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Abstract 25 

Maintaining animal health and performance relies on the availability of an appropriate diet. For herbivores, 26 

accurate assessment of forage nutrient quality is critical for appropriate diet formulation and rationing, including 27 

potential supplementation. Near-Infrared Reflectance Spectroscopy (NIRS) is a rapid method that is used in place 28 

of traditional chemical methodologies (wet chemistry) to predict analyte contents in forage samples. The method 29 

relies on scanning a sample with near-infrared light and predicting the analyte content by comparing the reflected 30 

spectra to a model which has been developed with samples of known analyte content measured by wet chemistry. 31 

The purpose of this study was to examine the accuracy of four NIRS-based methods on haylage from seven farm 32 

holdings compared with wet chemistry (the control). We analysed 64 samples for a range of analytes (dry matter 33 

(DM), pH, ash, acid detergent fibre expressed inclusive of residual ash (ADF), neutral detergent fibre assayed 34 

with a heat stable amylase and expressed inclusive of residual ash (aNDF), crude protein and water-soluble 35 

carbohydrate (WSC)) commonly assessed for haylage quality in equid nutrition. We compared results obtained 36 

by wet chemistry to corresponding NIRS-based predictions from four commercially available NIRS services. The 37 

results revealed large discrepancies amongst all five methods. For DM, average bias (mean±SD) for three reported 38 

methods was -15.5±188.4, -10.1±50.4, 12.9±33.8 g/kg respectively and for WSC reporting positive bias from four 39 

methods of 26.9±51.3, 24.8±38.2, 26.2±50.1 and 14.5±45.2, g/Kg respectively. The extent of these discrepancies 40 

from the wet chemistry also varied by analyte where for example, predictions for DM were more reliable than 41 

those for WSC and results demonstrated that predictions obtained by NIRS could result in feeding forage outside 42 

of target nutritional values. 43 

Introduction 44 

Near-Infrared Reflectance Spectroscopy (NIRS) is commonly used for analysis of forages in the place of 45 

traditional chemical methodologies (wet chemistry). It is a fast, non-destructive method which allows many 46 

samples to be processed with immediate quantitative results, thus increasing the chance for data capture on a high 47 

number of samples (Shenk and Westerhaus, 1994). This can provide critical information for quality of feedstuffs, 48 

allowing quality control measures to be undertaken before samples are consumed or dispatched (Batten, 1998). 49 

The use of NIRS in agriculture has increased with the development of handheld and portable NIRS devices 50 

including the capture of live measurements to provide nutritive information during harvesting of crops, blending 51 

of total mixed rations (Evangelista et al., 2021; Montes and Paul, 2008; Piccioli-Cappelli et al., 2019) or analysis 52 

of forage quality and composition (Shenk and Westerhaus, 1994). Several commercial laboratories offer NIRS 53 
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analysis for samples received by post which enables individual livestock owners to access sample services which 54 

provide a range of forage analytes for as little as £15 Sterling per sample.  55 

Forage analysis using NIRS methodologies have emerged as the dominant technology for routine analysis in the 56 

livestock and equine sector. Forage for equids is usually produced in bales and variation can be high between 57 

individual units even if they originate from the same batch or field (Sheaffer et al., 2000). For equids, forage fibre, 58 

water-soluble carbohydrate (WSC) and crude protein are useful nutritional analytes for diet formulation, 59 

especially if an all-forage diet is fed. In some countries feeding wrapped forages in bales has partially or totally 60 

replaced hay in equine diets (Müller, 2018). Therefore, it is advantageous to have inexpensive, fast and accurate 61 

measurement techniques which can be used to aid decision making before offering forages. Commercial 62 

laboratories offer services on fresh samples that can return results within 24 h of receipt, making it a convenient 63 

tool to aid decision making.  Recently, Harris et al. (2018) reported a dataset comparing sample analysis of dried, 64 

ground NIRS to that of wet chemistry for 52 haylage samples. The study found good correlations between mean 65 

measurements made by wet chemistry and NIRS for paired subsamples, although on an individual sample basis 66 

for WSC, discrepancies of up to 20% were observed. 67 

NIRS is a method based on the scanning of a sample with near-infrared light. The absorbance, typically from ca. 68 

400- 2500 nm range of wavelengths (λ) for laboratory-based instruments is compared with a calibration developed 69 

from the known values (by wet chemistry) for samples of the same type and preparation. A calibration model is 70 

then built from the observed relationships and then used for NIRS-based analyte prediction (Reeves III, 2000). 71 

There are many factors that affect the final result obtained by NIRS for biological samples including: the state in 72 

which the sample is scanned (fresh, dried, ground), the NIRS instrument make and model and scanning 73 

methodology/vessel, the way the sample is taken and homogenised as a representative sample of the unit (e.g. 74 

bale, batch or field), and the calibration model itself. Since methods for the development of the calibration models 75 

are not standardised, there is a possibility that inaccurate results can be obtained if the sample submitted differs 76 

from the range of sample compositions included to build the calibration model (Andueza et al., 2011). As sample 77 

analysis for both scientific and animal nutrition purposes are increasingly reliant on commercially available NIRS 78 

services (with ‘closed’ or little detail on the calibration models), there is a need to ensure that reliable, consistent 79 

results are being obtained. Thomson et al. (2018) and Harris et al. (2018) highlighted the issue that in different 80 

forage types, NIRS predictions may differ from the results obtained by wet chemistry. Our study’s aim was to 81 

build on this previous work where we analysed data for a range of analytes (dry matter (DM), pH, ash, acid 82 

detergent fibre expressed inclusive of residual ash (ADF), neutral detergent fibre assayed with a heat stable 83 
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amylase and expressed inclusive of residual ash (aNDF), crude protein and WSC) commonly assessed for haylage 84 

quality in equid nutrition on fresh scanned samples. We compared the analyte data obtained by wet chemistry 85 

(which acts as our control or ‘true’ measurements), to corresponding NIRS-based predictions from four 86 

commercially available NIRS services. 87 

Materials and Methods 88 

Experimental design and sampling 89 

In March 2018, 77 haylage samples were obtained from seven holdings that produce haylage for Donkey 90 

consumption in Dorset and Devon, UK, where 66 samples were from individual bales. Each bale was sampled 91 

according to O'Brien et al. (2006), by taking six spatially distinct cores using a mechanical silage corer (Dairy 92 

One forage Lab, Ithaca, NY, USA) from the top to bottom.  Each core sample was taken to a depth of 30 cm on 93 

the barrel side along a diameter transect of the bale. The sample was removed and the 6 samples from each bale 94 

were mixed to ensure homogeneity within the composite sample. Samples were immediately scanned with a 95 

commercial handheld NIRS device and the raw spectra used to predict analytes with two different calibration 96 

models (methods B and C) for bale and clamp silage. A sub sample was sent fresh for wet chemistry analysis 97 

(method A), and for further NIRS-based analyte predictions at commercial laboratories either on fresh material 98 

(method D) or dried and ground material (method E) for haylage nutrition analysis. The measured analytes 99 

assessed were: DM, pH, ash, ADF, aNDF, crude protein and WSC.  100 

The commercial labs did not offer a complete dataset of NIRS-based analyte predictions, where DM, pH and ADF 101 

were absent for method E and pH and ADF were absent for method D. Two samples were also subsequently 102 

rejected as their replicate measurements for DM were outside of the recommended range indicating a sampling or 103 

measurement error, giving a final study dataset of 64 samples. 104 

Wet chemistry (method A) 105 

pH was determined by measurement of sample supernatant using a pH electrode at room temperature. Supernatant 106 

was obtained through adding 90 ml milli-Q water to a 10 g subsample of fresh matter (FM) which was agitated 107 

for 10 min (Merry et al., 1995). Further chemical analyses for wet chemistry were conducted by Sciantec 108 

Analytical (Cawood Scientific limited, UK) under the following standard operating procedures and methods. 109 

Samples were oven dried at 60 °C initially and then subsampled for chemical analysis outlined below. To 110 

determine the DM content of material, a further subsample was placed at 105 °C until no further loss of weight 111 
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was recorded. Dried material was then milled to 1 mm and 3 g of the resulting material was furnaced (505 ̊C for 112 

12 h ramp rate 2 ̊C/min) to determine the ash content. Forage that had been dried at 60 °C and subsequently ground 113 

was used to determine aNDF (assayed with a heat stable amylase and expressed inclusive of residual ash) (SOP 114 

S1012) and ADF (expressed inclusive of residual ash) (SOP S1129) as described in Davies et al., (1998) with the 115 

exception of using oven dried, not freeze dried material. Samples were defatted with acid detergent then starch 116 

transformed to soluble sugars by treating with α-amylase. The soluble material was removed by boiling in neutral 117 

solution and the remaining insoluble material was weighed to determine the aNDF.  From the soluble material, 118 

acid detergent fibre was determined using the Ankom 220 analyser (ANKOM Technology Corp., Macedon, NY, 119 

USA).  Total N content of the forage was determined by the Kjeldahl technique (FOSS Kjeltec 8400 analyser, 120 

Foss Co. Ltd, Denmark). Crude protein (SOP S1113) was calculated from total N content multiplied by 6.25 as 121 

described in Merry et al. (1995). The anthrone technique was used to measure WSC concentration of the sample 122 

(SOP S1030) (Davies et al., 1998; Merry et al., 1995). Briefly, the sample was agitated in distilled water and 123 

filtered to remove particulate material. An aliquot of the resulting supernatant was mixed with anthrone. The 124 

absorbance of the solution was measured at 625 nm by spectrophotometer and compared to a standard curve of 125 

glucose standards.  126 

NIRS-based predictions (methods B to E) 127 

Methods B and C used a handheld microNIR spectrometer (VIAVI Solutions Inc., Scottsdale, Arizona, USA)   128 

which is a mobile on farm device to scan the samples.  Each sample was prepared following the supplier’s protocol 129 

and scanned in the fresh form without any processing of the mixed cored sample, which involved a total scan time 130 

of 50 seconds split into 5 separate scan times of 10 s with mixing of the sample between each scan.  The scan data 131 

collected was then fitted to one of two models (bale (method B) or clamp (method C)).  Thus, exactly the same 132 

scan data was used for both models in this case.  The sample scanned for methods B and C was then subsampled 133 

for the remainder of the analysis. For method D the sample was scanned by a commercial laboratory that scans 134 

using a FOSS NIR 6500 (Foss Co. Ltd, Denmark).  This sample was also scanned in the fresh form with no post 135 

sample processing.  Method E was scanned by a different second commercial laboratory using a  bench top FOSS 136 

5000 (Foss Co. Ltd, Denmark)  NIRS instrument, however this laboratory oven dries and grinds the sample prior 137 

to scanning with NIRS and as such does not provide a NIRS prediction for DM.  The laboratories are independent 138 

of each other and therefore have their own unique set of prediction models that were used to describe the NIRS 139 

data. 140 
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 141 

Statistical analysis 142 

The analyte datasets were summarised by their mean, standard error of the mean (SEM) and data range, together 143 

with the presentation of analyte boxplots conditional to each method (A to E) used. Next for each analyte set, a 144 

linear correlation analysis was conducted, where coefficients (r) should tend to +1 if each NIRS-based method (B 145 

to E) provided predictions that tend to those using wet chemistry (method A). An indication of which analyte 146 

tended to provide the most coherent outputs across all methods was found via a principal component analysis 147 

(PCA) (see Joliffe, 2002) on each analyte set, and by reporting the percentage variance explained for the first 148 

principal component (PC), only. Analytes with similar outputs across all methods will provide percentages 149 

approaching 100%, while those with dissimilar outputs will provide percentages approaching 0%. Given both the 150 

correlation analyses and the PCAs are invariant to changes in scale in the data (i.e. constant upward or downward 151 

shifts in the data would go unnoticed), a series of linear regression analyses were conducted, in a pairwise fashion 152 

(i.e. Method A to B, C, D and E, in turn), similar to that done for the correlations. For each regression, the estimated 153 

intercept and slope parameters should respectively equal 0 and +1 for exact 1:1 correspondence. Results (p-values) 154 

from a linear hypothesis test were reported comparing this ideal model with the estimated model using a finite 155 

sample F test (Fox, 2015). 156 

Finally, a series of Bland-Altman plots (Bland and Altman, 2007) were found to statistically and visually 157 

determine the level to which methods B to E (NIRS-based predictions) agreed with method A (wet chemistry). 158 

Here the difference between the wet chemistry and an NIRS-based prediction was plotted (on the y-axis) against 159 

the average of the same two outputs (on the x-axis). Bland-Altman plots were given with a series of y-axis 160 

thresholds to guide interpretations, these were: (a) a threshold of 0, where exact agreement between methods 161 

occurs if all points coincide with this line (i.e. zero bias); (b) the mean bias (i.e. mean of the differences) from the 162 

zero line of (a), together with associated 95% confidence intervals; (c) mean-based upper and lower agreement 163 

thresholds together with associated 95% confidence intervals; and (d) median-based upper and lower agreement 164 

thresholds but without associated confidence intervals. Median-based thresholds provided a useful guide to the 165 

influence of outliers on the Bland-Altman analysis, complementing the more usual, mean-based ones. The Bland-166 

Altman analysis was also presented with the standard deviation (SD) of the bias (not shown on the plots), as well 167 

as the mean bias in (b). All statistical analyses were conducted within the R statistical computing environment 168 
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(version 3.6-3), where the Bland-Altman plots and associated diagnostics were found using and adapting functions 169 

provided in the blandr R package (Datta, 2017). 170 

 171 

Results 172 

Figure 1 summarises the analyte data using boxplots conditioned by the five methods (A to E), where these are 173 

reviewed below, together with the data summaries and Bland-Altman plots. Figure 2 provides the correlation 174 

coefficients for each analyte set, where each cell of each correlation matrix should reflect expected positive 175 

correlations between methods. Correlation coefficients worth noting are those > +0.5, and always including 176 

method A (the wet chemistry control). This subset consisted of method A in comparison to: methods C and D for 177 

DM; method C for ash; method D for aNDF; methods C, D and E for crude protein; and methods C and E for 178 

WSC. The correlation analysis indicated that NIRS-based predictions for pH (Figure 2b) and for ADF (Figure 2d) 179 

were of no value, where the corresponding scatterplots (not shown) for these weak positive or even negative 180 

correlations, confirmed such poor relationships. The correlation analysis also indicated that method B was of little 181 

use for predicting all seven analytes, as correlations with method A ranged from +0.29 for crude protein to -0.46 182 

for aNDF. 183 

The percentage of variance explained within the first PC for each analyte group was 53.8%, 35.9%, 32.6%, 38.6%, 184 

32.4%, 35.2% and 33.1% for DM, pH, ash, ADF, aNDF, crude protein and WSC, respectively. This means that 185 

NIRS-based predictions for DM were the most likely to be consistent with each other and with the wet chemistry 186 

(as highest percentage), while this outcome was least likely for aNDF (as lowest percentage). The results (p-187 

values) from the linear hypothesis tests indicated all method comparisons resulted in a strongly significant 188 

deviation (at the 99.99% level and greater) from the ideal 1:1 (45o) regression line from the origin, except that for 189 

method A in comparison to method C for DM (with a p-value = 0.15). These test results confirmed observations 190 

from the correlation analyses, above, where NIRS-based predictions for pH and for ADF were of no value, and 191 

method B was of little use for predicting all seven analytes. Surprisingly, given the strong correlation in Figure 192 

2a, method A in comparison to method D for DM significantly deviated from the 1:1 line. This was due to a 193 

relatively large negatively estimated intercept resulting in Method D consistently under-predicting DM. 194 

Figures 3 to 7 provide the Bland-Altman plots for the seven analytes and five methods. For each analyte, the plots 195 

are given with a common y-axis scale to furnish objective comparisons. These results are discussed per analyte, 196 

and with reference to data summaries and the boxplots of Figure 1. 197 



8 
 

Dry matter was reported for four methods (A-D) with all methods showing similar means ±SEM (644±15.6, 198 

659±17.0, 653±15.2, 631±12.6 g/kg for methods A to D, respectively), and ranges of (574.4, 578.4, 602.4, 540.0 199 

g/kg), respectively (see also Figure 1a). Mean bias was calculated through Bland-Altman analysis (Figure 3) and 200 

showed that on average, methods B and C over-predicted DM (to that found with method A, the wet chemistry) 201 

with mean bias values of -15.5 and -10.1 g/kg and associated SDs of 188.4 and 50.4 g/kg, respectively. Method 202 

D on average, under-predicted DM with a mean bias of 12.9 g/kg with an associated SD of 33.8 g/kg. The high 203 

SD of the differences (bias) for method B indicated (and confirmed) an extremely poor performance of this 204 

method, relative to methods C and D (and this was clearly reflected in Figure 3). Method D showed a trend of 205 

over-predicting at the lower DM range and under-predicting in the higher DM range. Method C appeared to be 206 

relatively more accurate at the extremes than method D, but this could be due of the lower number of samples 207 

within this DM range. 208 

 209 

Mean ±SEM of pH was reported for methods A-C as 5.97±0.053, 6.67±0.161, 6.51±0.149, with ranges of 3.39, 210 

5.23 and 5.52 for each method, respectively (see also Figure 1b). From the Bland-Altman analysis (Figure 4a-b), 211 

methods B and C tended to under-predict at low pH, while over-predicted at high pH values. Mean bias showed 212 

that on average, methods B and C over-predicted pH with mean bias values of -0.71 and -0.54 and associated SDs 213 

of 1.4 and 1.3, respectively. As already indicated, the NIRS-based predictions for pH were of little to no value. 214 

Ash concentration was reported for all five methods (A-E) with all methods showing similar means ±SEM 215 

(76.1±1.67, 74.2±2.12, 76.0±2.22, 69.2±1.10, 91.1±1.35 g/kg for methods A to E, respectively), and ranges of 216 

64.00, 76.48, 93.10, 50.00, 48.97 g/kg, respectively (see also Figure 1c). Mean bias of the NIRS-based prediction 217 

methods was calculated through the Bland-Altman analysis (Figure 4c-f) and showed that on average, methods 218 

B, C and D under-predicted ash with mean bias values of 1.92, 0.76 and 6.88 g/kg. Method E over-predicted ash 219 

with a mean bias value of -15.0 g/kg. The SDs associated with this bias were 23.5, 14.6, 12.2 and 14.2 g/kg for 220 

methods B to E, respectively. Thus again, method B performed the poorest in this respect. There were no clear 221 

incidences of consistent over- or under-prediction. Although samples analysed by method D fall into discrete 222 

categories highlighted by the linear features in Figure 4e. 223 

Predictions of ADF were reported for methods A, B and C with mean ±SEM of 344.8±3.37, 424.1±9.13, and 224 

415.3±7.21, respectively (see also Figure 1d). Mean bias of the prediction methods was calculated through the 225 

Bland-Altman analysis (Figure 5a-b) and showed that on average, methods B and C (quite severely) over-226 
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predicted ADF with negative mean bias values of -79.3 and -70.4. The SDs associated with this bias were 84.8 227 

and 64.4, respectively. From the Bland-Altman analysis, methods B and C tended to over-predict across the full 228 

range of the ADF values found from method A (as few of the plotted differences were positive). This over-229 

prediction was most severe at high ADF values. Again, and as already indicated, the NIRS-based predictions for 230 

ADF were of little to no value. 231 

The aNDF predictions were reported for all methods with mean ±SEM values of 629.9±5.26, 641.7±12.28, 232 

657.3±12.54, 519.4±3.23, 572.6±2.38, respectively (see also Figure 1e). Bland-Altman plots (Figure 5c-f) showed 233 

a negative bias for methods B and C with respective mean bias values of -11.7 and -27.4 and a positive bias for 234 

methods D and E with respective mean bias values of 110.5 and 57.3. The SDs associated with this bias were 235 

123.5, 103.2, 35.5 and 38.1, respectively. Methods B and C were both weak predictors of aNDF and tended to 236 

strongly over-predict for the highest aNDF values. Methods D and E tended to under-predict but with some over-237 

prediction in the lower range of the aNDF values. Methods D and E performed relatively well for aNDF prediction. 238 

Crude protein predictions were found with means ±SEM of 89.2±2.18, 108.6±5.47, 108.9±4.73, 111.4±0.99 and 239 

131.7±1.60 reported for methods A to E, respectively (see also Figure 1f). All predictive methods had a negative 240 

mean bias, with values of -19.3, -19.6, -22.2 and -42.5, respectively (Figure 6); thus, over-prediction was more 241 

likely. The SDs associated with this bias were 42.2, 31.7, 13.2 and 14.7, respectively. Methods B and C were both 242 

weak predictors of crude protein while methods D and E performed relatively well. Again, samples analysed by 243 

method D fall into discrete categories highlighted by linear features, while the performance of method E suffered 244 

from two clear outlying predictions of crude protein. 245 

The WSC predictions were found with means ±SEM of 113±6.12, 86.0±2.93, 88.0±2.27, 86.7±1.34, 98.5±0.78 246 

for methods A to E, respectively (see also Figure 1g). All NIRS-based predictive methods had a positive mean 247 

bias, with values of 26.9, 24.8, 26.2 and 14.5, respectively (Figure 7). The SDs associated with this bias were 248 

51.3, 38.2, 50.1 and 45.2, respectively. All methods tended to over-predict low WSC values, while all methods 249 

under-predicted high WSC values. Method E marginally appeared to be the best NIRS-based predictor in terms 250 

of the smallest bias coupled with second smallest variance (i.e. SD), but had the clearest (linear) trend in such 251 

bias/variance (i.e. moving from over- to under-prediction for low to high WSC). 252 

 253 

Discussion 254 
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This paper reports a comparison of traditional wet chemistry methods with four commercial (two on-farm and 255 

two off-farm) NIRS-based predictions for seven analytes within a set of haylage samples obtained from seven 256 

holdings across Dorset and Devon, UK. The objective was to determine the degree to which each of the NIRS-257 

based methods agreed with analysis by wet chemistry and examine the value of NIRS methodologies as an 258 

alternative to wet chemistry. We found that the accuracy of the results obtained by NIRS varied depending on the 259 

NIRS method and the analyte when compared with the wet chemistry. Other studies have addressed similar 260 

questions in other forage types (Davies et al., 2012; Thomson et al., 2018) and other preparation methods (Alomar 261 

et al., 2003). Harris et al. (2018) compared wet chemistry with NIRS of dried ground samples for a single 262 

commercial laboratory for a haylage sample set and found that values for sugar (WSC) concentration differed 263 

between methods by 20% in some cases but correlations were satisfactory.  This demonstrates that correlations 264 

can be satisfactory but individual samples can differ greatly, with the end result being that some predicted samples 265 

may deviate so far from the real value so as to cause nutritional and health issues in the animal consuming such a 266 

forage.  This is particularly true for WSC where high concentrations are known to increase the risk of laminitis in 267 

insulin resistant equids (Geor, 2008).  The study described here adds substantially to the study of Harris et al. 268 

(2018) on haylage and is unique because it examines a number of current commercially available NIRS- based 269 

methodologies (whole fresh samples) that are used in current practice at commercial laboratories, alongside a 270 

dried and ground preparation method. It has also utilised the future hand-held on-farm devices which are becoming 271 

wide-spread in practice and could, for the equid owner offer the opportunity to analyse every bale immediately 272 

before feeding to check the nutritional status is correct for their particular equid’s requirements. The individual 273 

analytes examined are discussed in more detail below. 274 

Dry matter was predicted with good accuracy both by a commercial (on-farm) hand-held NIRS-based 275 

methodology (method C) and by a commercial (off-farm) lab NIRS-based methodology (method D), but the 276 

second on-farm method (method B) performed poorly in predicting DM.  Method E employed a dried and ground 277 

sample and so this laboratory report the oven DM data in their final forage report (data not shown).  The most 278 

interesting finding was that of the difference between method B and method C, because this was the same 279 

instrument and spectra but fitted to different models. In general, bales are higher in DM than clamp samples so 280 

we would expect that method C would be less accurate overall then method B, however, this was not the case. 281 

The unexpected finding could be due to the number of samples used to build the prediction. It was reassuring that 282 

method D was predicted with good accuracy as this method is specifically for haylage. These results highlight the 283 
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care needed by both analytical companies and those using the instruments in the field that the correct predictions 284 

are being used for their samples. 285 

pH is an important analyte as it can be used, with DM, as an indication of fermentation quality (Kung and Shaver, 286 

2001). However, pH was poorly predicted by both on-farm NIRS methodologies investigated (methods B and C). 287 

Ibáñez and Alomar (2008) attribute inaccurate pH predictions made by NIRS to the fact that pH measurements 288 

were obtained from different sample preparation methods in the case of a dried sample being scanned. However, 289 

as here we scanned a fresh sample, we were unable to corroborate this hypothesis. As there are rapid electrode-290 

based methods available that can be employed on-farm, NIRS methodologies do not appear of value for measuring 291 

pH. 292 

Ash is commonly used as a measure of the mineral content of a forage, where high values can be the result of soil 293 

contamination within a preserved forage (McDonald et al., 1991). This can represent an increased risk of the 294 

presence of undesirable bacteria especially under conditions where the pH is unusually high, where lactic acid 295 

production has not inhibited growth of Listera or Clostridia species that represent a threat to animal health. The 296 

range of ash content expected in silages is dependent on the herbage type ensiled.  For grass dominated silages 297 

ideally the ash content below 9% DM is acceptable, whereas for silages rich in clover and herbs an ash content 298 

below 10 % DM is acceptable (McDonald et al., 1991). Overall, all four NIRS-based predictions for ash were 299 

poor, where a general under-prediction of ash, was seen for three of the four predictive methodologies (B to D), 300 

could result in forage that falls outside of an acceptable range being fed.  301 

Fibre fractions, (ADF and aNDF) are important analytes for equids, especially donkeys, because they evolved to 302 

thrive on rough vegetation and therefore require high fibre diets to maintain gut health (Burden, 2012; Burden and 303 

Bell, 2019; Burden and Thiemann, 2015). The main factor affecting aNDF and ADF in haylage production is the 304 

stage of maturity of the forage at harvest.  More mature forages e.g. grasses, i.e. those reaching seed maturation, 305 

having the highest level of aNDF (with a greater proportion of this being ADF), which is less digestible (Beever 306 

et al., 2000). Accurate prediction of ADF / aNDF is required to help the practitioner decide the optimum time of 307 

harvest to ensure adequate balance of highly digestible hemicellulose, digestible cellulose and less digestible 308 

lignin. Both ADF and aNDF were poorly predicted by the hand-held methodologies (methods B and C), while 309 

predictions in aNDF improved using the commercial labs (methods D and E), but these still had a tendency to 310 

under-predict. As the horse market may appear to commerce to be of limited financial reward it is highly probable 311 

that the NIRS prediction equations have been developed for the ruminant sector.  The overall requirement of the 312 
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ruminant sector is to reduce the fibre content with lower aNDF and a lower proportion of this being ADF (Beever 313 

et al., 2000).  Therefore the higher level of aNDF and ADF in haylage destined for equids was unlikely to be 314 

present in large numbers in the prediction datasets, this will in effect put an upper limit on the prediction models 315 

ability to give a higher value for these parameters and thus the current techniques were likely to underpredict these 316 

types of forage.  However, the laboratories conducting these analyses for the ruminant sector should be aware that 317 

non-milking pregnant cows also have a nutritional requirement for low digestible high fibre preserved forages and 318 

if our reasoning is correct they could be underestimating fibre content not only for equid haylages but also dry 319 

cow forages. The most accurate predictions for aNDF were the dry and ground lab-based approach (method E). 320 

Harris et al. (2018) suggested that scanning samples devoid of water could be superior as it leaves peaks at other 321 

wavelengths easier to detect. In addition, drying and grinding a sample enabled a more homogenous sample to be 322 

scanned and thus improved the accuracy of the scan data making it more representative, whereas scanning fresh 323 

forage was liable to greater scanning inaccuracies as a single larger leaf of higher digestibility is likely to hide a 324 

smaller less digestible stem, making the fresh sample scanning more prone to poorer prediction due to sample 325 

heterogeneity. 326 

Protein is an important factor in equid diets and crude protein requirements for equids will vary according to the 327 

life stage, performance and the health status of the animal in question.  Knowledge of crude protein content enables 328 

keepers to ensure individual dietary protein requirements are met without under or over provision thus avoiding 329 

health related consequences in some animals. (Ringmark and Jansson, 2013). For this study, all four NIRS-based 330 

methods tended to over-predict crude protein, where the lab-based methods (methods D and E) performed more 331 

accurately than the on-farm methods (methods B and C). Relative to other analyte predictions, the prediction of 332 

crude protein was moderately accurate, at least for those lab-based.  333 

Predictions of WSC were poor for all NIRS methodologies and there was an indication that the hand-held and lab 334 

NIRS prediction models each had a narrow sample database for this analyte. Methods D and E only predicted 335 

between a range of 4 - 10% WSC; therefore the higher the actual WSC content of the haylage by wet chemistry 336 

the greater it under-predicted. This agrees with the findings of Harris et al. (2018), suggesting that this is related 337 

to the formulation of calibrations across a number of NIRS methods rather than a specific sample set. This low 338 

range for WSC, suggested that the dataset for model calibration may have been adapted from forage samples 339 

preserved for ruminant  feeding which are generally lower in DM and thus lower in WSC, as greater amounts of 340 

WSC are used during the more extensive fermentation (McDonald et al., 1991). This effect can also be seen but 341 
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to a lesser extent with the fibre fractions as the aNDF values were consistently under predicted, as for ruminant 342 

rationing the fibre content would typically be lower to improve digestibility. 343 

Harris et al. (2018) also reported a poor prediction for WSC although they suggested that the mean bias across the 344 

dataset was acceptable. However, reporting only the mean bias is limited as it does not reveal situations of large 345 

under-prediction and large over-prediction of equal magnitude.  Samples within the dataset greater than the mean 346 

bias could be over the currently recommended level for insulin resistant equids of 12% WSC on a dry matter basis 347 

(Geor and Harris, 2013).  The content of WSC in any forage destined for consumption by some equids is of critical 348 

importance as it is an important factor to consider when selecting forage for certain equids, for example insulin 349 

resistant equids (Hoffman, 2009; Morgan, 2015), where less than 12% WSC in the DM is currently recommended 350 

(Geor and Harris, 2013). Thus, the gross under-prediction at the high WSC content observed in this study suggest 351 

many of these haylages should not be fed to equids that are insulin resistant. The prediction range for all the NIRS 352 

methods was also narrower than that found with the wet chemistry for WSC. This may explain the poor agreements 353 

shown by the Bland-Altman plots as the NIRS-based methods cannot predict outside of the range of the 354 

calibration. It is difficult to decipher the actual values from the results presented in Harris et al. (2018) as only 355 

mean values are presented, therefore it is impossible to comment on whether the same issue existed within the lab 356 

NIRS methodology that was employed in their study as was found in the current study. Rameriz et al. (2015) 357 

acknowledges the requirements for different predictions depending on tissue type. In our study it is possible that 358 

the sample type submitted was significantly different from that of those used to build the prediction equation due 359 

to species, maturity level, climate or geographic differences. 360 

NIRS-based analyte prediction models and sample preparation vary between commercial laboratories. Some offer 361 

a service that consists of scanning fresh whole forages, which has the advantage of reducing sample handling time 362 

resulting in information being made available about a forage before it is fed. This is recommended for livestock 363 

with specific dietary requirements and could help to manage intake appropriately (Burden and Bell, 2019; Geor, 364 

2008; Geor and Harris, 2013). The UK NIRS laboratories had for many years been dominated by conducting 365 

preserved forage NIRS analysis using fresh unprocessed samples due to the speed and cost.  This was driven by 366 

the ‘Feed into Milk’ Research programme conducted at ARINI (Hillsborough, Northern Ireland and SAC, 367 

Scotland (Park et al., 1998).  There are however a number of issues with this, the first being one of homogeneity 368 

as already discussed, the second being the fact that the water peak dominates the NIR spectral range and can 369 

interfere or mask other peaks that are associated with other chemical and nutritional components of the forage 370 

making the ability to predict these from a NIRS scan less accurate (Roberts et al., 2004). The drawbacks to this 371 
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method are described by Harris et al. (2018), and because of this, we therefore recommend the drying of samples 372 

before NIRS scanning. However, this goes against the advantageous reduction in sample processing time that 373 

development of hand-held on-farm NIRS technologies can deliver (Alomar et al., 2003). As such, in this study 374 

we included analysis for DM, pH, ash, ADF, aNDF, crude protein and WSC using three fresh forage NIRS 375 

methodologies (B-D) and one dried and ground scanned NIRS method (E), against wet chemistry (A). In addition, 376 

methods B and C both employed the scan data from a single hand-held farm NIRS instrument, but results were 377 

calculated by different prediction models.   378 

This current study examined inter and intra laboratory variation. The differences in prediction calibrations from a 379 

given instrument were shown to influence the accuracy of prediction as did differences between sample 380 

preparation between labs. However, differences between sample preparations and labs cannot exclusively be 381 

explained by fresh versus dried analysis as study labs also use different prediction models developed in-house 382 

Our study showed that the variables in both the sample processing, and the prediction models influence the 383 

accuracy of the final prediction. As such, care needs to be taken to ensure that whatever methodology is used that 384 

the sample that is analysed is representative of the samples in the prediction data set to ensure as accurate a 385 

prediction as possible. It should also be noted that although our study showed deviation between NIRS methods 386 

and wet chemistry, one laboratory was used as the wet chemistry standard which may differ from that used to 387 

build the calibration model. The laboratory employs UKAS accredited methods that are standard for UK analyses. 388 

As stated by Harris et al. (2018), different laboratories will have different wet chemistry methodologies in their 389 

database establishment and so the analyte predictions will be biased to the background wet chemistry method. 390 

This should be considered as a limitation of the NIRS method when calibrations are developed and will contribute 391 

to the results observed in this study, where, we acknowledge that this could represent a study limitation. In 392 

addition, the sward type and maturity may influence biochemical and physical attributes of a preserved forage 393 

(Müller, 2012) and therefore affect the accuracy of NIRS result. This is addressed by the findings of Thomson et 394 

al. (2018) in their assessment of commercial lab based NIRS for forage analysis in the ruminant sector, where 395 

samples of grass/clover silages were measured commercially with grass-based prediction models.  Their studies 396 

showed protein predictions to be an issue which is not surprising given the higher protein content of clover 397 

compared to grass. However, with the development of hand-held NIRS devices, improving animal health through 398 

immediate data availability is a promising prospect and has potential to extend to hygienic as well as nutritive 399 

quality (Berardo et al., 2005; Cheli et al. 2012). 400 

Conclusion  401 
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Being able to accurately determine the nutritional content of haylage is an important factor in managing dietary 402 

intake in equids. The availability of such data through the application of NIRS technology offers an opportunity 403 

to provide fast and inexpensive information relative to wet chemistry analysis. This, however, depends on the 404 

accuracy of the analyte predictions. From our findings, it is clearly incorrect to say as a blanket statement that 405 

NIRS-based predictions are as accurate to that found with wet chemistry for haylage sampled on farm.  NIRS has 406 

quickly become the go to analysis method for many in the equid and farming industry as it provides a fast analysis 407 

which can aid on-farm decision making. Most commercial labs provide services that are based on internally 408 

developed model calibrations which may have come from a limited sample set and one method of wet chemistry 409 

analysis. Therefore, the results of analysis can vary between commercial labs. In our work, we compared the 410 

results gained from sending subsamples from the same bulk sample to two commercial laboratories and also 411 

compared the results from two hand-held device calibrations predicted from the same spectra. study results 412 

highlighted that the same sample can produce vastly different results when scanned using different methods. 413 

Comparison to the wet chemistry revealed different levels of prediction accuracy dependent on analyte considered. 414 

This work highlights that NIRS is only as accurate as the calibration samples allow and currently is not reliable 415 

to advise on haylage quality on-farm.  416 
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 542 

 543 

Figure 1. Conditional boxplots for the seven analytes (dry matter (DM), pH, ash, acid detergent fibre expressed 545 

inclusive of residual ash (ADF), neutral detergent fibre assayed with a heat stable amylase expressed inclusive of 546 

residual ash (aNDF), crude protein and water soluble carbohydrate (WSC)) across the five methods (A to E) 547 
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 575 

 576 

Figure 3. Bland-Altman plots for dry matter. Solid line at 0 for exact agreement between methods. Middle filled 578 

region for the 95% confidence interval around the mean bias line (short dashed line). Top filled region for the 579 

95% confidence interval around the mean-based upper agreement threshold (short dashed line). Bottom filled 580 

region for the 95% confidence interval around the mean-based lower agreement threshold (short dashed line). 581 

Long dashed lines are for the median-based upper and lower agreement thresholds. 582 
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 593 

Figure 4. Bland-Altman plots for pH and ash. Solid line at 0 for exact agreement between methods. Middle filled 594 

region for the 95% confidence interval around the mean bias line (short dashed line). Top filled region for the 595 

95% confidence interval around the mean-based upper agreement threshold (short dashed line). Bottom filled 596 

region for the 95% confidence interval around the mean-based lower agreement threshold (short dashed line). 597 

Long dashed lines are for the median-based upper and lower agreement thresholds. 598 
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 603 

 604 

Figure 5. Bland-Altman plots for acid detergent fibre (ADF) and neutral detergent fibre (aNDF). Solid line at 0 606 

for exact agreement between methods. Middle filled region for the 95% confidence interval around the mean bias 607 

line (short dashed line). Top filled region for the 95% confidence interval around the mean-based upper agreement 608 

threshold (short dashed line). Bottom filled region for the 95% confidence interval around the mean-based lower 609 

agreement threshold (short dashed line). Long dashed lines are for the median-based upper and lower agreement 610 

thresholds. 611 
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 622 

Figure 6. Bland-Altman plots for crude protein. Solid line at 0 for exact agreement between methods. Middle 623 

filled region for the 95% confidence interval around the mean bias line (short dashed line). Top filled region for 624 

the 95% confidence interval around the mean-based upper agreement threshold (short dashed line). Bottom filled 625 

region for the 95% confidence interval around the mean-based lower agreement threshold (short dashed line). 626 

Long dashed lines are for the median-based upper and lower agreement thresholds. 627 
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 633 

 635 

Figure 7. Bland-Altman plots for water-soluble carbohydrate (WSC). Solid line at 0 for exact agreement between 636 

methods. Middle filled region for the 95% confidence interval around the mean bias line (short dashed line). Top 637 

filled region for the 95% confidence interval around the mean-based upper agreement threshold (short dashed 638 

line). Bottom filled region for the 95% confidence interval around the mean-based lower agreement threshold 639 

(short dashed line). Long dashed lines are for the median-based upper and lower agreement thresholds. 640 
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