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A B S T R A C T   

One of the key issues in regulation of crop robots is the need for human supervision. Economic analysis indicates 
that autonomous farming potentially reduces agricultural production costs, but such costs may often become 
higher than conventional when constant on-site human supervision is required by law. However, there are cases 
where a higher level of crop robot supervision helps maximise profits even if it is not mandated by law, such as 
when field operations or crop robots inherently require frequent human intervention. The objective of this study 
is to identify economically optimal levels of farmer supervision of crop robots in the absence of regulation 
through the HFH-LP optimisation model developed at Harper Adams University, Newport (UK). Four scenarios 
characterised by different human intervention requirements are developed and compared with two baseline 
scenarios to identify thresholds at which farm management decisions would change from remote supervision of 
crop robots to on-site supervision. The findings of this analysis show that the economically optimal farmer su-
pervision of crop robots falls within a range which is substantially lower than the 100% level mandated by 
jurisdictions such as the EU and California. More specifically, the economically optimal supervision of crop 
robots falls between 13% and 85% of machine field time across scenarios depending on: (i) the required number 
of human interventions in a given field operation; (ii) the supervisor’s location; and (iii) the number of crop 
robots being used in that operation. The economic effects of these three factors reveal crucial implications for 
health and safety regulators and draw attention to crop robot reliability as a priority for researchers, entrepre-
neurs, and crop robot manufacturers.   

1. Introduction 

One of the key issues in regulation of highly automated and auton-
omous agricultural equipment (HAAAE), also known as crop robots, is 
the need for human supervision (Lowenberg-DeBoer et al., 2021a) [1]. 
Economic analysis indicates that HAAAE may potentially reduce agri-
cultural production costs [1]. However, if a human supervisor must be in 
the field 100% of the time HAAAE is in operation, most economic ad-
vantages are lost, and in many cases farmers may as well utilise con-
ventional equipment (Lowenberg-DeBoer et al., 2021a; 2021b) [1,2]. 
Nevertheless, there are cases in which a high level of machine supervi-
sion is economically optimal without regulatory obligation, such as 
when field operations require frequent human intervention. This study 
uses a linear programming model to identify factors that determine 
economically optimal farmer supervision of crop robots for autonomous 
grains and oilseeds production in the absence of regulation. The pre-
sented results show the need for balancing health and safety concerns 
with financial gain for those regulators imposing constant crop robot 

supervision, and help researchers, entrepreneurs, and crop robot man-
ufacturers understand how equipment reliability is a prerequisite for the 
profitability of autonomous farming. 

Owing to the potential for incidents and related tort claims from use 
of crop robots, some jurisdictions have imposed constant human su-
pervision to reduce on-farm health and safety risk (Lowenberg-DeBoer 
et al., 2021a; Martin, 2021) [1,3]. In the EU, the use of agricultural 
machinery, including tractors, trailers, and interchangeable equipment, 
is currently governed by Directive 2006/42/EC [4], commonly referred 
to as Machinery Directive, and Regulation (EU) No 167/2013 [5], also 
known as Tractor Regulation. As these pieces of legislation do not 
explicitly regulate crop robot use, several EU Member Nations and pri-
vate manufacturers have been independently filling this void. Examples 
include the Digital Agricultural Strategy in Hungary and national rules 
following the EU Machinery Directive in Denmark, with most Member 
State jurisdictions always requiring a human supervisor when a crop 
robot is in operation [1]. Some cases also exist where private manu-
facturers commercialised HAAAE that is self-certified as per 
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international standards such as the ISO 18497:2018 in France or the ISO 
3691-4:2020 in Germany [1,6,7]. For instance, Danish manufacturer 
FarmDroid availed of the ISO 3691-4:2020 in Germany by classifying 
their crop robots as driverless industrial trucks, whose use must abide 
with certain safety measures such as a speed limit of 800 m/h and a 
restriction to non-public zones [1,7]. 

Another regulatory example is the State of California, where constant 
on-site supervision of crop robots is mandated by the Occupational 
Safety and Health Association (Cal/OSHA) (California Code of Regula-
tions, Title 8, Section 3441(b), 2016) [8]. When controlling HAAAE 
remotely, an operator is expected to always be watching the machine 
and nearby workers, thus making it impossible for such an operator to 
focus on other tasks [2,8]. This rule leads to increased farm-level capital 
investment, potentially hindering many of the economic advantages of 
agricultural automation (Lowenberg-DeBoer et al., 2021b; Shockley 
et al., 2021) [2,9]. For this reason, in 2018, the American Association of 
Equipment Manufactures (AEM) filed a petition to remove the require-
ment of constant supervision of crop robots in California (California 
Department of Industrial Relations, 2019a) [10]. Although AEM’s 
petition was denied on the basis that human injury data and other his-
toric information on HAAAE were not available at the time (California 
Department of Industrial Relations, 2019b) [11], the agency has shown 
itself willing to consider the trade-off between health and safety risk and 
benefits from crop robot use. For example, they have granted some 
waivers for pesticide application robots on the argument that it is safer 
for the human operator not to be in the field when the pesticides are 
applied. If accumulated data shows a low risk to humans from crop 
robots and an economic analysis reveals economically optimal super-
vision levels could manage that risk appropriately, perhaps Cal/OSHA 
and similar jurisdictions would reconsider the constant supervision 
rules. 

To foster regulation of crop robots that better balances benefits and 
risks, some jurisdictions are developing voluntary codes of practice for 
agricultural robots. In Australia, a code of practice on the use of crop 
robots was recently developed by Grain Producers Australia, the Tractor 
and Machinery Association, and the Society of Precision Agriculture 
Australia, with the hope that the code would lay the foundation for 
upcoming state and national laws [2]. The Australian Code of Practice 
recognises that some supervision is a fundamental safety precaution 
with HAAAE use, and that effective supervision helps, among others, to 
monitor the workplace and to report and record machine performance 
issues (GPA-TMA-SPAA, 2021) [12]. However, it also acknowledges that 
autonomous farm equipment may be operated in tele-remote mode [12]. 
In the UK, a similar initiative was launched by Harper Adams University 
to advise on the development of a code of practice for autonomous 
farming by the British Standards Institution (BSI) [2]. To make the most 
of the regulatory flexibility granted by the departure of the UK from the 
EU, a group of researchers and industry leaders have gathered at Harper 
Adams University over the past three years to discuss regulatory and 
economic aspects of crop robotics [2]. This led to an initiative by BSI to 
develop a crop robot code of practice specifically for UK conditions. 

Although constant robot supervision may compromise the profit-
ability of autonomous farming [1,2,9], there are instances where a 
farmer would choose to supervise HAAAE a high percentage of the 
machine field time regardless of regulatory impositions, such as when 
field operations inherently require frequent human intervention or 
when the farmer proactively scouts out other farm-related problems. For 
example, autonomous fruit and vegetable harvesting is likely to require 
100% of human supervision owing to crop value, machine harvesting 
errors, and post-harvest handling checks (Ghahremani et al., 2021) [13]. 
Likewise, problematic field operations such as no-till planting in heavy 
crop residue, the combining of oilseed crops (e.g., oilseed rape and 
linseed), or the harvesting of any arable crop under adverse weather 
conditions, may compel higher machine supervision to achieve eco-
nomic optimum. Lastly, even in less problematic field operations, a farm 
manager could choose to proactively monitor farm activities whilst 

operating crop robots similarly to the way dairy farmers are able to 
spend more time with their cows after adopting milking robots. 

The objective of this study is to analyse some operational and farm 
management factors that determine the optimal level of farmer super-
vision of crop robots for autonomous grains and oilseeds production 
from an economic standpoint. The Hands Free Hectare (HFH) and Hands 
Free Farm (HFF) team at Harper Adams University (Newport, UK) and 
other stakeholders in robotic farming have identified three key factors 
determining economically optimal farmer supervision of crop robots. 
The hypothesis is that voluntary supervision of crop robots is affected by 
at least three factors, namely: (i) the required number of human in-
terventions in a given field operation; (ii) the supervisor’s location; and 
(iii) the number of crop robots being used in that operation. It is ex-
pected that when a farmer is required to frequently intervene, to travel 
from a remote location, and to assist multiple crop robots, that farmer 
would remain on-site for more time to supervise field operations, even in 
the absence of regulation imposing a certain level of supervision. The 
focus here is on relatively minor problems that need human intervention 
(e.g., unexpected obstacles in the field, machine operation impeded by 
crop residue), so the length of the intervention time is short. Overall, 
machine downtime which includes some more lengthy interventions is 
important, but beyond the scope of this study. 

2. Materials and methods 

The current analysis builds on the HFH and HFF demonstration 
projects at Harper Adams University (Newport, UK), where a fully 
autonomous grain-oilseed farm has been operated since 2017 (Low-
enberg-DeBoer et al., 2021c) [14]. Among three different approaches to 
crop robotics (see Gonzalez-de-Santos et al., 2017) [15], the HFH and 
HFF projects use conventional equipment retrofitted for autonomous 
production to reduce machine capital investment [14]. Based on the 
HFH and HFF experiences, Lowenberg-DeBoer and colleagues (2021c) 
[14] developed a farm-level linear programming (LP) optimisation 
model, known as the HFH-LP model, to compare autonomous and con-
ventional farming in terms of gross margins, return to operator labour, 
management and risk taking (ROLMRT), and wheat production costs. 
The HFH-LP model was coded with the General Algebraic Modelling 
System (GAMS) software [16]. The present study employs the HFH-LP 
model to explore the degree to which a farm manager prioritising 
profit maximisation would supervise crop robots in the absence of 
regulation. A total of four new scenarios incorporating times to deal with 
minor operational incidents were constructed and compared with the 
conventional and autonomous scenarios presented by 
Lowenberg-DeBoer and colleagues [14]. The comparison was performed 
based on the results generated by the HFH-LP model, which included 
human and machine field times, gross margins and ROLMRT, initial 
equipment investment, and wheat production costs. The cost curve focus 
is on wheat because it is the most common arable crop in the UK and it is 
well studied, so that national and international comparisons are 
facilitated. 

The HFH-LP model is mathematically expressed as: 

Max
∏= ∑n

j=1
cjXj (1) 

Subject to: 

∑n

j=1
aijXj ≤ bi for i = 1…m (2)  

Xj ≥ 0 for j = 1…n (3) 

Where: 
Π = total farm profit 
Xj = the level of the jth production process or activity 
cj = the per unit return (gross margin) to fixed resources (bi’s) for the 
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jth activity 
aij = the amount of the ith resource required per unit of the jth 

activity 
bi = the amount of the ith resource available. 
The objective of the HFH-LP model is to analyse all possible pro-

duction alternatives under a set of resource constraints (e.g., arable land, 
available operator time, and good field days) to produce a solution that 
allocates farmland to either winter wheat, oilseed rape or spring barley 
in such a way that gross margin is maximised. ROLMRT is then calcu-
lated by subtracting fixed costs from the optimal gross margin. Fixed 
costs include annual machine cost, land rental, farm property and 
building repairs, professional fees and subscriptions, fixed utilities, 
building depreciation, and other miscellaneous expenses. Solutions of 
the HFH-LP model are generated at four different farm sizes (66, 159, 
284, and 500 ha) that are operated with any of four different machine 
types (a 28 kW autonomous tractor, or a 28 kW, 112 kW, or 221 kW 
conventional tractor) [14]. 

In Lowenberg-DeBoer et al. [14], minimum wheat production costs 
were achieved by applying a swarm robot strategy using one to three 28 
kW autonomous units depending on the farm size [14]. In the conven-
tional machine scenarios, minimum wheat production costs were always 
higher than in the autonomous scenarios. The lowest conventional 
wheat production costs were obtained when using one or two 28 kW 
conventional tractors on the two smallest farms respectively, one 112 
kW conventional tractor on the 284 ha farm and one 221 kW conven-
tional tractor on the 500 ha farm [14]. In the present study, these so-
lutions are compared with four additional autonomous scenarios 
characterised by different human intervention requirements that depend 
on the three factors under investigation. More information on the orig-
inal HFH-LP model can be found in Lowenberg-DeBoer et al. [14]. 

The three factors used to develop the four additional scenarios are: 
(i) the required number of human interventions in a given field opera-
tion (beyond setup, refuelling and input replenishment); (ii) the super-
visor’s location, which affects the time to respond to a problem and the 
time needed to travel to the field and back to the original location; and 
(iii) the number of crop robots being used in that operation, which de-
pends on the size of the farm and the capacity of the individual robots. 
These factors and their ranges used to construct the scenarios were 
identified by the HFH and HFF team, who have more expertise in pro-
ducing grain crops with autonomous equipment than anyone else in 
public sector agricultural research. Considering that the HFH and HFF 
projects were designed as demonstration and development fields for 
crop robots rather than research projects dedicated to reliability data 
collection from commercial systems, it was not possible to utilise HFH 
and HFF data directly to build the scenarios. This is because the avail-
able HFH and HFF data are not representative of what would occur on a 
commercial farm since they do not segregate human interventions for 
engineering development reasons from those required when routine 
operational problems occur. 

Since there is very little publicly available data on field robot reli-
ability and downtime, the HFH and HFF team devised scenarios based 
on their field experience to test farmer supervision choices at either end 
of the human intervention frequency range. In scenarios 1 (“on-site- 
trouble-free”) and 3 (“remote-trouble-free”), the autonomous equip-
ment only requires 1 human intervention per person-day (1 person- 
day = 8 hours). In scenario 1, the machine operator remains on-site and 
is occupied with other farm-related tasks. When HAAAE has an incident, 
the on-site operator needs 1 minute to respond to the incident call, and 5 
minutes to travel to the equipment. It then takes a 5-minute-intervention 
for the human operator to resolve the issue, and additional 5 minutes to 
travel back to the original location (total incident time: 16 minutes). 
Additional machine time for an incident is 11 minutes because the 
machine resumes operating immediately after the 5-minute human 
intervention is finished and does not need to wait for the supervisor to 
return to the original control location. In scenario 3 (“remote-trouble- 
free”), the operator is supervising crop robots remotely. The ”remote” 

site might be a farm office or another farm enterprise (e.g., intensive 
livestock production, food processing unit, or farm shop). Considering 
that the remotely located supervisor is occupied with tasks that may not 
be farm-related, the time to respond to the incident call is increased to 5 
minutes. In this scenario, it is assumed that the supervisor must travel to 
the field by vehicle. It takes the supervisor 60 minutes to travel back and 
forth to the remote location, and 5 minutes to resolve the incident (total 
incident time: 70 minutes for the farm operator and 40 minutes for the 
machine). Scenarios 2 (“on-site-troublesome”) and 4 (“remote-trouble-
some”) add identical response, travel and intervention times but assume 
that 10 machine incidents occur over a person-day instead of just 1. The 
number of incidents is intentionally kept high to entirely cover their 
possible range. Total incident times in scenarios 2 and 4 are 160 and 700 
minutes, respectively, for the farm operator, and 110 and 400 minutes, 
respectively, for the machine. 

Table 1 summarises the six scenarios explored in this study. Sce-
narios A (autonomous) and B (conventional) are the baseline scenarios 
developed by Lowenberg-DeBoer and colleagues (2021c) [14]. For 
scenario A, Lowenberg-DeBoer et al. (2021c) [14] assumed that 
well-functioning commercial autonomous equipment requires 10% of 
human supervision, including initial setup, fuel refill and input replen-
ishment. Human field times for scenarios 1 to 4 assume 10% supervision 
time plus the times to resolve minor machine or operation problems as 
explained above. 

To maintain comparability with Lowenberg-DeBoer et al. (2021c) 
[14] and to avoid overcomplicating the model in the absence of 
real-world HAAAE incident data, several assumptions were made:  

• Workday duration. The HFH economics study assumed 10-hour 
workdays for conventional equipment. It is technically possible to 
do many conventional farm operations around the clock with shifts 
of drivers, but very few UK farms operate through the night mainly 
due to operation in the dark being more difficult and workers being 
reluctant to continue through the night. In scenarios 1 and 2, this 
logic is extended to the supervision of crop robots, assumed to 
operate for 10 hours per day. On the other hand, in scenarios A, 3, 
and 4, the autonomous equipment is assumed to operate for 22 hours 
per day because the human supervisor does not need to remain on- 
site. The remaining 2 hours are available for setup, refuelling and 
input replenishment. However, an exception is made for harvesting 
operations occurring for 10 hours a day in all scenarios owing to 
night dew in the UK.  

• Constant intervention time. Since crop robot incidents consist of minor 
operational issues rather than major breakdowns, intervention time 
across incident scenarios is always 5 minutes. The intervention time 
is constant across scenarios and across different operations within 
scenarios because data on interventions duration is absent.  

• Exclusion of simultaneous incidents. After attending an incident, the 
supervisor has the time to return to their on- or off-site position 
before another incident occurs i.e., multiple incidents do not occur 
simultaneously even when using more than one robot per field 
operation on larger farms.  

• Harvesting operations. During harvest, a combine and a grain hauling 
tractor are simultaneously used. As the hauling tractor must travel on 
public roads, it requires a human driver 100% of the time. The 
human operator supervises the autonomous combine but not the 
hauling tractor. The tractor driver does not attend to the combine in 
case of incidents. 

• Individual supervision of crop robots. Machines are individually su-
pervised i.e., they are not considered as a fleet under unified control 
and require 10% supervision each. 

• Competing solutions. In case of competing wheat production cost so-
lutions that use different amounts of available land, solutions that 
utilise 100% of the available land are selected as optimal solutions.  

• Incidents not added to the conventional scenario. In the conventional 
baseline scenario, blockages and minor mechanical issues are 
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already included in the field time calculations presented by 
Lowenberg-DeBoer et al. (2021c) [14]. In light of the nature of the 
minor operational issues analysed in this study, incident times were 
not added to the conventional scenario (scenario B). Indeed, if the 
human operator is driving the conventional equipment, the time 
needed to intervene is minimal because the human operator imme-
diately responds to an issue and does not need to travel to the 
equipment from a different location. For example, with conventional 
equipment, a seed blockage may be resolved by hydraulically lifting 
the seeder to drop out the crop residue without leaving the tractor 
seat. Likewise, an unexpected obstacle in the field would not require 
much time for a human driver to circumvent it. 

3. Results 

The results generated by the HFH-LP for the six scenarios under 
comparison include human and machine field times, gross margins and 
ROLMRT, initial equipment investment, and wheat production costs. 

These are separately presented in the following subsections. 

3.1. Human and machine field times 

The estimated yearly human and machine field times per hectare are 
presented in Figs. 1 and 2. These represent the per hectare amount of 
time that either a human worker or agricultural equipment spend in the 
field to supervise or conduct operations across the year. As expected, 
human and machine field times increase when the incidents are more 
frequent and when the supervisor operates HAAAE from a remote 
location and must travel to the farm to deal with problems. As a 
consequence of the added incident times, the autonomous incident 
scenarios always require human and machine field times that are higher 
than in the baseline autonomous case (scenario A). This effect is more 
evident when a farmer operates a larger farm requiring additional crop 
robots to compensate for the machine time lost in waiting for the human 
operator to intervene. For example, on the largest 500 ha farm, both 
scenarios 1 (“on-site-trouble-free”) and 4 (“remote-troublesome”) 

Table 1 
Operator location, machine supervision, response time, travel time, frequency of incidents and intervention time assumptions for the six scenarios.  

Scenario Operator 
location 

Baseline machine 
supervision (%) 

Response time 
(min) 

Travel time 
(min) 

Number of incidents (per person- 
day) 

Intervention time 
(min) 

Drilling Spraying Harvesting 

A: baseline robot In field or off- 
farm 

10% N/A N/A N/A N/A N/A N/A 

B: baseline 
conventional 

On machine 100% N/A N/A N/A N/A N/A N/A 

1: on-site-trouble-free In field 10% 1 5 1 1 1 5 
2: on-site- 

troublesome 
In field 10% 1 5 10 10 10 5 

3: remote-trouble- 
free 

Off-farm 10% 5 30 1 1 1 5 

4: remote- 
troublesome 

Off-farm 10% 5 30 10 10 10 5  

Fig. 1. Human field times (person-day/ha) by farm size for the six scenarios.  
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require 5 crop robots for a single operation, or 2 additional robots than 
in the baseline autonomous scenario. In scenario 2 (“on-site-trouble-
some”) this requirement is even greater with 6 robot units per operation, 
or 3 extra robots if compared to the baseline case. On average across all 
farm sizes, the increases in human field times over the baseline auton-
omous scenario (scenario A) are 8%, 77%, 34%, and 340% for the four 
incident scenarios, respectively. The machine field times average 

increases are 2%, 23%, 8%, and 83%. The increases in machine field 
times are lower than those for human field times because the baseline 
human field times in scenario A are much lower than machine field 
times (i.e., the assumed 10% supervision), and because incident times 
for the machine exclude the farm operator’s return trip time. 

Fig. 2. Machine field times (person-day/ha) by farm size for the six scenarios.  

Table 2 
Gross margin (£/year) and ROLMRT (£/year) for the six scenarios.  

Scenario Farm area 
(ha) 

Operator time (person- 
day/ha) 

Labour hired (person- 
day/ha) 

Optimal machine 
units 

Gross margin 
(£/year) 

Return to operator labour, management, and 
risk taking (£/year) 

A: baseline robot 66 26 0 1x 28 kW 47,048 12,301 
159 54 8 1x 28 kW 112,691 46,891 
284 62 50 2x 28 kW 198,587 78,340 
500 76 121 3x 28 kW 347,015 141,936 

B: baseline 
conventional 

66 79 0 1x 28 kW 47,048 15,848 
159 118 72 2x 28 kW 107,759 36,344 
284 89 31 1x 112 kW 200,017 54,178 
500 87 35 1x 221 kW 353,677 90,743 

1: on-site-trouble- 
free 

66 28 0 1x 28 kW 47,048 12,301 
159 58 10 2x 28 kW 112,578 34,068 
284 68 52 3x 28 kW 198,384 65,428 
500 87 125 5x 28 kW 346,658 116,159 

2: on-site- 
troublesome 

66 46 0 1x 28 kW 47,048 12,301 
159 89 23 2x 28 kW 111,557 33,047 
284 112 87 3x 28 kW 193,118 60,161 
500 132 219 6x 28 kW 339,361 96,153 

3: remote-trouble- 
free 

66 35 0 1x 28 kW 47,048 12,301 
159 69 15 1x 28 kW 112,195 46,395 
284 89 61 2x 28 kW 197,701 77,454 
500 110 154 3x 28 kW 344,418 139,339 

4: remote- 
troublesome 

66 106 9 1x 28 kW 46,342 11,595 
159 139 137 2x 28 kW 102,629 24,120 
284 168 325 3x 28 kW 177,090 44,133 
500 180 688 5x 28 kW 302,726 72,227  
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3.2. Gross margins and ROLMRT 

Gross margins and the ROLMRTs for the six scenarios are listed in 
Table 2 along with operator time, labour hired, and optimal machine 
units. The figures for the two baseline cases (scenarios A & B) were 
obtained from Lowenberg-DeBoer et al. [14], while those for the four 
incident scenarios (scenarios 1 to 4) were generated anew in the HFH-LP 
model. 

Since direct costs and yields are assumed to be the same across the 
scenarios, gross margins are relatively similar at all farm sizes. For the 
smallest farm, gross margins are identical at £ 47,048 in all scenarios 
except for scenario 4 (“remote-troublesome”). This occurs because in the 
two baseline scenarios, as well as incident scenarios 1, 2 and 3, the HFH- 
LP model is able to plant and harvest wheat and oilseed rape in the 
optimal period without needing to hire temporary workers. In scenario 
4, a farm manager would need to spend an extra £ 706 to hire temporary 
labour for 9 person-days, thus reducing the yearly gross margin to £ 
46,342. On larger farms, gross margins differ across all six scenarios due 
to the different human field time requirements resulting from the 
different types of equipment used (conventional or autonomous) and 
from the additional human intervention times incorporated in the inci-
dent scenarios. Except for the smallest farm for the reason explained, 
gross margins across the incident scenarios are always lower than in 
scenario A (“baseline robot”) due to additional variable costs resulting 
from increased labour requirements when incidents or problems occur. 
On the three largest farms, the cost differences over scenario A for the 
additional time spent on-farm by the farm manager and the hired labour 
range from £ 1,324 to £ 3,805 in scenario 1, £ 13,235 to £ 27,197 in 
scenario 2, £ 5,790 to £ 14,553 in scenario 3, and £ 39,908 to £ 80,859 in 
scenario 4. These figures justify why gross margins are particularly 
lower when HAAAE is troublesome and the supervisor’s location is 
remote. Indeed, in scenario 4, the yearly gross margin is almost 13% 
lower than that in the autonomous baseline case for the largest 500 ha 
farm. In the three remaining incident scenarios, gross margins are 
slightly lower when field operations undergo frequent incidents (sce-
nario 2) but remain relatively similar to those generated in scenario A 
despite the additional human field times costs. Indeed, excluding the 
two larger farms in scenario 2 for which gross margins are at least 2% 
lower than in scenario A, all other instances hardly exceed a 1% dif-
ference, with many cases close to no difference (e.g., 0.1% difference in 
scenario 1 for the 159, 284 and 500 ha farms). 

Unlike what is observed for the gross margins, the ROLMRT varies to 
a greater extent across the six scenarios (Table 2). At the smallest farm 
size, all values for the autonomous scenarios are identical, except for 
scenario 4 (“remote-troublesome”) where the gross margin is lower, 
hence resulting in lower ROLMRT. The ROLMRT for the smallest 66 ha 
farm in the conventional case is the highest, as already highlighted by 
Lowenberg-DeBoer et al. in the original HFH-LP study [14]. However, as 
the size of the farm increases, autonomous equipment shows a higher 
ROLMRT in most cases. Indeed, at the second smallest farm size, sce-
narios A (baseline robot) and 3 (“remote-trouble-free”) are over 20% 
more profitable than the conventional case. At the same farm size, 
ROLMRT for the on-site incident scenarios (scenarios 1 and 2) are just 
about 6-9% lower than in the conventional scenario (scenario B). In 
scenario 4 (“remote-troublesome”), nearly half of the ROLMRT is lost on 
the three largest farms. For the two largest farms, the autonomous sce-
narios are always more profitable except for scenario 4 (“remote-trou-
blesome”). As fixed costs include annual machine expenditures, 
ROLMRTs are lower when the number of machines being used is greater. 
This justifies the differences in ROLMRT across the autonomous sce-
narios. Indeed, the yearly returns in scenarios 3 (“remote-trouble-free”) 
and A (“baseline robot”) are almost identical owing to the same number 
of crop robots being used. When several additional robots are added as 
on the 500 ha farm in scenarios 1, 2 and 4, 18%, 32%, and 49% of the 
yearly ROLMRTs in the baseline autonomous scenario are lost, 
respectively. 

3.3. Initial equipment investment 

Although ROLMRTs are reduced in the autonomous incident sce-
narios, the upfront capital investment to purchase autonomous equip-
ment for the larger two farm sizes is always lower than in the 
conventional case (scenario B). The initial equipment investments by 
farm size for the six scenarios are shown in Fig. 3. 

The cost for the equipment set with a conventional 28 kW tractor is £ 
67,900, which can be retrofitted at a cost of £ 23,262, resulting in a total 
investment of £ 91,162 for an autonomous 28 kW tractor. Additional 
information on the retrofitting components for an autonomous 28 kW 
tractor is available in the electronic supplementary material attached to 
the Lowenberg-DeBoer et al. (2021c) study [14]. Since the 66 ha farm 
with autonomous and conventional equipment uses the same size and 
number of tractors and harvesters (i.e. 1 each), the autonomous farm has 
higher capital costs as a result of the retro-fit expense. Owing to a 159 ha 
conventional farm requiring two 28 kW tractors, equipment investment 
in this case is double that of the smallest farm. For the 284 and 500 ha 
conventional farms, a 112 kW tractor and a 221 kW tractor are used, 
respectively. As estimated by Lowenberg-DeBoer et al. [14], a 112 kW 
equipment set costs £ 389,500, while a 221 kW equipment set costs £ 
723,500. These two cases represent the largest investment requirements 
across the six scenarios. Indeed, for the two largest farm sizes, autono-
mous equipment requires a lower capital investment than the conven-
tional equipment because multiple smaller and less costly robots can be 
used more intensively to perform the same tasks. This advantage persists 
even for troublesome operations and remote supervision (scenario 4). 

When comparing the four incident scenarios with the baseline robot 
case, it is noted that the equipment investment for the smallest farm does 
not vary. This is because one crop robot unit is sufficient for all scenarios 
as there is enough unused machine capacity to absorb the additional 
incident time on the smallest farm. Conversely, larger farms are unable 
to absorb additional incident times in many cases and thus need addi-
tional 28 kW crop robot units. The more crop robot units are required, 
the more investment cost advantage of autonomous farming is eroded. 
For the three largest farms across the four incident scenarios, this eco-
nomic advantage is only preserved in scenario 3 (“remote-trouble-free”), 
where the number of robot units being used is always identical to sce-
nario A (“baseline robot”). It is also noted that, except for the largest 500 
ha farm, the initial equipment investments for the on-site incident sce-
narios (scenarios 1 and 2) are identical regardless of the number of in-
cidents. This effect is not reflected in the remote incident scenarios 
(scenarios 3 and 4) as a result of the 22-hour workday assumed. Indeed, 
the shorter 10-hour day expected for an on-site supervisor makes it 
harder to achieve timeliness of operations even in a relatively trouble- 
free scenario. Thus, scenario 1 (“on-site-trouble-free”) requires one or 
two additional robot units than scenario 3 (“remote-trouble-free”) at the 
three largest farm sizes even if the number of incidents does not vary 
between the two scenarios. 

When the number of crop robots is selected to minimize wheat 
production cost for a given farm area, the shadow prices of robotic 
tractors and harvesters are zero in all cases except for tractors in 
September and October on the 284 ha farm in the “on-site-troublesome” 
scenario (scenario 2). In this case, the shadow price for Sept is 1,217 
£/ha and for Oct is 313 £/ha, but if an additional robot unit is added the 
overall cost of wheat production rises. 

The estimated initial equipment investments across the scenarios 
rely on the assumption from Lowenberg-DeBoer et al. [14] that the farm 
owns the crop equipment being used. However, with the risk of rapid 
technological obsolescence and the formidable upfront investment for 
crop robots, rental and leasing arrangements are very likely to become 
common practice once HAAAE is fully commercially available, making it 
a potential new market for agricultural contractors. In the case where an 
autonomous farm is operated by using third-party service providers, a 
farmer would not incur machine purchase costs and, possibly, machine 
operator costs. Exploring the economic parameters for the six scenarios 
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under such an arrangement is beyond the scope of this study. However, 
many of the conclusions obtained by using owned equipment would still 
apply to a farm operated with rented equipment, though the 
supervision-related choices would have to be made by the crop robot 
provider. 

3.4. Wheat production costs 

Economic theory and history show that in the long run firms will 
tend to use business practices which minimise production costs (Duffy, 
2009; Hallam, 1991) [17,18]. Thus, as in Lowenberg-DeBoer et al. [14], 
minimum wheat production costs are calculated. These include per 

Fig. 3. Initial equipment investment (£) by farm size for the six scenarios.  

Fig. 4. Minimum wheat production costs (£/MT) by farm size for the six scenarios.  
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hectare wheat variable costs, labour compensation, and fixed costs [14]. 
Across the four incident scenarios, wheat production costs become 
increasingly higher, with both the “on-site-troublesome” and “remote--
troublesome” scenarios losing economic advantage over the conven-
tional scenario at some or all farm sizes (Fig. 4). On the other hand, in 
scenarios 1 (“on-site-trouble-free”) and 3 (“remote-trouble-free”), the 
economic advantages of autonomous wheat production are largely 
preserved. 

The wheat production cost curves for scenarios 1 and 3 intersect. At 
the smallest farm size, despite the gross margins and ROLMRTs of these 
two scenarios being equal, wheat production cost is lower in the “on- 
site-trouble-free” scenario because of the lower variable costs resulting 
from shorter human field times when the operator is on-site. At all other 
farm sizes, this effect is cancelled by higher machine-related fixed costs 
in the scenario where the operator is on-site since a 10-hour workday 
requires more machine units to perform the same task in a 22-hour 
workday. If the operator is located off-site and must frequently inter-
vene (scenario 4), wheat is more expensive to produce with autonomous 
equipment than it is conventionally at any farm size. However, in case 
the operator must stay on-site (scenario 2), wheat production costs are 
higher than in the conventional scenario only at the two largest farm 
sizes. For the smaller 66 ha and 159 ha farms, even though machine 
costs are lower in the conventional scenario, its variable costs are higher 
owing to the compensation for the operator driving conventional 
equipment far exceeding that of an operator supervising HAAAE for only 
10% of the time plus infrequent incidents. 

4. Discussion 

In the absence of crop robot supervision regulations, decisions about 
crop robot supervision times would be governed by economic parame-
ters such as gross margins, ROLMRT, initial equipment investment, and 
wheat production costs. Factors affecting the economically optimal level 
of HAAAE supervision are: (i) the required number of human in-
terventions in a given field operation; (ii) the supervisor’s location; and 
(iii) the number of crop robots being used in that operation. The com-
bination of these factors in the autonomous incident scenarios provides 
mixed effects. When incidents are added to the baseline autonomous 
scenario, human and machine field times are substantially greater across 
all farm sizes, especially at the highest incident frequency. Gross mar-
gins in both the baseline cases and the incident scenarios remain rela-
tively similar, except for the “remote-troublesome” scenario where as 
much as 13% of gross margins are lost on the largest farm. Conversely, 
ROLMRTs vary to a greater extent. The baseline conventional scenario 
has higher returns than the autonomous scenarios on the smallest farm 
size. However, as the farm size increases, the autonomous scenarios 
show similar or higher profitability except for the “remote-troublesome” 
scenario. The highest initial equipment investments occur on the two 
largest conventional farms, exceeding even those required in the 
“remote-troublesome” autonomous scenario. As to minimum wheat 
production costs, these are always lower than conventional when farm 
operations are relatively trouble-free. When the frequency of incidents 
increases, minimum wheat production costs are higher than conven-
tional if the farm operator’s location is remote (“remote-troublesome” 
scenario) at all farm sizes, but higher than conventional only at the two 
largest farm sizes if the farm operator remains on-site (“on-site-trou-
blesome” scenario). This indicates that smaller farms better absorb 
machine incidents in terms of production costs when the farm operator 
remains on-site. 

The economically optimal farmer supervision of crop robots for the 
four incident scenarios is 13%, 35%, 23%, and 85% of machine field 
time, respectively, or 3%, 25%, 13%, and 75% more than in the baseline 
autonomous scenario. These supervision levels are substantially lower 
than the 100% crop robot supervision mandated by regulations in the 
EU and California. In case of relatively trouble-free operations (scenarios 
1 and 3), since the supervision requirements are relatively low for both 

the operator locations, a supervisor has the choice to stay on-site or to 
control HAAAE remotely, with the latter requiring about a twice as high 
supervision percentage. However, if the equipment or the operation 
requires frequent human interventions (scenarios 2 and 4), the super-
visor would benefit from remaining on-site rather than controlling 
HAAAE remotely. When looking more closely at the “on-site-trouble- 
free” and “remote-trouble-free” scenarios in terms of minimum wheat 
production costs, these are 3.06% lower in the former on the smallest 
farm, but between 1.61% and 4.90% lower in the latter on the three 
largest farm sizes. Thus, in case of relatively trouble-free operations, a 
farm manager would choose to operate HAAAE remotely. This confirms 
the hypothesis that the voluntary supervision of crop robots is at least 
affected by the proposed three factors and that a farm manager would 
remain on-site for more time to oversee autonomous field operations in 
case frequent human interventions were required, even in the absence of 
supervision regulation. 

The reason why human interventions are required depends on the 
nature of the field operation being performed. These may include plant 
debris removal during drilling, clogged nozzles during spraying, and 
sieves clearance during harvesting. It is also important to highlight that 
currently available field robots are not equipped with high AI capacity. 
They mostly follow predetermined field paths. If they encounter some-
thing unexpected, most of them just stop and wait for a human to decide 
or deal with the problem. As field robot AI capacity increases, the need 
for human intervention would be expected to diminish. If the differences 
in ROLMRTs between trouble-free and troublesome scenarios were 
interpreted as proxy for a farm manager’s willingness to pay for AI, this 
would be particularly high on remotely controlled larger farms. For a 
farm manager remaining on-site, the willingness to pay for AI ranges 
from £ 0 on the smallest farm to £ 20,006 on the largest farm. For a farm 
manager remotely supervising operations, this ranges from £ 706 on the 
smallest farm to £ 67,112 on the largest farm, with a £ 22,275 willing-
ness to pay for AI already at the second smallest farm size. Such a low 
willingness to pay for AI on smaller farms is in line with the minimum 
wheat production costs demonstrating that smaller farms are better 
capable of absorbing increased production costs resulting from machine 
incidents. This holds particularly true for small cereal and general 
cropping farms. On mixed crop and livestock farms or farms with non- 
farm enterprises, these figures might constitute an underestimation of 
the willingness to pay for AI in those cases where higher opportunity 
costs of labour are higher. Despite the higher willingness to pay for AI on 
remotely controlled larger farms, it must be noted that the need for 
human intervention might never disappear entirely as neither manu-
facturers or crop robots can anticipate every problem. Even the most 
capable AI will encounter some situations that are outside of its training. 
For instance, all farm operation types may require human intervention 
in case the crop robot’s collision detection and avoidance system iden-
tifies an unexpected obstacle in the field and switches off the crop robot 
to safe mode. 

Further to the incident scenarios analysis, the dichotomy between 
on-site and remote as well as between trouble-free and troublesome 
scenarios must not exclude the possibility for an operator (or for a 
farming services provider) to switch from a remote to an on-site control 
location across the year depending on the human intervention re-
quirements of a specific operation. A sensitivity analysis conducted on 
the number of incidents during spraying activities showed that wheat 
production costs for the “on-site-troublesome” scenario would be below 
those of a conventional farm at all farm sizes if the number of spraying 
incidents was reduced from 10 to 1, i.e., as that of a trouble-free sce-
nario. Thus, an operator could indeed retain the economic advantages of 
HAAAE by remaining on-site during more problematic activities such as 
drilling and harvesting, and by controlling relatively trouble-free 
spraying activities from a remote location. However, the economic ad-
vantages preserved by remotely controlling HAAAE during less prob-
lematic spraying operations could be lost in case the operator had to be 
additionally compensated for remaining on-site during drilling and 
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harvesting activities. Indeed, a second sensitivity analysis on operator 
compensation in the same scenario indicates that minimum wheat 
production costs would exceed those in the conventional case (scenario 
B) at all farm sizes if the operator was compensated an additional 60%. 
Below this threshold, the economic advantages of autonomous equip-
ment in the “on-site-troublesome” scenario are at least preserved for the 
two smallest farms (66 and 159 ha) as previously described. 

A breakeven analysis conducted on the four incident scenarios 
showed that, in the on-site scenarios, autonomous farming would 
remain competitive with conventional farming if up to 22 and 16 in-
cidents per person-day occurred on the 66 ha and 159 ha farms, 
respectively. On the other hand, the larger 284 and 500 ha farms in the 
on-site scenarios could only tolerate up 8 and 6 crop robot incidents, 
respectively. In the remote scenarios, these figures are as low as 5 in-
cidents per person-day on the 66 ha farm, 4 incidents per person-day on 
the 159 ha farm, 2 incidents per person-day on the 284 ha farm, and 3 
incidents per person-day on the 500 ha farm. This analysis modelled 
incident scenarios at opposite ends of the performance range from 
relatively trouble-free to quite troublesome. It is a preliminary analysis 
of the optimal supervision time for crop robots and it consequently has 
many limitations. As experience with autonomous crop equipment ac-
cumulates, it will become possible to more accurately identify the 
incident thresholds at which economic decisions would change from 
remote to on-site supervision of HAAAE or to conventional equipment 
use. In particular, the numerical results presented depend on the robotic 
technology modelled, the crops produced and other assumptions of the 
HFH-LP. The autonomous equipment modelled in this study has very 
little AI capacity and it mostly follows a predetermined field path. More 
advanced equipment would be expected to require fewer human in-
terventions. The economic determinants of supervision time in the 
absence of regulation will probably be similar for other HAAAE tech-
nology and crops, but the numerical results will differ. 

Despite the limitations of this analysis, these results help identify 
priority areas for researchers, entrepreneurs, and crop robot manufac-
turers. This is particularly the case if agricultural health and safety 
regulators will allow for partial HAAAE supervision during certain or all 
field operations as the economically optimal farmer supervision of crop 
robots calculated through the HFH-LP model is much lower than 100% 
across all autonomous scenarios. At the initial stages, autonomous ma-
chines may be used for less troublesome operations while other opera-
tions could still be performed using conventional equipment. With the 
advance of field robotics, farmers could gradually shift to autonomous 
farming for all operation types, possibly utilising the existing inventory 
of conventional equipment for back up in case minor operational issues 
persist in some cases. Developing crop robots that can perform well even 
in difficult operations or in adverse weather and field conditions would 
encourage a faster HAAAE adoption by farmers. There is tremendous 
potential for the development of “smart” field robots that can adjust 
themselves when basic operational issues occur or that are able to 
autonomously recognise and circumvent unexpected obstacles. At first, 
these systems could partially rely on a remote or on-site human operator 
being notified (via text message or mobile phone app) about a problem. 
The human operator could quickly check the nature of the incident 
without needing to travel to the machine and give permission to the crop 
robot to adjust or “unblock” itself from afar. With time, the crop robot 
could be trained to independently resolve issues that were already 
encountered in previous situations, or that were incorporated into 
updated crop robot versions relying on real-world HAAAE incident and 
performance data accumulated over the years. Development of greater 
AI capacity would help farmers realise the multiple economic advan-
tages of autonomous over conventional agricultural mechanisation. 

5. Conclusion 

This economic analysis used the HFH-LP optimisation model to 
explore factors affecting optimal farmer supervision of HAAAE (or crop 

robots) in the absence of regulation. Two HFH-LP baseline scenarios 
were compared to four new incident autonomous scenarios that re-
flected different human and machine time requirements according to: (i) 
the required number of human interventions in a given field operation; 
(ii) the supervisor’s location; and (iii) the number of crop robots being 
used in that operation. These three factors were selected by the HFH and 
HFF team based on their expertise in producing grain crops with 
autonomous equipment and were shown to affect the economically 
optimal farmer supervision of crop robots. More specifically, it was 
shown that a farm manager would voluntarily remain on-site for more 
time in case field operations required frequent human interventions and 
the crop robots being used were many as a result of a larger farm size. 
While worldwide some health and safety regulators are imposing con-
stant human supervision of HAAAE as a one-size-fits-all solution to 
reduce on-farm risk, the results of this study underscore the need for 
tailoring crop robot supervision regulations to the specific autonomous 
technology being used. The economics, social, and environmental ben-
efits of robotic agriculture may not be realized if high levels of human 
supervision are required for all HAAAE regardless of crop robot size, 
speed of operation and other factors. 

The economically optimal farmer supervision of crop robots for the 
four incident scenarios is 13%, 35%, 23%, and 85% of machine field 
time, respectively. These supervision levels are lower than the constant 
supervision of crop robots required by jurisdictions such as the EU and 
California. In the absence of regulation, a farm manager prioritising 
profit maximisation would spend 25% more time on-site supervising 
HAAAE in case frequent human-interventions were required, but never 
reaching a level of 100% of machine field time. Regardless of the su-
pervisor’s location, autonomous farming is characterised by lower than 
conventional production costs at any farm size in the case of relatively 
trouble-free field operations. Except for the case where the farm oper-
ator remains on-site on the two smallest farms, autonomous farming is 
less profitable than conventional agriculture if field operations are 
troublesome. In these cases, the human intervention frequencies would 
have to be reduced to 6-8 incidents per person-day in an on-site scenario 
or to 2-5 incidents in a remote scenario to preserve the economic ad-
vantages of autonomous farming. Further research is required to assess 
the economic effects of allowing an operator to simultaneously attend to 
multiple incidents in a single trip in a remote scenario or to evaluate the 
implementation of larger crop robots that might be used on larger farms 
but may require the farm manager to intervene more frequently. 

The implications of these results for health and safety regulators are 
that requiring on-site human supervision of crop robots that is higher 
than economically optimal constitutes a penalty in terms of opportunity 
costs of human field time and greater investments in additional robot 
units required to operate the same area. Regulation should strive to 
balance the trade-off between financial gain and health and safety rather 
than imposing constant human supervision of HAAAE as a one-size-fits- 
all solution for all operation types and farm sizes. Autonomous and 
conventional equipment could co-exist, with the former being imple-
mented under partial supervision for less troublesome operations and/or 
for smaller farms with an on-site operator. As health and safety risks 
decrease because of better crop robot reliability, supervision regulations 
could be relaxed even for troublesome operations and for all farm sizes. 
For researchers, entrepreneurs, and crop robot manufacturers, the 
development of crop robots that can perform well even in difficult op-
erations or adverse conditions is an opportunity to preserve the 
competitive advantage of autonomous farming over conventional agri-
culture. While worldwide crop robot regulations are still in their in-
fancy, priority should be given to the advancement of AI capacity or to 
equipment designs that place greater emphasis on reliability so that crop 
robots are safer and able to resolve problems without human interven-
tion. These results show that moving autonomous equipment from the 
troublesome to the trouble-free category can substantially reduce costs 
of production and preserve the economic advantages of autonomous 
agriculture. 
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