 
highlighted as a mitigation measure to prevent such impacts 
(Stutter et al. 2012; Petersen et al. 2020).

A complex of forbs and grasses make up the composition 
of planted field margin strips, with numerous studies 
highlighting their effectiveness in mitigating both surface 
and groundwater quality, as well as the regulation of 
ecological functions (Gregory et al. 1991; Lind et al. 
2019). Although previous studies have tested species 
combinations designed to advance of aboveground 
ecosystem service complementarities in field margin 
strips (Cresswell et al. 2018), there is limited field-based 
information on the belowground ecosystem services 
these plants support. Evidence suggests plant species 
compositions play a prominent role in the overall health 
of soil biomes in that their edaphic network of multitrophic 
interactions correspond with ecosystem functioning 
(Bünemann et al. 2018; Rinnot et al. 2019).

Field margin strips can perform a wide range of functions, 
such as flood attenuation, eutrophication prevention, 

as well as provision of organic matter to support food 
webs in riparian zones (Macfarlane and Bredin 2017). 
It is within this context that riparian buffer zones have the 
potential to positively influence soil health, and in turn 
below ground ecosystem services. Soil health comprises 
biological, chemical, and physical attributes (Rinot et al. 
2019). In this study, we assess the effects of the plant 
species composition of planted field margin strips on one 
indicator for each soil health attribute: 1) the diversity and 
composition of the Collembola community (biological), 2) 
soil organic matter (SOM) content (chemical) and 3) soil 
water infiltration (physical).

All three indicators are established measures of 
soil health. Collembola communities are an important 
component of edaphic mesofauna (Parisi et al. 2005), 
whereas SOM is a key factor in the sustainability of 
biological functions through the provision of energy and 
supporting edaphic biological diversity and activity (Buckley 
and Schmidt 2001; Franzluebbers 2002). Water infiltration 
measures the soil’s capacity to accept, hold and release 
water, which can be linked with aggregate stability, effecting 
soil health either positively or negatively (MacEwan and 
Fitzpatrick 1996).

We explored these three soil health indicators in 
existing multifunctional field margin strips established in 
a field experiment in April 2015 by Cresswell (2018). The 
experiment tested five different plant species compositions 
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for field margin strips (Table 1), selected by using published 
and grey literature between 1983 and 2017 to link plant 
traits with target ecosystem services (Cresswell et al. 
2018). Treatments consisted of 1) 100% forb dominated 
communities intended for pollinator and parasitoid support, 
2) 100% grass dominated communities (Cresswell 
2018) proposed as buffers for water quality protection, 3) 
multifunctional vegetative strips consisting of 50% forbs and 
50% grasses (Cresswell 2018) suitable for all soil types, 4) 
a similar mix designed specifically for Sandy Loam Soils, 
and 5) an example of a commercially available seed mix. 
Additional information on species and selection is described 
by Cresswell (2018).

Species richness was monitored over time by Cresswell 
(2018), considering successional changes often result 
in grasses outcompeting less-competitive wildflowers to 
become dominant (Grime et al. 2007). Grass-dominated 
field margin strips showed an average of 26% forb incursion 
over three years. 50% Forb 50% grass multifunctional 
vegetative strips showed an average of 60% forb incursion 
over three years. Despite these changes in composition, 
all initially planted species were still present at the time of 
sampling for this study.

The experimental site was located in Shropshire, England 
(52°46′32″ N, 2°25′40″ W), on sandy loam soils. Mean 
monthly maximum and minimum temperatures range from 
20 °C in July to 1 °C in January, respectively. The mean 
annual rainfall is 105 mm, most of which falls in the summer 
months, with snow experienced in winter. The different 

field-margin strip-composition treatments were planted 
in 4 m by 4 m plots (separated by 1 m grass buffer strips) in 
a randomised block design with five replicates. All treatments 
were sown at 2 g m−2 and during initial establishment the site 
was hand weeded for non-sown species.

Sampling of the three soil-health indicators was 
undertaken in April 2019, four years following 
establishment. To assess the Collembola community, soil 
core samples were collected using 5 cm diameter bulk 
density rings to a depth of 10 cm, accounting for depths 
that present the most active collembolan population 
densities (Mayvan et al. 2015). Three random samples 
were collected from each experimental plot and extracted 
via Berlese-Tullgren funnels. Specimens were collected 
in 20 ml 75% ethyl alcohol. An extraction period of 
fifteen days was used. Samples were examined under a 
stereomicroscope at low magnifications and indexed using 
the Qualita Biologica del Suolo (‘Biological Soil Quality’) 
Collembola (QBS-c) method described by Parisi et al. 
(2005) and Parisi and Menta (2008). This method offers 
a rapid means of characterising edaphic microarthropod 
populations without the requirement of taxonomic 
understanding of observed Collembola species. This QBS-c 
is based on the concept that Collembola samples with high 
ecomorphological index scores (EMI) correlate positively 
with soil health and positive edaphic functionality (Parisi 
et al. 2005). Collembola present within each sample were 
assigned an EMI according to the different adaption levels 
relative to their soil environment (antenna length, furca, 

 
  All soil 

types
Sandy 

loam soils
Water quality 

protection
Pollinator 
support

Commercial 
mix

Fo
rb
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pe
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es

Common Cats Ear Hypochaeris radicata   
Common Bird’s-foot-trefoil Lotus corniculatus  
Common Knapweed Centaurea nigra    
Dandelion Taraxacum   
Devils bit scabious Succisa pratensis 
Germander Speedwell Veronica chamaedrys   
Hogweed Heracleum  
Hedge Bedstraw Galium mollugo 
Hedge Woundwort Stachys sylvatica  
Meadow Buttercup Ranunculus acris   
Oxeye Daisy Leucanthemum vulgare   
Primrose Primula vulgaris  
Red Campion Silene dioica   
Red Clover Trifolium pratense    
Rough Hawkbit Leontodon hispidus 
Tufted Vetch Vicia cracca 
White Clover Trifolium repens   
Wild Carrot Daucus carota  
Wild Strawberry Fragaria vesca 
Yarrow Achillea millefolium   

G
ra

ss
 s

pe
ci

es

Common Bent Agrostis capillaris   
Cock’s Foot Dactylis    
Crested Dogs Tail Cynosurus cristatus 
Meadow Fescue Festuca pratensis   
Meadow Foxtail Alopecurus pratensis 
Red Fescue Festuca rubra   
Tall Fescue Festuca arundinacea  
Timothy Phleum pratense  

Table 1: Community composition and sowing rate of seed mixes of the different treatments
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presence of hair or scales, and pigmentation). Collembola 
were then classified according to a particular EMI category, 
based on phenological characteristics according to 
their ecomorphological forms; epigeic, hemiedaphic or 
euedaphic (Supplementary Figure S1).

Water infiltration into the soil in each field margin strip 
treatment was determined using the falling-head method 
with a double ring infiltrometer to determine in situ field 
saturated hydraulic conductivity (Kfs), following methods 
described by Elrick and Reynolds (2002). Kfs was calculated 
using the following equation (Equation 1) adapted from 
Reynolds (2008):
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 (Equation 1)

where α = 0.12 /cm is a predetermined site soil structure 
parameter assigned according to categories described by 
Elrick et al. (1989), qs = Qs/πa2 is the measured quasi-steady 
infiltration rate from the inner ring, Qs is the corresponding 
quasi-steady flow rate using quasi-empirical constant C1 = 
0.316π and C2 = 0.184π applied for d ≥ 3 cm and H ≥ 5 cm, a 
= 5 cm is the radius of the inner ring, H1 = 6 cm is the steady 
depth of ponded water in inner ring, d = 3 cm is the depth 
of ring insertion into soil, A = πa2 is the cross-sectional area, 
and R1 is the steady-state infiltration rate.

To assess SOM, three random soil core samples were 
collected from each experimental plot, air-dried and 
sieved together, using a 2 mm sieve to give a composite 
sample was determined as the value of loss on ignition 
(LOI) at 550 °C (Equation 2), expressed as a percentage 
of weight (wt.at) lost after 105 °C moisture loss according 
to Heiri et al. (2001):
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(Equation 2)
 

Differences in mean Collembola abundances, water 
infiltration and SOM between different field-margin 
strip-compositions were assessed using Analysis of 
Variance (ANOVA). Response data were log10 transformed 
and assumptions of normality in the residuals were satisfied 
using a Shapiro–Wilk test and histograms. Homogeneity 
of variances was satisfied using Bartlett’s test and Q–Q 
plot of residuals presented no significant outliers. Data are 
assumed independent. For SOM and water infiltration, a 
one-way ANOVA was used to detect differences between 
the treatment means, with block included as a grouping 
factor. Microarthropod abundances often have skewed 
frequency distributions; for that reason generalised linear 
models (GLMs) with a Poisson distribution were used to 
estimate the mean abundance of Collembola in each of 
the three EMI categories. Treatment was the explanatory 
variable and abundance of (1) epigeic Collembola, (2) 
abundance of hemiedaphic Collembola, (3) abundance of 
euedaphic Collembola, 4) water infiltration and 5) SOM as 
interacting variables. An ANOVA was then performed to 
detect whether means differed between treatments. Models 
were described using a blocking factor to account for main 

effects of blocking structure. Principal Component Analysis 
(PCA) was used to explore the variables associated with 
observed discrimination between the samples. Data were 
analysed with R Studio 3.6.1 (R Development Core Team 
2020) using the FactoMineR package.

Our analyses indicated significant differences between 
different field margin strip composition treatments in 
mean water infiltration and Collembola abundances. 
SOM averaged between 1.85% and 2.67%; however, no 
significant differences were observed (F = 1.655, p = 0.20, 
df = 4). For water infiltration, the Pollinator Support and the 
All Soil Types treatment showed significantly higher rates 
than other treatments (respectively, mean = 0.058 cm s−1, 
mean = 0.039 cm s−1, F = 3.15, p = 0.03, df = 4) (Figure 1).

Collembola from ecotypes identified in the QBS-c 
method were present in every treatment. Epigeic 
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Figure 1: Bioindicators shown within each treatment; (a) Average 
field saturated hydraulic conductivity (K_fs) by treatment. Columns 
shown rate, bars show standard errors (n = 15), (b) Soil Organic 
Matter (SOM) by treatment, Columns shown content, bars 
show standard errors (n = 15), (c) mean Collembola counts by 
ecomorphological forms (epigeic, hemiedaphic and euedaphic), 
within each treatment. Bars shows standard errors (n = 15). 
Where AST = Multifunctional seed mix for all soil types, SLS = 
Multifunctional seed mix for sandy loam soils, WQP = Water quality 
protection seed mix, PS = Pollinator support seed mix, CM = 
Commercially available multifunctional seed mix
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Collembola indicated the greatest abundance across 
all treatments (z = 3.578, p < 0.01, df = 24). Hemidaphic 
Collembola suggested statistical significance in treatments 
planted to Pollinator Support (z = −2.098, p = 0.03, 
df = 24). Euedaphic Collembola abundances indicated 
statistical significance in treatments planted to Pollinator 
Support (z = −5.419, p < 0.001, df = 24), Commercial 
Mix (z = −4.334, p < 0.001, df = 24), and Water Quality 
Protection (z = −3.870, p < 0.001, df = 24).

When using a PCA to explore relationships between 
the three soil health indicators, the first two Principal 
Components accounted for approximately 52% of the 
variation (Figure 2). Most discrimination that is observed 
between treatments occurs in PC1 as All Soil Type mixes 
vs Sandy Loam Soil mixes. The main factors driving this 
discrimination are field saturated hydraulic conductivity 
(K_fs) (`x: All Soil Type mixes = 0.039 cm s−1 and Sandy 
Loam Soil mixes = 0.012 cm s−1); SOM (`x: All Soil Type 
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Figure 2: Treatment variables factor map Principal Components Analysis (PCA) of the treatment scores of the 25 field plots. Included 
as well are the sample scores for diagnostic soil health indices (Collembola: epigeic, hemiedaphic and euedaphic, SOM, Field 
saturated conductivity)
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mixes = 2.00% SOM dry weight and Sandy Loam Soil 
mixes = 2.6% SOM dry weight); Epigeic (`x: All Soil Type 
mixes = 64 m−2 and Sandy Loam Soil mixes = 57 m−2); 
Hemiedaphic (`x: All Soil Type mixes = 3 m−2 and Sandy 
Loam Soil mixes = 4 m−2); and Euedaphic (`x: All Soil Type 
mixes = 26 m−2 and Sandy Loam Soil mixes = 44 m−2). 
Some discrimination can also be observed in PC2 as 
Pollinator Support mixes ≠ Water Quality Protection 
mixes = the Commercial Mix. Collembola ecotype and 
SOM are the variables that most contribute to this observed 
discrimination (Figure 2).

A key finding of this study is that the plant community 
composition can influence soil-water infiltration rates. 
Contrary to expectations, forb dominated Pollinator 
Support treatments and mixed compositions planted for 
All Soil Types, rather than grass dominated Water Quality 
treatments, showed a significantly higher water infiltration 
function; these observations could aid in field-margin strip 
selection for improved infiltration in vulnerable zones, 
adding to existing ecosystem services. This supports 
studies by Su et al. (2018) showing natural restoration of 
soils with a greater plant diversity and forb ratio increased 
soil infiltration rates and cumulative infiltration. The 
outcomes of this study suggest that planting fob-dominated 
or mixed grass-forb communities in field margin strips or 
riparian buffer zones can be beneficial for water protection-
based ecosystem services in agricultural landscapes, as 
well as slow the flow-catchment management concepts 
(Collentine and Futter 2018).

The statistical and PCA analysis suggested Collembola 
ecotype contributed to observed discrimination between 
treatments. High abundances of epigeic Collembola 
across all field margin strip compositions, particularly when 
observing increased SOM, is consistent with findings by de 
Oliveira Filho et al. (2015) where the density of Collembola 
changed significantly with land use varying soil disturbance. 
With the site having not been disturbed for four years, 
Collembola abundance was expected to demonstrate high 
richness of these edaphic fauna. Salamon et al. (2004) 
suggested that high epigeic Collembola abundance could 
be attributable to increased soil microbial and fine root 
biomass within treatments within plant functional groups. 
With the addition of aforementioned plant communities in 
previously degraded landscapes, changes in Collembola 
abundance can provide long term ecosystem services, 
consequently aiding in the promotion of land functionality 
(de Oliveira Filho et al. 2015). Consistently low hemiedaphic 
Collembola across treatments may be attributable to 
microarthropod seasonal fluctuations. Possible observed 
higher species evenness and diversity may be seen in soils 
with consistent soil moisture levels or frequently irrigated 
soils measured seasonally (Tsiafouli et al. 2016).

The presence of relatively high abundances of euedaphic 
Collembola is usually indicative of high levels of soil 
health (Parisi and Menta 2008). The plant communities 
used in this study had been established in 2015, without 
mechanical soil disturbance or intervention since that time, 
with the result that the belowground Collembola community 
had time to develop; it being the most sensitive ground to 
disturbance and the longest to subsequently recolonise 
(Parisi and Menta 2008).

Despite the wide range of plant species used in the 
different treatments, and although quantified SOM 
demonstrated higher percentages within the soil (Figure 
1), no independent statistically significant differences 
were observed between treatments rhizosphere (four 
years after planting). Treatments were however seen to 
show significance when observed with interacting factors 
(Collembola abundance and water infiltration) suggesting 
SOM levels influence hydrological functioning in relation 
to soil functioning and aggregation (Franzluebbers 2002), 
indicated as such by elevated Collembola abundances.

The results of this study demonstrate that different 
herbaceous forb or grass compositions had different relative 
effects on the soil health indicators investigated in this 
study. In particular, the forb-dominated Pollinator Support 
composition and the mixed forb-grass All Soil Types 
composition improved water infiltration. High abundances 
of epigeic and euedaphic Collembola may indicate high 
levels of soil health, suggested to be attributable to minimal 
land disturbance and could contribute to ecosystem 
services. Low abundances of hemidaphic Collembola may 
be attributable to environmental causes. Integration of 
spatiotemporal variation and prolonging the sample period 
to attain time series data may be valuable in understanding 
whether different field margin compositions could result 
in different ecosystem service provision over time, as the 
edaphic ecosystem stabilises.
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