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Abstract
Sustainability in our food and fiber agriculture systems is inherently knowledge intensive. 
It is more likely to be achieved by using all the knowledge, technology, and resources avail-
able, including data-driven agricultural technology and precision agriculture methods, 
than by relying entirely on human powers of observation, analysis, and memory following 
practical experience. Data collected by sensors and digested by artificial intelligence (AI) 
can help farmers learn about synergies between the domains of natural systems that are 
key to simultaneously achieve sustainability and food security. In the quest for agricultural 
sustainability, some high-payoff research areas are suggested to resolve critical legal and 
technical barriers as well as economic and social constraints. These include: the develop-
ment of holistic decision-making systems, automated animal intake measurement, low-cost 
environmental sensors, robot obstacle avoidance, integrating remote sensing with crop 
and pasture models, extension methods for data-driven agriculture, methods for exploit-
ing naturally occurring Genotype x Environment x Management experiments, innovation 
in business models for data sharing and data regulation reinforcing trust. Public funding 
for research is needed in several critical areas identified in this paper to enable sustainable 
agriculture and innovation.

Keywords Regenerative agriculture · Data ownership · Privacy · Data integration · 
Decision support systems · Research needs · Research funding

Introduction

The Food and Agriculture Organization (FAO), the United Nations institution that 
supports global food security, has a clear vision for sustainable food and agriculture: 
food should be nutritious and accessible for everyone, and natural resources should be 
managed in a way that maintains ecosystem functions to support current, as well as 
future human needs. The key principles of sustainability for food and agriculture in the 
FAO vision include increasing productivity, employment, and value addition in food 
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systems; protecting and enhancing natural resources; and improving livelihoods and 
fostering inclusive economic growth. In contrast to the complex and multi-functional 
concept reflected by the FAO, for many people, “sustainable agriculture” and “regen-
erative farming” imply, at least to some extent, a return to traditional farming methods. 
On the other hand, the applications of digital agriculture technologies are increasing 
rapidly, with increased interest from the new generation of farmers to use digital solu-
tions (Kayad et al., 2022).

A series of workshops was held in 2022 between technology, research, and business 
stakeholders from Israel and the UK focusing on data-driven agriculture in the world 
of sustainable farming resulting in this brief communication, reflecting long discus-
sions and careful thought. This communication will argue that sustainability in our 
food and fiber agriculture systems cannot be achieved without using all the knowledge, 
technology, and resources available, including data-driven agricultural technology and 
precision agriculture methods. Evidently, data collected by sensors and digested by 
artificial intelligence (AI) can guide farmers to precisely and rationally apply exter-
nal inputs, e.g., water, fertilizer, pesticide for crops, and nutrients and medicine for 
livestock. Moreover, they can be used to learn about synergies between the domains 
of natural systems that are key to simultaneously achieve sustainability and food secu-
rity. These synergies include interactions between plants, the environment, beneficial 
insects and fungi, grazing animals, the digested plant and nutrient returns from ani-
mals, and the health of soil and crops. This communication will summarize key char-
acteristics of sustainable agriculture, outline the benefits of data-driven agriculture for 
adopting the principles of sustainable agriculture, outline constraints and challenges to 
using data-driven agri-tech to achieve sustainability, and identify priority research to 
address the challenges of creating data-driven sustainable agriculture. Figure 1 illus-
trates how public funding for research on those high-payoff topics is expected to break 
through the various barriers, one by one, and facilitate the adoption of data-driven 
sustainable farming practices. It is hoped that this communication will be of inter-
est to advocates of sustainable agriculture from all perspectives, including agricultural 
researchers and policymakers.

Fig. 1  Breaking through the barriers to adopting data-driven sustainable agriculture practices requires pub-
lic investment in research of priority topics. Funding to back up research in critical areas is expected to 
yield a high payoff
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Key characteristics of sustainable agriculture

The Brundtland report (1987) defined sustainability as ’the ability to meet the needs of the 
present without compromising the ability of future generations to meet their own needs’. 
Sustainability, in a more pragmatic sense, can be defined as improving a system’s pro-
ductive performance without depleting the resources upon which its future performance 
depends (Jones et al., 2011; Turner et al., 1994). The purpose of agricultural production is 
to sustainably provide food and fiber for human consumption; as such, sustainable agricul-
ture’s focus must also consider its role beyond the management of crops or livestock within 
a field or even a farm.

A sustainable agricultural system’s complex and multi-functional attributes need to uti-
lize data and understanding at many levels within a global and complex food and fiber 
production system. Precision agriculture is one strategy to realize these goals. Sustainable 
agriculture concepts overlap substantially with the principles of “conservation agriculture” 
and more recently with “regenerative agriculture.”

Agricultural systems can be considered through the lens of five forms of capital: 
natural, social, physical, financial, and human (Goodwin, 2003). Sustainable agricul-
tural systems aim to ensure that capital in any form is not eroded (i.e., strong sustain-
ability in that there are no trade-offs between different forms of capital indefinitely) 
while providing production, consumption, and distribution objectives within the farm 
and across society. Long-term economic wealth from farming without trading off 
system resilience can be achieved by relying on key principles to achieving sustain-
able agriculture (ARO, 2018):

1. Reduce external inputs (pesticides, fertilizers, water, and energy).
2. Recycle all organic wastes (“zero waste”).
3. Conserve soil and water.
4. Develop a system that sustains and supports agriculture, organismal biodiversity, and 

local habitats, and
5. Improve animal and human/social welfare.

Agricultural systems are those where complex trade-offs exist between different farm 
resources (e.g., land, labor, physical and financial resources). Moreover, all agricultural 
systems are inevitably exposed to external factors such as climate, markets, and regula-
tory environments influencing and increasing uncertainty of their long-term success. There 
are various metrics for farming system success, but in subsistence farming, household 
food security is the primary indicator for long-term profitability. The foremost challenge 
with sustainable farming is integrating both internal systems of production with external 
factors to enhance timely whole-farm decision-making. In addition, we need to consider 
farmer behavior and their values, e.g., risk aversion and satisficing (Behrendt et al., 2014; 
Hardaker et al., 2015), or preferences for developing different forms of capital, as these, in 
combination, determine their preferred choice of action from alternatives. There are addi-
tional challenges with monitoring the success, or otherwise, of implementing alternative 
strategies in achieving the objectives of sustainable farming. This is especially the case 
with potentially slow-changing variables that are not easily detectable (e.g., soil carbon, 
soil compaction, soil biodiversity and soil health, plant spices composition change in pas-
tures) but potentially have significant impacts on the long-term sustainability of agricul-
tural systems.
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Benefits of data‑driven agriculture for adopting the principles 
of sustainable agriculture

What is agricultural data? In this communication, “agricultural data” is any data associated 
with or useful to farming practice, farm economics, or farm environmental impacts. While 
there has been a focus in the recent research literature on “Big Data” which exceeds the 
capacity of traditional data processing methods (e.g., Kayad et al., 2022), this communica-
tion encompasses all data used in making agricultural decisions, from small data sets to 
Big Data. There are a number of ways to collect such data, including remote sensing imag-
ing (e.g., Altzberger, 2013), by networks of weather, soil, plant, animal and farm machin-
ery sensor data, also known as the “internet of things” for agriculture (Muangprathub et al., 
2019), from in farm management information systems on many mechanized farms, and 
finally from the documentation of farming practice on individual farms.

A data-driven approach to sustainable agriculture allows one to incorporate all the 
knowledge, technology, and resources available to decision-makers. It provides the oppor-
tunity to deal with what are usually intractable environmental, social and economic prob-
lems in a meaningful timeframe. It enables inter-temporal risk management and trade-offs 
within and between different levels of the food and fiber production system. The principles 
of data-driven agriculture will facilitate adopting predictive and prescriptive management 
that considers greater complexity with higher accuracy than heuristic decision-making. 
Data-driven agriculture has the potential to be part of the solution to achieving sustainable 
agriculture for food and fiber production systems.

Data-driven methods have great potential to enhance the sustainability of food systems 
in four main areas. The first is the automation of data collection, including the ability to 
develop and deploy field and animal sensors, the creation of practical robotic systems, and 
the improvement of earth observation satellite systems, enabling the collection of high-
quality and more accurate data. The second is big data processing by integrating machine 
learning and deep learning approaches in agriculture. These tools focus on developing 
learning systems and algorithms to study specific phenomena. Artificial intelligence is a 
highly interdisciplinary field based on different areas such as computer science, optimiza-
tion theory, information theory, statistics, cognitive science, and optimum control (Cravero 
et al., 2022). Artificial intelligence approaches are revolutionizing almost every scientific 
domain and have created a data industry in a short time, making them significantly impact-
ful for science and society due to their ubiquity and diverse applications. This is applied 
to recommendation systems, computer vision object recognition, informatics, data mining, 
and autonomous control for agriculture. An additional aspect of the data value is under-
standing the study of complex phenomena and system behaviors better through using new 
technologies. The third is the development of human–computer interfaces, improving the 
ease and use of insights through voice, text, and images, making the data and information 
accessible to farmers for decision support. However, many challenges remain in the appli-
cation and implementation of data-driven sustainable agriculture due to the complexity of 
agricultural data with volume, variety, velocity, veracity, and tailoring relevant informa-
tion creation itself. Several studies have highlighted these challenges of using a data-driven 
agriculture approach (e.g., Demestichas et al., 2020; Kayad et al., 2022; Zhang et al., 2014). 
A crucial question is how and to what degree data-driven agricultural systems can lead to 
future sustainable agriculture. Despite the considerable amount of literature dealing with 
the issue today, our understanding of using data-driven agriculture to ensure sustainability 
is still at an embryonic stage (Lioutas et al., 2019). The fourth, from a management point 
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of view, data curation can also act as the “organizational memory” on a farm by preserving 
the knowledge implicitly present in past decisions. In our opinion, this role has been mostly 
overlooked so far. However, this aspect is increasingly important as traditional farmers, i.e., 
farmers who accumulated knowledge and expertise after the mid-twentieth century “green 
revolution”, are reaching retirement. As the practice of farm handover to the next genera-
tion is no longer the norm, retaining this generational knowledge is a challenge of critical 
importance that transcends cultural and regional boundaries. Thus, from a global perspec-
tive, such data curation would also serve the role of documenting the collective cultural 
knowledge of farmers and diverse farming systems.

Extensive use of data in agriculture promises to revolutionize not only farming practices 
but also facilitate a paradigm shift in academic research and knowledge exchange. From a 
scientific point of view, the ever-increasing abundance of data enables the investigation of 
increasingly complex relationships and, in particular, the investigation of the interactions 
between processes that occur at different spatial and temporal scales. Reliable data, i.e., 
validated and curated data, is a prerequisite for developing the type of models necessary 
to predict trends and, in particular, to investigate the expected impact of climate change on 
agricultural production. Data can also act as a bridge between scientists from different and 
contrasting disciplines (engineering, natural and social sciences) and facilitate collabora-
tions centered around data interpretation. However, there is still a great challenge in decid-
ing and designing data collection practices that address specific questions with the broadest 
impact, which rely on high information density, data standardization, and data access.

Constraints and challenges to using data‑driven agriculture to achieve 
sustainability

While a data-driven approach in agriculture has the potential to be part of the solution 
to achieving sustainable agriculture for food and fiber production systems, it suffers from 
legal barriers, technical challenges, and economic and social constraints. All of these chal-
lenges impede the ability to share data to derive widespread benefits from it.

Legal barriers

Agricultural data is collected by and in demand from different sectors. Diverse stakehold-
ers may claim ownership on the one hand and have different needs and interests on the 
other hand. Further, there are unequal benefits and, thus, adoption barriers to sharing data 
amongst the different sectors (e.g., Janssen & Charalabidis, 2012).

The principal stakeholders in farm data are the data producers, i.e., farmers themselves. 
Benefits to farmers from data sharing may include decision support for farming, bench-
marking performance against competitors, or early warning for the risk of a pest or disease 
outbreak, amongst many others. However, these potential benefits may scale differently in 
different countries or farming systems (e.g., Sekhar & Sekhar, 2017), and there may be a 
reluctance to share data amongst data producers because of effort or cost of data curation, 
the effort in terms of time, standardization and cost required for the data sharing itself or 
perceived (lack of) benefits for doing so.

Agriculture companies are another large stakeholder, with agents across many different 
sectors developing so-called “data products” at a large scale (Bronson & Knezevic, 2016). 
Farmers may be concerned about data ownership and the cost of paying for the data they 
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generate. Farmers worldwide often may feel that farming data such as inputs, agronomy 
decisions, proximate sensor measurements, yields, and individual farm accounting clearly 
belong to an individual farming entity (e.g., Castle et al., 2016; Jakku et al., 2018; Zhang 
et al., 2021). The agri-business information systems industry seeks to leverage these data to 
provide automated data capture as a service for farmers and agronomists. The value offered 
by these farming data tools is efficiency and context for farmers. Legislation is less clear, 
suggesting a distinction between data production per se and intellectual property ownership 
for information systems based on data production (e.g., Ellixson & Griffin, 2017; Wiseman 
et al., 2019). If the ownership of a resource is unclear, buying, selling, sharing, and manag-
ing that resource becomes problematic. In the specific case of remote sensing, for example, 
there are several arrangements for the use and ownership of data. Images from publicly 
owned satellites are largely released as open information. Those from privately owned sat-
ellites belong to the companies. The ownership of data from aerial photography or drones 
depends on the agreement between the farmer requesting that service and the provider. 
When governments perform aerial surveying, public policy dictates usage rights. These 
arrangements may be broadened to other data types.

Alongside the aspect of data ownership is also the aspect of privacy. The boundary 
between commercial farming data (e.g., growing conditions, input use, yields, equipment 
functions) and private data is unclear. Family businesses still dominate farming worldwide. 
Even where it is legally structured in limited partnerships and corporations for tax rea-
sons, these entities are often family-owned businesses. Consequently, private information 
is often mixed with biological, physical, and business data. For example, personal finan-
cial records are often comingled with business records. The relationships between spouses, 
parents, children, and other family members are often discernible in field time logs, credit 
card and checking accounts, and telephone bills. Further, by the nature of the land-based 
enterprise, a lot of agricultural data, like remote sensing data and location of sensors, has 
a spatial component in the geolocation of the data collection, which is necessary and can 
add value but could reveal confidential information about individual farms. Finally, there 
is a potential stakeholder role for the government and society relating to farm data. Here, 
there is a balance between data supporting food security at national and international levels 
(Godfray et al., 2010) and anthropogenic negative impacts on the environment due to farm-
ing activity. Governments, therefore, should be increasingly interested in offering positive 
data-sharing incentives. Advancing the legislation would enable the utilization of these 
massive data continuously accumulated over time in the public interest.

Economic and social constraints

Even if ownership of agricultural data is clarified, privacy issues resolved, and data integration 
standardized, economic and social constraints to wider use of agricultural data will remain, 
including lack of demonstrated value, mistrust of data aggregation organizations, and the cost 
to adopt new technology. The economic value of information technologies depends on deci-
sions changed by access to that new information. If changed decisions increase profitability, 
some portion of that increased return is attributable to the information and thus has value. But 
it is often difficult to track what decision would have been made without the new informa-
tion to make such a comparison. Demonstrating the value of information technology is often 
easiest for specific problems. For example, weed, pest, or disease identification systems paired 
with effective management strategies. With automated information, the problem may be 
addressed and resolved; without the information, the problem would be addressed late if at all.
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Demonstrating the value of system-level information is often more difficult because many 
more factors are involved. For example, information about yield differences between conven-
tional and no-till systems may be confounded by weather, soil, agronomy, seed genetics, and 
the specific type of no-till equipment implemented. It may require detailed data from many 
farms over a long period to provide enough data to make a purely data-driven decision on 
no-till versus conventional tillage. In the meantime, the farm manager will continue to make 
decisions based on the usual mix of intuition and logic.

Achieving the full potential of data-driven sustainable agriculture will require pooling data 
over many farms. For most system-level decisions, aggregated data from many individual 
farms are required to make data-based decisions. But pooling farm data has proven difficult. 
Agricultural Big Data media coverage often focuses on the reluctance of farmers to share data, 
and a few more robust academic studies have confirmed that lack of trust (e.g., Castle et al., 
2016; Jakku et al., 2018; Zhang et al., 2021). Farmers often worry that competitors will use 
their data to outbid them in the markets for land and other resources, by agribusinesses to tar-
get marketing, and by governments to impose even more onerous regulations. In other sectors 
of the economy (e.g., medical care), anonymization has facilitated data sharing. Anonymiza-
tion would be useful for farm management, financial, and intensive livestock production data, 
but unfortunately, anonymization of farm field data would be very difficult. Soil type, yield 
maps, and other field spatial information provide a unique field signature that is easily search-
able even if spatial coordinates are scrambled. Anonymization by a trusted organization is 
essential, but financial or other incentives would be needed to motivate data collection. Many 
farmers often indicate that data aggregation by a university, research institute, or cooperative 
would be most acceptable because of the perceived lack of motive to misuse the data.

Automated data-based decision support systems are commonly viewed as the means to 
increase the speed and effectiveness of the user’s ability to extract information. However, such 
systems may not be trusted, which poses a challenge to adoption by end users. Trust influences 
reliance on technology. Users may either place inordinate dependence on automated decision 
support to the point they misuse it, or else reject such decision support and disuse it (Lee & 
See, 2004). Lee and See (2004) suggested that properly conveying system capabilities, train-
ing users, and demonstrating how the decision support systems meet user goals, can facilitate 
trust. However, complex solutions such as deep learning solutions thwart understanding of 
how the algorithm functions. To counter this, Dorton and Harper (2022) proposed involving 
end users in developing systems and involving developers in training end users.

In most industrialized societies, farmers do not choose their careers because they want to 
spend hours in front of computer screens trying to interpret data. In most cases, at least part 
of their career choice is led by the desire for active, outdoor employment. The history of tech-
nology adoption indicates that farmers will increasingly use computer decision-making tools 
if they result in more profitable decisions and if they are easy to use. Generations who have 
grown up with information technology may adapt to agri-tech innovations more easily.

Technical barriers to broader use of agricultural data

While the promise and importance of large-scale data captured in agriculture systems are well 
known in academia and the agri-tech industry, several key challenges remain to accomplish 
this potential. In less than two decades, agriculture has gone from a field that suffered from 
a lack of data to a data-intensive field. A major concern is data quality. Historically, farmers 
have lacked the incentive to collect high-quality data or to store it in a standard format. The 
focus is on physically “getting the work done”, not on data. Consequently, yield monitors and 
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other sensors may often be calibrated irregularly. Gaps in data occurred when sensors or posi-
tioning systems were not functioning, and field operations continued manually. Monitoring 
data about pests, water, and nutrition status are not recorded regularly, nor are pesticide, irriga-
tion, and fertilization applications. Thus, the historical documentation that exists suffers from 
gaps and lacks standardization.

Another major challenge is how to bring all this data together. Farm data usually comes 
from heterogeneous sources. Some data is machine-generated (e.g., tractor engine work 
cycles, combine concave settings, planter seed drop). Some data is collected by remote and 
proximal sensing (e.g., satellite and drone images and atmospheric, soil, and plant sensors). 
Some data come from traditional farm record keeping (i.e., so-called “process mediated” 
data), and some data are human-sourced, including the increasing proportion shared on social 
media. For any given farm decision, all those data sources may be relevant, but combining 
them in a single data framework is a challenge. There have been recent attempts to envision a 
“standard system” for farm data (e.g., Bacco et al., 2019; Kamienski et al., 2019; Otto & Jarke, 
2019). However, there has been an emphasis on systems for data harvest (e.g., EU Commis-
sion, 2021) and a proliferation of potential technological solutions for empowering farmers to 
access information derived from the agricultural data they generate. There is an opportunity to 
focus on commonalities in data collection across different agriculture sectors.

Artificial intelligence (AI) has recently been perceived as a solution for various data-ori-
ented challenges. AI has grown to be a significant force in many sectors. In healthcare, AI 
algorithms can analyse large amounts of patient data and medical research to identify potential 
risk factors. In education, AI-powered chatbots can answer students’ questions and provide 
feedback in real-time. In agriculture, there are many attempts to incorporate AI capabilities to 
develop decision support systems. Decision support systems based on supervised algorithms 
require robust and reliable training data sets. However, one must first know what data is crit-
ical to the particular data-driven solution and if and how needed data are collected. In the 
agriculture domain, data collection may be complicated or unavailable. Thus, data collection 
means must be developed. Developers and data underlying decision support tools are suscep-
tible to bias. They are more likely to rely on data that is relatively easily acquired by existing 
systems and ignore or lack awareness of other essential features, i.e., they are prone to ‘search-
ing under the spotlight’. If an automatic system does not currently support the critical features, 
they need to be collected manually until it is decided to put effort into automating their col-
lection. However, manual data collection is laborious and methodologically heterogeneous by 
nature, hindering the development of transferable data ready for algorithms that can be applied 
to different conditions.

Another technical challenge that is often neglected is rural internet service. Internet access 
is essential for most data-driven agriculture technologies, but rural internet access is patchy in 
most of the world. Even in countries like the United Kingdom, where 98% of farmsteads have 
internet access, connectivity blind spots are common where there is only sporadic internet or 
even cell phone signal in fields and pastures.

High payoff research to address the challenges and resolve barriers

In just a few years, agriculture has moved from being a data-scarce sector to one of data 
abundance. Agriculture data opens many research opportunities, and discussion at the 
Israel-UK workshops identified the following high-impact research areas (not in order 
of priority):
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• Automated animal intake measurement. Accurate, cost-effective individual animal 
intake measurement would free constraints on feed efficiency research and applica-
tion in commercial settings. There is a research opportunity in this area because feed 
companies do not fund it, and public funding has historically been limited.

• Soil sensors to reduce the cost of soil nutrient information—One of the key reasons 
variable rate fertilizer adoption has been modest is the cost of manual soil sampling 
and laboratory testing. On-the-go soil sensing would eliminate that constraint.

• Robot obstacle avoidance in crop and animal facilities. Automating avoidance of 
field obstacles will greatly decrease the costs involved with human supervision tasks 
for crop and livestock robots.

• Combining remote sensing and crop and soil models for early detection of plant 
diseases and pests—Calendar-driven whole-field prophylactic pesticide application 
could be radically reduced with widespread, reliable, site-specific early warning sys-
tems for plant diseases and pests.

• Research on extension methods for data-driven agriculture to improve food security 
and reduce the ecological footprint of agriculture. In particular, good examples are 
needed for the benefits of pooling data.

• New methodologies to exploit on-farm genetic variation and local knowledge. This 
is the so-called Genetics by Environment by Management (GxExM) puzzle.

• Business models of gathering and sharing farm data. The full potential of data-
driven agriculture will only be achieved with pooled data.

• Development of a trust-reinforcing regulatory framework for farm data gathering, 
sharing, and analysis is needed, along with appropriate business models to achieve 
the full potential of data-driven agriculture.

• Development of decision support systems. There is a great need to transform Big 
Data into meaningful information that can support intelligent decisions that lead to 
more sustainable and profitable agriculture that are site-specific

Conclusions

Achieving sustainable agriculture is inherently knowledge intensive. Traditional agricul-
ture relied on the limited capacity of the human brain to observe, analyze and remem-
ber the multitude of interactions and synergies that can make biological systems sus-
tainable. Data-driven technology gives farmers, agribusiness, and researchers the tools 
to observe, record, and understand more of those interactions than human brain power 
allows. Examples of high-payoff data-driven agriculture research include technical top-
ics like measuring livestock feed intake and soil sensors, new methods for collecting 
and using the data, and management innovations in business models for data sharing 
and developing a trust-reinforcing regulatory framework. Public funding for research 
is lacking in several critical areas identified in this paper as expected to generate high 
payoffs.

Acknowledgements The arguments and discussion in this work result from two workshops held at the Vol-
cani Institute in Israel on June 7–9, 2022, and at Harper Adams University in the UK on September 13–15, 
2022. The participants of these workshops are thanked for sharing ideas that contributed to this paper. The 
British Council is acknowledged for supporting these meetings through the Wohl Clean Growth Alliance.



 Precision Agriculture

1 3

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Agricultural Research Organization (ARO). (2018). A model farm for studying, demonstrating and imple-
menting sustainable agricultural practices. Newe Ya’ar Volcani Institute, Israel. Retrieved July 1, 2023, 
from https:// www. model farm- aro. org/

Atzberger, C. (2013). Advances in remote sensing of agriculture: Context description, existing operational 
monitoring systems and major information needs. Remote Sensing, 5(2), 949–981.

Bacco, M., Barsocchi, P., Ferro, E., Gotta, A., & Ruggeri, M. (2019). The digitisation of agriculture: A sur-
vey of research activities on smart farming. Array, 3, 100009.

Behrendt, K., Malcolm, B., & Jackson, T. (2014). Beef business management. In L. Kahn & D. Cottle 
(Eds.), Beef cattle production and trade (pp. 493–513). CSIRO Publishing.

Bronson, K., & Knezevic, I. (2016). Big data in food and agriculture. Big Data & Society, 3(1), 
2053951716648174.

Brundtland, G. H. (1987) Our common future: Report of the world commission on environment and devel-
opment. Geneva, UN-Document A/42/427.

Castle, M., Lubben, B. D., & Luck, J. D. (2016). Factors influencing producer propensity for data sharing & 
opinions regarding precision agriculture and big farm data. University of Nebraska, Digital Commons, 
Spring 3-2016. https:// digit alcom mons. unl. edu/ ageco nwork pap/ 49/

Cravero, A., Pardo, S., Sepúlveda, S., & Muñoz, L. (2022). Challenges to use machine learning in agricul-
tural big data: A systematic literature review. Agronomy, 12(3), 748.

Demestichas, K., Peppes, N., & Alexakis, T. (2020). Survey on security threats in agricultural IoT and smart 
farming. Sensors, 20(22), 6458.

Dorton, S. L., & Harper, S. B. (2022). A naturalistic investigation of trust, AI, and intelligence work. Jour-
nal of Cognitive Engineering and Decision Making. https:// doi. org/ 10. 1177/ 15553 43422 11037 18

Ellixson, A., & Griffin, T. (2017). Farm data: Ownership and protections. University of Maryland Exten-
sion, AREC Fact Sheet FS-1055.

European Commission. (2021). Internet of food and farming. https:// cordis. europa. eu/ proje ct/ id/ 731884
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, 

S., Thomas, S. M., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. 
Science, 327(5967), 812–818.

Goodwin, N. R. (2003). Five kinds of capital: Useful concepts for sustainable development. Medford, MA 
USA, Global Development and Environment Institute: 14.

Hardaker, J. B., Lien, G., Anderson, J. R., & Huirne, R. B. (2015). Coping with risk in agriculture: Applied 
decision analysis. CABI.

Jakku, E., Taylor, B., Fleming, A., Mason, C., Fielke, S., Sounness, C., & Thorburn, P. (2018). “If they don’t 
tell us what they do with it, why would we trust them?” Trust, transparency and benefit-sharing in 
Smart Farming. NJAS Wageningen Journal of Life Sciences. https:// doi. org/ 10. 1016/j. njas. 2018. 11. 002

Janssen, M., Charalabidis, Y., & Zuiderwijk, A. (2012). Benefits, adoption barriers and myths of open data 
and open government. Information Systems Management, 29(4), 258–268.

Jones, R., Kemp, D., & Takahashi, T. (2011). Dynamic modelling of sustainable livestock production sys-
tems. In D. R. Kemp & D. L. Michalk (Eds.), development of sustainable livestock systems on grass-
lands in north-western china (pp. 36–43). Australian Centre for International Research.

Kamienski, C., Soininen, J. P., Taumberger, M., Dantas, R., Toscano, A., Salmon Cinotti, T., Filev Maia, R., 
& Torre Neto, A. (2019). Smart water management platform: IoT-based precision irrigation for agri-
culture. Sensors, 19(2), 276.

Kayad, A., Sozzi, M., Paraforos, D. S., Rodrigues, F. A., Jr., Cohen, Y., Fountas, S., Medel-Jimenez, F., Pez-
zuolo, A., Grigolato, S., & Marinello, F. (2022). How many gigabytes per hectare are available in the 

http://creativecommons.org/licenses/by/4.0/
https://www.modelfarm-aro.org/
https://digitalcommons.unl.edu/ageconworkpap/49/
https://doi.org/10.1177/15553434221103718
https://cordis.europa.eu/project/id/731884
https://doi.org/10.1016/j.njas.2018.11.002


Precision Agriculture 

1 3

digital agriculture era? A digitization footprint estimation. Computers and Electronics in Agriculture, 
198, 107080.

Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human Factors: 
THe Journal of the Human Factors and Ergonomics Society, 46(1), 50–80.

Lioutas, E. D., Charatsari, C., La Rocca, G., & De Rosa, M. (2019). Key questions on the use of big data in 
farming: An activity theory approach. NJAS-Wageningen Journal of Life Sciences, 90, 100297.

Muangprathub, J., Boonnam, N., Kajornkasirat, S., Lekbangpong, N., Wanichsombat, A., & Nillaor, P. 
(2019). IoT and agriculture data analysis for smart farm. Computers and Electronics in Agriculture, 
156, 467–474.

Otto, B., & Jarke, M. (2019). Designing a multi-sided data platform: Findings from the International data 
spaces case. Electronic Markets, 29(4), 561–580.

Sekhar, C.C., & Sekhar, C. (2017, March). Productivity improvement in agriculture sector using big data 
tools. In 2017 international conference on big data analytics and computational intelligence (ICB-
DAC) (pp. 169–172). IEEE.

Turner, R. K., Pearce, D. W., & Bateman, I. (1994). Environmental economics: An elementary introduction. 
Harvester Wheatsheaf.

Wiseman, L., Sanderson, J., Zhang, A., & Jakku, E. (2019). Farmers and their data: An examination of 
farmers reluctance to share their data through the lens of the laws impacting smart farming. NJAS – 
Wageningen Journal of Life Sciences. https:// doi. org/ 10. 1016/j. njas. 2019. 04. 007

Zhang, A., Heath, R., McRobert, K., Llewellyn, R., Sanderson, J., Wiseman, L., & Rainbow, R. (2021). 
Who will benefit from big data? Farmer’s perspective on willingness to share farm data. Journal of 
Rural Studies, 88, 346–353. https:// doi. org/ 10. 1016/j. jrurs tud. 2021. 08. 006

Zhang, H., Wei, X., Zou, T., Li, Z., & Yang, G. (2014, September). Agriculture Big Data: Research status, 
challenges and countermeasures. In International conference on computer and computing technologies 
in agriculture, Springer, Cham (pp. 137–143).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Offer Rozenstein1 · Yafit Cohen2 · Victor Alchanatis2 · Karl Behrendt3 · 
David J. Bonfil4 · Gil Eshel5 · Ally Harari6 · W. Edwin Harris3 · Iftach Klapp2 · Yael Laor7 · 
Raphael Linker8 · Tarin Paz‑Kagan9 · Sven Peets3 · S. Mark Rutter3 · Yael Salzer2 · 
James Lowenberg‑DeBoer3

 * Offer Rozenstein 
 offerr@volcani.agri.gov.il

 Yafit Cohen 
 yafitush@volcani.agri.gov.il

 Victor Alchanatis 
 victor@volcani.agri.gov.il

 Karl Behrendt 
 kbehrendt@harper-adams.ac.uk

 David J. Bonfil 
 bonfil@volcani.agri.gov.il

 Gil Eshel 
 eshelgil@gmail.com

 Ally Harari 
 aharari@agri.gov.il

 W. Edwin Harris 
 eharris@harper-adams.ac.uk

https://doi.org/10.1016/j.njas.2019.04.007
https://doi.org/10.1016/j.jrurstud.2021.08.006


 Precision Agriculture

1 3

 Iftach Klapp 
 iftach@volcani.agri.gov.il

 Yael Laor 
 laor@volcani.agri.gov.il

 Raphael Linker 
 linkerr@tx.technion.ac.il

 Tarin Paz-Kagan 
 tarin@bgu.ac.il

 Sven Peets 
 speets@harper-adams.ac.uk

 S. Mark Rutter 
 smrutter@harper-adams.ac.uk

 Yael Salzer 
 salzer@agri.gov.il

 James Lowenberg-DeBoer 
 JLowenberg-DeBoer@harper-adams.ac.uk

1 Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization – Volcani 
Institute, HaMaccabim Road 68, 75359 Rishon LeZion, Israel

2 Institute of Agricultural Engineering, Agricultural Research Organization – Volcani Institute, 
P.O.B 15159, 7505101 Rishon LeZion, Israel

3 Harper Adams University, Newport, Shropshire TF10 8NB, UK
4 The Institute of Plant Sciences, Agricultural Research Organization, Gilat Research Center, 

8531100 M.P. Negev, Israel
5 Soil Erosion Research Station, Ministry of Agriculture & Rural Development, Rishon LeZion, 

Israel
6 Department of Entomology, The Institute of Plant Protection, Agricultural Research Organization, 

Volcani Institute, Rishon LeZion, Israel
7 Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization – Volcani 

Institute, Newe Ya’ar Research Center, 30095 Ramat Yishai, Israel
8 Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, 

32000 Haifa, Israel
9 French Associates Institute for Agriculture and Biotechnology of Dryland, The Jacob Blaustein 

Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 
8499000 Be’er Sheva, Israel


	Karl Behrendt Data driven agriculture FRONT SHEET
	Karl Behrendt Data driven agriculture
	Data-driven agriculture and sustainable farming: friends or foes?
	Abstract
	Introduction
	Key characteristics of sustainable agriculture
	Benefits of data-driven agriculture for adopting the principles of sustainable agriculture
	Constraints and challenges to using data-driven agriculture to achieve sustainability
	Legal barriers
	Economic and social constraints
	Technical barriers to broader use of agricultural data

	High payoff research to address the challenges and resolve barriers
	Conclusions
	Acknowledgements 
	References





