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Abstract: Understanding the causes and consequences of insect declines has become an important goal in ecology, 17 
particularly in the tropics, where most terrestrial diversity exists. Over the last 12 years, the ForestGEO Arthropod 18 
Initiative has systematically monitored multiple insect groups on Barro Colorado Island, Panama, providing baseline 19 
data for assessing long-term population trends. Here, we estimate the rates of change in abundance among 96 tiger 20 
moth species on BCI. Population trends of most species were stable (n=20) or increasing (n=62), with few (n=14) 21 
declining species. Our analysis of morphological and climatic sensitivity traits associated with population trends 22 
shows that species-specific responses to climate were most strongly linked with trends. Specifically, tiger moth species 23 
that are more abundant in warmer and wetter years are more likely to show population increases. Our study contrasts 24 
with recent findings indicating insect decline in tropical and temperate regions. These results highlight the significant 25 
role of biotic responses to climate in determining long-term population trends and suggest that future climate changes 26 
are likely to impact tropical insect communities. 27 
 28 
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 30 
1. Introduction 31 

Ongoing declines in insect biodiversity threaten to destabilize ecosystems worldwide [1]. 32 
Climate change and other threats affect insect population dynamics in temperate regions [2-3], but 33 
similar data are lacking in the species-rich tropics [4]. Tropical insects may be impacted by global 34 
mean temperatures and extreme climatic events. For example, many insect species shift their 35 
geographic range poleward or to higher elevations in response to increased mean temperatures [5-36 
7]. Temperature changes may affect insect activity, development, phenology, and survival directly 37 
or indirectly through host phenological shifts or effects of temperature on plant chemistry [8]. 38 
Many tropical insects are extreme resource or microhabitat specialists and may be more susceptible 39 
to such changes [9-10]. Poikilothermic organisms cannot regulate their body temperature, and 40 
temperatures that exceed their thermal safety margin may thus result in significant fitness declines 41 
[11-14]. However, insect functional traits may be associated with potential declines in tropical 42 
communities, but the extent is unclear. 43 

Tiger moths include contrasting tribes with high morphological and ecological variation 44 
[15]. They comprise generalists and specialist consumers, including the only known lineages 45 
capable of sequestrating secondary compounds from lichens, used to defend against predators and 46 
pathogens [16]. Arctiinae exhibit a wide range of wing coloration, lightness, and size [17].  47 



Such high inter-species variation may lead to divergent responses to climate change and help 48 
predict insect population dynamics in the face of climate change [18-20]. Here, we examine 49 
population trends among 96 tiger moth species over the past 12 years in Panama and test for their 50 
association with morphological and climatic sensitivity (e.g., sensitivity to mean monthly 51 
precipitation) traits and phylogenetic relatedness. Due to dispersal limitations, we predict that 52 
smaller wingspan moths may be more sensitive to climate changes [7]. However, larger species 53 
may be more prone to thermal exhaustion due to higher energy requirements [21-22]. We also 54 
predict that species with darker coloration may not favor increased solar radiation, particularly 55 
during the prolonged dry season [23-24]. Resource specialists such as lichen-feeders are suspected 56 
to be particularly impacted by recent climate anomalies even if little data exists on lichen feeders 57 
in tropical regions. We predict that the effects of climatic sensitivity traits on temporal trends may 58 
depend on morphology. 59 
 60 
2. Material and methods 61 
(a) Study site and climate data 62 
We performed this study on Barro Colorado Island (BCI) in Panama (9.15°N, 79.85°W; ~140m 63 
elevation), a tropical lowland rainforest. The island is mainly preserved and covered by lowland 64 
tropical forests with few anthropogenic disturbances. BCI receives an average of 2,662mm rainfall 65 
per year and an annual average daily maximum and minimum air temperatures of 31°C and 23.6°C, 66 
respectively [see 25]. 67 
 68 
(b) Arctiinae data and functional traits 69 
Since March 2009, the ForestGEO Arthropod Initiative has monitored several insect groups, 70 
including Arctiinae, using a standardized approach. The protocol consists of automatic blacklight 71 
traps installed in the forest understory at ten sites [26]. The traps operate for two non-consecutive 72 
nights at each site during four surveys in March, May, September, and November (total 80 trap-73 
nights/year). The two non-consecutive sampling nights within each month were combined for this 74 
analysis. We accumulated 12-years of continuous monitoring for a total of 47 data points for each 75 
species (due to the pandemic, we missed one sample date). We also collated morphometry, 76 
phylogeny, and functional traits for 188 Arctiinae species [27]. We argue that these functional 77 
traits are directly related to population density under an assumption of climate change. We also 78 
quantified species-specific sensitivity traits to several climatic variables, represented as beta 79 
coefficients extracted from a Bayesian negative binomial regression model run separately for each 80 
species. Description of traits and predictors are provided in supplementary materials S1 and S2. 81 
Each species was characterized with a unique DNA barcode, deposited in the public library BOLD 82 
[28]. 83 
 84 
(c)  Data Analysis 85 
We restricted the statistical analysis to common species observed at least 6 of the 12 study years 86 
to get more robust estimates of population trends [42]. This reduced the number of species from 87 
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188 to 96. To examine rates of change through time, we modeled the sum abundance of all 96 88 
species together and moth species individually as a function of year. We accounted for seasonality 89 
by including month as a cofactor in all subsequent models. The extracted year coefficients served 90 
as the estimates of population trends through time. We also investigated how sensitive our results 91 
were to the period selected by removing the first and second years of sampling from our analyses. 92 
We used a Bayesian linear model and implemented continuous probabilities to provide a “degree 93 
of belief” in population trends. We calculated the “degree of belief” that the parameter for “year” 94 
was greater than one or between specific values by counting the number of posterior draws that 95 
met our criteria and dividing that by the total number of posterior samples. We reported the number 96 
of species for whom the "degree of belief" (probability) fell below 33.3% (i.e., "decrease" category, 97 
twice as much confidence in a decrease than an increase), fell above 66.7% (i.e., "increasing" 98 
category, twice as much confidence in an increase than a decrease), and the number of species 99 
whose degree of belief fell in between 33.3% and 66.7% percent (i.e., "stable" category, no strong 100 
evidence of increase or decrease). With quarterly abundance data for each species per year, the 101 
total abundance of moths and counts of each moth species were modeled as a negative binomial 102 
distribution with a logarithmic function. This distribution is appropriate for overdispersed count 103 
data, which was observed in many of our species. All models met assumptions of uniformity of 104 
residuals, autocorrelation, and zero-inflation using simulated residuals from the DHARMa package 105 
[31]. Year coefficients from these models are on a logarithmic scale and can be interpreted directly 106 
or as multiplicative rates of change after being exponentiated. We calculated the mean, 95%, and 107 
80% credible intervals from each species’ posterior probability distribution. 108 
 109 
(d) Analysis of associations between traits and trends 110 
After estimating population trends using Bayesian linear models, we examined associations 111 
between species traits [see 27] and population trends using generalized least squared (GLS) and 112 
phylogenetic generalized least squares (PGLS) analyses using the nlme package in R [29]. We 113 
predicted population trends (extracted means of the posterior distributions as the estimates of 114 
change through time) as a function of a set of functional response traits, sensitivity to climate 115 
variables, or a combination of both using a GLS, with a Gaussian error distribution. All continuous 116 
predictors were mean-centered to improve interpretation and model performance. We also used a 117 
PGLS model with Brownian motion correlation among species to account for any phylogenetic 118 
signal in population trends. We tested for phylogenetic signal in the residuals of the GLS model 119 
using the R package picante [30]. All models included total abundance or the proportion of sample 120 
periods observed to account for differences in commonness and density among species. We 121 
checked and met model assumptions (normality of residuals, heteroscedasticity, and 122 
autocorrelation) using simulated residuals from the DHARMa package [31]. We compared and 123 
evaluated GLS and PGLS model performances using AICc, Root Mean Squared Error (RMSE), 124 
and variance explained (R2). We acknowledge the switch from Bayesian to frequentists paradigms; 125 
we use trends estimated with a reasonable degree of certainty and consider PGLS the most 126 
appropriate approach here. 127 



 128 
3. RESULTS 129 
(3-1) Population trends in Neotropical Arctiinae 130 
Estimates of population trends in abundance over the past 12 years at BCI revealed that the entire 131 
tiger-moth community had increased by 6% (95% CI: 1.01,1.11) per year (Fig. S5). The probability 132 
that tiger moth abundance increased by at least 1% per year is 98%. Estimates of species-specific 133 
responses among tiger moth species revealed that most species (82 out of 96) were either stable or 134 
increased in abundance (Fig. 1). The probability (degree of belief) of an increasing trend was 135 
strong (>66.7%) in 62 of the 96 species. Only fourteen species showed strong evidence of declines 136 
(<33.3%). The remaining twenty species did not have strong evidence of increased or decreased 137 
trends, suggesting stable dynamics. Removing 2009 or both 2009 and 2010 did not significantly 138 
alter the number of species present in each category mentioned above of population trends (Fig. 139 
S6 & S7; Table S1). Of the twenty species whose trends were stable, the mean probability that 140 
their trend lies within ±1% per year was 10% (Fig. S8). We argue that the high degree of 141 
uncertainty in these twenty "stable" species is due to their low abundances across sample periods. 142 
They were commonly observed in our traps, but were generally not abundant when sampled. For 143 
16/20 species, the average abundance, across all 48 sample periods, was less than one. This 144 
suggests that their trend estimates are uncertain, and more data may be necessary to predict their 145 
trends more accurately. 146 
 147 
(3-2) Association between species-specific traits and trends 148 
Models that accounted for correlations in population trends among species (PGLS) generally 149 
explained more variance but showed consistently higher AICc values. There was no phylogenetic 150 
signal in the residuals of any GLS models (Table S2). We provide a detailed model output for the 151 
top-performing physiological (e.g., climatic sensitivity) model in Table 1. The climatic sensitivity 152 
model represented 91.2% of the AICc weight among all models. No morphological traits 153 
significantly predicted trends and only explained 7% of the variation in population trends. The best 154 
combined morphological and climate sensitivity model explained 41% variation in population 155 
trends but was 4.7 AICc units below the best performing physiological model. Our strongest 156 
predictors of population trends were variables measuring climatic sensitivity (Table 1). A positive 157 
association existed between population trends and sensitivity to average monthly precipitation 158 
(Fig. 2A). Based on standardized beta coefficients, the strongest predictor of population trends was 159 
sensitivity to the average monthly maximum temperature (Fig. 2B), with a standardized coefficient 160 
of 0.04 (CI 95% 0.02-0.07), suggesting that moths which are more abundant during warmer years 161 
are more likely to show increasing population trends. 162 
 163 
4- DISCUSSION 164 

Our results highlight the vital role of specific differences in climate sensitivity in explaining 165 
variation in population trends in this tropical moth community. We indicate that most species have 166 
either increased or remained temporally stable over the past 12-years but are likely to be further 167 



influenced by future climate changes in Panama. The increasing and stable population dynamics 168 
contrast with observed sharp declines in caterpillar density in Costa Rica [33-34]. Climate change 169 
may have been a driving force in the decrease observed in the Costa Rican studies, but other 170 
factors, such as land-use changes and agricultural practices, likely induced decline. Our survey on 171 
BCI, an isolated protected forest island, indicates that common tiger moths showed widespread 172 
increases and temporal population stability.  173 

Although several species show strong evidence of decline (Fig. 1), the overall temporal 174 
stability in arctiine populations highlights that insect declines are not homogenous. Since more 175 
than 60% of tiger moth species have strong evidence of increasing in abundance since 2009, our 176 
results also contrast with other studies [33-35]. We hypothesize that this pattern may have 177 
important implications locally, with cascading impacts driven by herbivory and predation at higher 178 
trophic levels. Although it is well-established that climate change affects species distributions and 179 
abundances of insect herbivores [32-34], the impacts of climate change on trophic interactions 180 
have been less studied [10]. Outbreak species may benefit from climate changes, as reported for 181 
two Panamanian species [5]. In a previous study on BCI, we observed that populations of some 182 
large Saturniidae species are increasing [28]. We also showed that recent climate anomalies 183 
occurring in the tropics, such as increasing average precipitation on BCI [25], have significant and 184 
positive effects on the abundance of tiger moths (Fig. 2A). A similar trend has been observed in 185 
the United Kingdom [36] but is also likely driven by differential responses to land-use change. We 186 
expected that morphological traits relating to climate, especially thermal tolerance, would predict 187 
temporal trends. Our results contradict this expectation, and while phylogenetic information does 188 
increase the proportion of variance explained, this comes at a high cost in terms of model 189 
parameters. Hence, it is unlikely that any of the morphological traits that we measured may be 190 
significant predictors of response to climate, although we cannot rule out such traits exist. Few 191 
studies have found that functional traits predict population trends [22,35]. 192 

Species-specific climate sensitivity traits were the best predictors of temporal trends of 193 
tiger moths on BCI. Sensitivity to average precipitation showed a significant and positive 194 
relationship with population trends. Species that were more abundant in months with higher 195 
precipitation showed positive population trends (Fig. 2). Sensitivity to average maximum 196 
temperatures also predicted temporal trends, indicating that population abundances of species that 197 
were twice as abundant in months with a one-degree increase in temperature have increased by 198 
5% each year. Increased temperatures facilitate more frequent, longer, or more effective territorial 199 
and mate-locating behaviors [37]. Prolonged exposure at extreme temperatures can also influence 200 
the pace of insect life cycles, thus affecting developmental time and population growth rates [38-201 
39]. The inclusion of thermal tolerance measurements is primordial to correctly interpret moth 202 
population dynamics patterns [11-14]. Our analysis provides evidence of a stable and increasing 203 
tropical moth community. Still, it highlights the potential future impact of climate change, as 204 
climatic sensitivity traits were the best predictors of population trends. Since 1981 BCI has 205 
experienced a 17.9% increase in mean annual precipitation [19], and we showed that moth 206 
populations that respond to increasing precipitation in Panama are also increasing.  207 



With increasing air temperature also predicted for tropical regions by recent models [40-41], this 208 
species group may indeed be favored by future environmental conditions. However, future 209 
phenotypic responses and upper levels of thermal tolerance are hard to predict. Should the rate of 210 
warming exceed physiological response capacities, we can expect sharp declines in population 211 
density for many tropical insect species. 212 
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 219 
Figure Captions 220 
FIGURE 1: A) Distribution of Arctiinae population trends over the 12 years from the negative 221 
binomial Bayesian regression. Shaded bars in the histogram represent estimates of population 222 
trends (mean of posterior distribution) that are less than 0.98, suggesting population declines. The 223 
dotted line denotes where trends are stable (e.g., exp(Neg. Binomial.Year.Coefficient)= 1). B) The 224 
histogram displays the distribution of “degree of belief” that exponentiated means of the posterior 225 
probability distribution were greater than one. This was calculated as the proportion of posterior 226 
draws for each species that were greater than one. C) Estimates of population trends over the last 227 
12-years among 96 Arctiinae species monitored on BCI. Each point represents the exponentiated 228 
mean of the posterior distribution from the Negative Binomial Bayesian regression for each 229 
species. The horizontal lines represent the 95% credible intervals, and the vertical lines display the 230 
80% credible intervals. D) Examples of the temporal dynamic of six commonly-collected Arctiinae 231 
on BCI using abundance-based time-series. 232 
 233 
FIGURE 2: Exponentiated rates of change in Arctiinae abundance regressed against the 234 
exponentiated coefficients of A) sensitivity to average monthly precipitation and B) sensitivity to 235 
average maximum monthly temperatures. The fitted line and 95% confidence intervals are from 236 
multiple linear regression, and the raw and standardized beta coefficients are shown within each 237 
figure. The dotted horizontal and vertical lines at 1 for each axis represent coefficient values when 238 
there is no multiplicative change in trend over the years (y-axis) or no multiplicative change in 239 
abundance in response to either average precipitation or maximum temperature. A value of two 240 
(x-axis) suggests that species are twice as abundant in months with a 1oC increase in average 241 
monthly maximum temperature or a 1mm increase in average monthly precipitation.  242 
 243 
 244 
 245 
 246 



TABLE 1: Results from the top GLS model (e.g., climate sensitivity) after AICc model selection. 247 
We indicate significant associations (P<0.05) in bold. We modeled 93 species since three did not 248 
have genetic information and were not included in the PGLS. Standardized estimates and 95% 249 
confidence intervals are presented. CV abundance represents the coefficient of variation in 250 
abundance. 251 
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 347 
TABLE 1 348 
 349 
 350 
Predictors Estimates 95% CI P-value 
Intercept 1.06 1.04 – 1.08 <0.001 
log(Total Abundance) 0.01 -0.02 – 0.04 0.635 
CV Abundance -0.01 -0.04 – 0.02 0.513 
Maximum Temperature 0.04 0.02 – 0.07 0.002 
Minimum Temperature -0.03 -0.05 – 0.00 0.019 
Average Precipitation 0.03 0.00 – 0.05 0.023 
Geographic Range -0.02 -0.04 – 0.01 0.153 
Observations 93   
R2 Nagelkerke 0.359   
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