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Abstract 

This PhD research investigated precision animal farming, specifically 

emphasising commercially reared pigs and their welfare, addressing concerns 

like pen fouling, tail-biting, and diarrhoea. While animal welfare in pig farming is 

critical, there is a lack of comprehensive predictive models that integrate various 

factors affecting pig behaviours. The primary objective was to create advanced 

algorithms and predictive models that combine mechanistic modelling and 

machine learning to better understand and predict pig behavioural dynamics 

related to welfare issues. Various methods were employed, including transfer 

function models to link water consumption with temperature differences, 

analysing spatial positioning in relation to fouling events, and employing neural 

network architectures for time series data. Bayesian networks were utilised for 

simulating intervention scenarios. 

Several significant discoveries were made during the research. Anomalies in pigs' 

water consumption that were linked to temperature variations were effectively 

identified by the transfer function model, giving valuable insights into pen fouling 

and tail-biting incidents. It was also discovered that a crucial role in influencing 

fouling events in pigs is played by spatial positioning and temperature differences 

between different activity areas within pig pens. Superior predictive capabilities 

for events such as fouling, tail-biting, and diarrhoea were demonstrated by the 

innovative application of a neural network approach to predict these events. 

Furthermore, an early warning system that utilised hierarchical clustering and 

principal component analysis was introduced, which showed strong predictive 

potential. Finally, this research also demonstrated that Bayesian Network 

simulations can be used as a non-invasive method to test for potential strategies 

to mitigate welfare issues in farmed pigs while also providing practical insights for 

better farm management. 

This research offers vital tools and insights for advancing precision pig farming, 

fostering a more sustainable and ethical approach. The developed algorithms not 

only contribute to better pig welfare but also enhance monitoring, potentially 

leading to increased farm profitability. While the models are promising, further 

refinement and research into the various factors affecting pig behaviour are 

recommended. 
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Chapter 1: General Introduction 

1.1 Introduction 

The influence of the thermal environment on pigs' physiological, nutritional, and 

psychological responses has been well documented in numerous studies (Huynh 

et al., 2005; Huynh et al., 2006; Jones & Nicol, 1998; Patience et al., 2005). 

These studies have highlighted the effects of temperature on pigs' behaviours, 

including lying and excretion (Banhazi et al., 2008; Huynh et al., 2005). 

Furthermore, it is worth noting that intensive pig production contributes 

significantly to the emission of ammonia and greenhouse gases, with potential 

health risks to humans and animals and adverse impacts on the environment and 

climate (Banhazi et al., 2008; Philippe et al., 2011; Philippe & Nicks, 2015; 

Phillips et al., 1998) 

Historically, attempts to control these environmental conditions have been made 

to minimise the pigs' adverse behaviours (Geers et al., 1986; Geers & 

Bosschaerts, 1989). A consistent argument among researchers is the importance 

of maintaining a stable and homogeneous airflow distribution to reduce unwanted 

behaviour (Huynh & Aarnink, 2004; Wiegand et al., 1994). Studies suggest that 

pen fouling in growing pigs can be mitigated by adequately controlling floor 

surface temperature, air temperature, and air velocity.  

Indeed, research by Huynh & Aarnink (2004), like earlier work by Geers et al. 

(1986) and Geers & Bosschaerts (1989), demonstrated the impact of floor cooling 

in partially solid floor systems on the behaviour and performance of growing-

finishing pigs. It was found that pigs preferred lying on the cooled floor in high 

ambient temperature conditions, improving their welfare and promoting growth. 

However, while floor temperature control offered some behavioural stabilisation, it 

fell short in managing airborne air quality factors, such as moisture and toxicity 

levels. 

Although there are helpful design recommendations to foster homogeneous 

airflow within pig buildings (Geers & Bosschaerts (1989)), these suggestions are 

over 25 years old, and control engineering and ventilation system designs have 

since advanced significantly. The indoor climate of livestock buildings undeniably 

plays a crucial role in the animals' well-being, health, and production performance 

(e.g., daily weight gain). The Literature (Aarnink et al., 2001; Statham et al., 

2009) indicates that animal behaviour can be regulated through an effective 

micro-climatic controller. However, the complexity of the interaction between 

behavioural activity and the micro-climate is a challenge.  
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Current control systems are insufficiently robust and primarily focused on 

controlling set temperatures and humidity levels. There is a conspicuous 

research gap in designing control systems considering floor usage and activity 

within housing areas. Preliminary research on poultry by Youssef et al. (2015) 

has shown promise in designing a control system that adjusts the inlet 

temperature and ventilation rate based on a dynamic activity index. 

1.2 Environmental Control Systems 

The central role of an environmental control system is to optimise the various 

atmospheric variables for both animals and farmers through the modulation of 

heating, ventilation, and air humidifiers. Within the scope of this research, the 

focus is on leveraging the environmental control system to stabilise animal 

behaviour. 

The agriculture industry primarily utilises conventional staged ventilation to 

maintain favourable conditions within livestock farming environments. Several 

works on behavioural research, including work by Fraser (2003), Gallo et al. 

(2022) and Mendl et al. (2010), have provided insights into the ideal 

environmental parameters that can foster a high welfare environment for 

livestock. These studies underscore the necessity of understanding animal 

emotions, using behaviour for assessing animal welfare, and the pivotal role of 

behaviour in understanding the needs of animals. Moreover, they highlight the 

pressing need for ongoing research into animal welfare, particularly in identifying 

the right environmental conditions to promote high welfare. 

Today's prevalent control systems operate through discrete ventilation and 

heating stages to counter deviations from the desired set point. The widely 

accepted and most effective practice is an automatic feedback control based on 

the internal air temperature gauged at a singular position within the building's 

volume (Timmons et al., 1995). However, despite modern technology, 

maintaining constant vigilance and control over these fixed set points proves 

challenging for micro-climatic controllers (Geers et al., 1986). Existing control 

laws for indoor-farmed animals often rely on the premise that indoor micro-

climate can be solely regulated by maintaining specific temperature or humidity 

levels. However, such approaches have proven to be unreliable (Roque et al., 

2016). The primary reason for this unreliability is that these simplistic control 

methods aren't robust enough to handle the complexities and uncertainties of 

indoor farming systems. Research suggests that indoor livestock environments 

can contain a multitude of contaminants, including harmful microorganisms. 

These contaminants pose risks to the health of both the animals and the farm 
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workers (Roque et al., 2016). The quality of air, especially its microbial content, in 

these settings is influenced by factors like stocking density, barn cleanliness, 

microclimatic conditions (like temperature, humidity, and gases), and the 

efficiency of the ventilation system (Roque et al., 2016; Shao et al., 2019). 

The omission of the spatial distribution of animals in the current climatic control 

systems for indoor farming contributes to the inability to stabilise behaviour within 

housing units (Roque et al., 2016). The lack of consideration for the spatial 

distribution of animals makes it problematic to accurately control and regulate the 

microclimate conditions in different areas of the facility. This underlines the need 

for robust control schemes considering animals' spatial dynamics and behaviour. 

Hence, it is necessary to develop more reliable control schemes that consider the 

complex relationship between the spatial dynamics of animals and microclimate 

parameters to manage indoor farming environments and stabilise animal 

behaviour. 

Existing environmental controllers depend on indoor temperature and apply a 

constant minimum ventilation rate to govern humidity levels. This approach arises 

from the impracticality of developing a thermal index to control the micro-

environment (Lemay et al., 2001; Soldatos et al., 2005). The corrosive conditions 

within livestock housing facilities can degrade the humidity sensor, compromising 

the humidity data's accuracy. This results in some sensors failing after short-term 

barn exposure, which limits the integration of relative humidity data into the 

environmental control strategy for livestock buildings. Hence, most current animal 

production facilities adopt temperature-only control strategies as humidity control 

is not extensively implemented. This imprecise control over ventilation rates can 

lead to substantial production losses and ventilation-related health issues in 

modern livestock buildings (Taylor et al., 2004). 

Behavioural scientists emphasise that the quality of micro-climatic conditions 

inside livestock buildings emerges from intricate interactions among multiple 

climatic parameters. A control system emphasising temperature overlooks the 

complex interrelationships between temperature, airspeed, and humidity. In 

addition, actuators such as windows and regulation valves in these controlled 

environments are susceptible to varying external factors like wind velocity and 

outside temperature. Consequently, there is a significant requirement for a 

system that can monitor animal behaviour and adjust and control key 

environmental conditions in response. The outputs of this system would primarily 

involve regulating heating and ventilation within livestock buildings, ensuring 

optimal conditions are maintained for animal welfare and productivity. Such a 
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comprehensive approach allows for a more effective and robust control scheme 

that adapts to the complexity of the livestock environment. 

In conclusion, a climate control system should ideally be devised harmoniously 

with animals' behavioural responses to environmental stimuli. The main hurdle is 

in accurately and consistently capturing these behavioural dynamics. The 

following section will delve into potential solutions to overcome this challenge. 

1.2.1 Bio-Energetic Models 

Bio-energetic models are valuable tools in designing control systems that 

optimally maintain a comfortable environment for animals. These models typically 

estimate the heat production of animals by considering changes in their 

physiology, various environmental factors, or a combination of both. They aim to 

capture the complex energy exchange processes between the animal and its 

environment. These bio-energetic models can be broadly categorised into three 

types: 

1. Empirical Models: These models are developed based on 

observations and data collection, relying heavily on statistical 

techniques to form relationships. 

2. Mechanistic Models: These models rely on the underlying 

biological mechanisms and processes. They incorporate known 

physiological and biophysical principles to predict outcomes. 

3. Dynamic Data-Based Models: These models are founded on real-

time data, capturing the dynamic relationship between variables 

over time. 

These models aim to provide a comprehensive understanding of animal bio-

energy systems, leading to the development of more efficient and effective 

environmental control systems. 

1.2.1.1 Empirical models  

Empirical heat production models are used to understand the cause and effect of 

specific parameters on the bio-energetic variables (e.g., heat and moisture) 

(Aerts et al., 2000; Bridges & Gates, 2009; D. M. Green & Parsons, 2006). Early 

efforts (Bond et al., 1952; 1959, 1965; Heitman et al., 1958; Morrison et al., 1967) 

have seen the development of heat and moisture models for pigs in response to 

the live animal weight and room temperature. Other empirical models can be 

found in the literature that describe the bio-energetic system of dairy cows 

(Brody, 1945), beef cattle (Yeck et al., 1960; Yeck & Stewart, 1959) and broilers 

(Deaton et al., 1969; Longhouse, 1967; Reece & Lott, 1982a, 1982b). 
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One drawback of empirical models is that they are case-specific, i.e., they can 

only predict the deterministic responses in scenarios that match the experimental 

conditions that prevailed during the data-collection phase of the model 

development ( Black, 2014; Bridges & Gates, 2009; A. R. Green & Xin, 2009). 

From the control systems design perspective, these models have limited use 

when used alone (Aerts et al., 2003; Wathes et al., 2008) as they are static 

models, meaning that they do not change or adapt over time. Thus, they fall short 

in capturing the evolving and dynamic nature of bio-energetic systems, especially 

in response to different input variables (Aerts et al., 2003; Wathes et al., 2008). 

1.2.1.2 Mechanistic Models 

Mechanistic models represent the behavioural and biological systems of animals, 

such as thermal regulation, metabolism, and feeding performance, in relation to 

changes in their microenvironment. Grounded in the laws of physics (Norton et 

al., 2007, 2009, 2010) and chemistry, these models often exhibit better reliability 

than empirical models. This is because the physical and chemical laws that 

describe biological responses are usually consistent across various experimental 

conditions. 

There are multiple models (Black et al., 1986; Bruce & Clark, 1979; Close & 

Mount, 1978; Jacobson, 1983; Teter et al., 1973b, 1973a; Usry et al., 1992; Watt 

et al., 1987) that used a mechanistic modelling approach to predict the 

behavioural and physiological responses of pigs. For instance, Teter et al. 

(1973a, 1937b) developed several models for pigs, beef cattle, and broilers to 

estimate physiological responses, such as feed intake, weight gain, and feed 

efficiency, in relation to changes in air temperature. Other literature also offers 

mechanistic models that predict heat production in growing pigs concerning their 

live weight and metabolic energy intake (Bruce & Clark, 1979; Close & Mount, 

1978; Holmes & Close, 1977; Jacobson, 1983). 

Mechanistic models hold significant potential for modelling and predicting 

physiological and biological responses due to their in-depth representations of 

the systems under study (Tsamandouras et al., 2015). However, their inherent 

complexity and the many undefined variables they incorporate often make them 

challenging to manage (Tsamandouras et al., 2015). As such, these models 

frequently use estimates derived from empirical models for initialization, an 

approach necessitated by the difficulties associated with quantifying every 

variable (Tsamandouras et al., 2015). In response to these challenges, 

researchers are increasingly exploring minimal or semi-mechanistic models, 
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which maintain the physiological mechanistic nature where it is most relevant, 

offering enhanced flexibility (Tsamandouras et al., 2015). Furthermore, a 

promising strategy involves bridging mechanistic and phenomenological models 

using tools like the Manifold Boundary Approximation Method (MBAM), which can 

simplify complex mechanistic models into more digestible phenomenological 

counterparts (Transtrum & Qiu, 2016). Despite the intricacies, mechanistic 

models remain indispensable tools in physiological research, yielding invaluable 

insights into the processes they describe. 

Mechanistic models, however, require regular updates due to their dependence 

on empirical estimates. Continuous research is needed to ensure the validity of 

these estimates. Studies (Brown-Brandl et al., 2004; Chepete & Xin, 2001) have 

shown that the physiological responses in pigs to their micro-environment have 

evolved due to the change in animal genetics. For example, fasting heat 

production changed by 18% from 1984 to 2002 because of increased lean tissue 

accretion rates (Brown-Brandl et al., 2004). With time, it has also been found that 

pigs' thermal response and sensitivity change (ASABE, 2012). Hence, any 

mechanistic models will need to be updated regularly as their validity can be 

questioned with time. 

1.2.1.3 Dynamic Data-Based Models 

Dynamic data-based models provide a solution to some of the limitations of 

empirical and mechanistic models as they recursively update the model 

parameters by continuously extracting new features from the newly available data 

set within the bio-system of interest. Dynamic data-based modelling can deal with 

the non-stationary response of biological systems (heat production, behaviour, 

and feed intake) to disturbing factors (climate). However, the main limitation of 

this class of model is its reliability on data; hence, in some cases, they may 

require an expensive set of sensors, which is not always possible at the farm 

level. For example, sensors for monitoring heat production as required by existing 

dynamic data-based models (Aerts et al., 2000; Madsen et al., 2005) are not 

usually available on farms. 

There is very little research (Aerts et al., 2000; Madsen et al., 2005) on dynamic 

data-based models to quantify the dynamic biological response of pigs. However, 

some research has been carried out for broilers, where predictive models were 

developed to control broilers’ growth trajectory by recursively adjusting the food 

supply. 
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1.2.2 Thermal Comfort Indices 

To design a control system to optimise animal comfort, it is essential to have 

adequate functions that can be used to translate how the animals perceive the 

combinations of climate control variables. Consequently, much research has 

focused on developing animal comfort indices (ACIs) (Brown-Brandl, 2013; Hahn 

et al., 2009; Nääs et al., 2006). ACIs are empirical and are identified by 

comparing selected performance criteria (e.g., core body temperature, respiration 

rate, growth, feeding behaviour) to environmental variables. 

In pigs, a combination of temperature and humidity has been used in literature to 

quantify the amount of heat energy (enthalpy) to measure animal comfort (Moura 

et al., 1997; Rodrigues et al., 2011). Other indices used radiation and airspeed as 

a measure of comfort (Gaughan et al., 2012; Hahn et al., 2009). An in-depth 

review of ACIs is given by (Fournel et al., 2017). However, many indices are 

empirical and developed 20-50 years ago (Baker, 2004; Buffington et al., 1981). 

Moreover, as previously discussed, empirical model validity can be questioned 

and is not always reliable due to time dependent variations in animal behaviour. 

Furthermore, some developed indices (Da Silva et al., 2007; Gebremedhin & Wu, 

2005) rely on impractical farm-level measurements (respiration rate, skin 

temperature, sweating rate). 

1.2.3 Behavioural Responses 

The feeding behaviour of animals serves as a valuable indicator of their overall 

well-being and health status (Banhazi et al., 2007; Brown-Brandl, 2013; Kashiha 

et al., 2013). In many cases, alterations in feeding behaviour have been 

employed for early detection of changes in the animals' physical conditions 

(Madsen et al., 2005; Nienaber & Hahn, 2000), such as the onset of diarrhoea, 

which might indicate digestive issues or adjustment to dietary changes. 

However, it is essential to note that other phenomena, such as pen fouling or tail-

biting, while potentially indicative of discomfort or behavioural disruptions in the 

animals, may not directly correspond to a decline in health. Pen fouling, for 

example, could be a response to thermal stress rather than a sign of poor health. 

Similarly, tail-biting might primarily be a behavioural issue, potentially triggered by 

environmental stressors or inadequate enrichment, although health problems 

could also contribute.  

Other behavioural measures, such as animal activity within its enclosure, can 

also contain helpful information to indicate the animal’s physiological state (Frost 

et al., 1997). Very sophisticated sensors, such as ultrasonic proximity sensors 
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(Hillman et al., 2000)], pedometers (Walker et al., 1985), and accelerometers 

(Darr & Epperson, 2009; Müller & Schrader, 2003; Ouellet et al., 2016; Robert et 

al., 2009) have been used to monitor animal activity. 

The list of sensors used in precision livestock farming is not exhaustive. 

However, the main problem remains the availability of cheap, dependable, and 

robust sensors to implement model-based control algorithms in agricultural 

buildings (Fournel et al., 2017). 

1.3 Research Objective and Hypotheses Formulation 

Predicting animal welfare issues is a challenging task that necessitates accurate 

algorithms based on dependable data. The use of traditional statistics and 

machine learning techniques is used in this research to understand and to 

forecast animal welfare issues is proposed in this research, with data derived 

from multiple sources including water consumption, pig positions in pens, 

temperature sensors, and information from the farm climate system. 

1.3.1 Objectives 

The goal of this study is to have a set of targeted algorithms created that can 

accurately predict and help to better understand animal welfare problems. 

Although issues such as pen fouling, tail biting, and diarrhoea in pigs raised for 

farming are the focus of this research, it is understood that welfare challenges 

are multifaceted and varied. To address this, a range of algorithms has been 

used to tailor each model to the specific characteristics of each welfare problem. 

This approach will enable greater precision and usefulness to be achieved, 

potentially allowing other welfare issues beyond the scope of this research to be 

tackled by the algorithms. 

1.3.1.1 Research objectives 

To achieve the general objective, three specific objectives were set: 

Objective 1: Investigate the usefulness of using farm-level information to 

predict tail-biting, pen-fouling, and diarrhoea. 

This Objective was achieved through chapters 2 and 3. In these two chapters, 

mechanistic modelling and statistical analysis were performed to investigate 

potential information that can be used to predict specific welfare issues. Chapter 

2 proposed using a mechanistic behavioural model based on the water 

consumption of pigs and their pen's activity to predict tail-biting. Chapter 3 uses 

statistical analysis to investigate the relationship between environmental factors 

and pen fouling. 
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Objective 2: Develop a general approach that can be applied and adapted 

to predict specific welfare issues within farmed animals. 

This objective was achieved through Chapter 4. In Chapter 4, it was 

demonstrated that a novel deep neural network could learn to perform 

discriminate prediction of tail-biting, pen-fouling, and diarrhoea.  

Objective 3: Develop approaches that can be used to interpret the learning 

from black-boxed artificial intelligence (AI) models. 

Our objective was reached through chapters 5 and 6. A hybrid method that 

combines feature selection techniques to identify crucial indicators in time series 

data for the early detection of tail-biting, pen-fouling, and diarrhoea in pigs was 

introduced in Chapter 5. This hybrid approach integrates similarity-based 

features and other data processing methods to improve the accuracy and 

effectiveness of predictive models. In Chapter 6, scenario models were created 

using Bayesian Networks and do-Calculus that can determine the best scenarios 

to decrease the frequency of tail-biting, diarrhoea, and pen-fouling outbreaks. 

1.3.2 Hypotheses Formulation 

Drawing from the objectives, the study postulates several hypotheses: 
 
Mechanistic Behavioural Model: It is hypothesized that an innovative 

mechanistic behavioural model, utilizing water consumption and pen activity 

parameters, will be effective in predicting tail-biting behaviour in commercially 

farmed pigs. It is expected that by filtering the frequency to reduce noise in 

temperature data, an improvement in the model's ability to detect tail-biting and 

pen fouling events with acceptable sensitivity will be achieved. 

Spatial Positioning and Temperature Differences: It is suggested that the 

positioning of pigs and the temperature differences between their resting and 

excreting areas are important factors in determining fouling events. Furthermore, 

a negative relationship between the likelihood of fouling and the amount of water 

consumed by pigs is hypothesized. 

Machine Learning and Pattern Recognition: The study asserts that a 

specifically designed machine learning structure, incorporating stacked 

bidirectional long short-term memory and feedforward neural network, can 

efficiently learn from and categorize patterns in time-series data, thereby enabling 

accurate predictions of tail-biting, fouling, and diarrhoea events. 

Early Warning System: It is postulated that a meticulously designed early 

warning system, aiming to monitor and predict pig behaviours related to fouling, 

tail-biting, and diarrhoea and employing hierarchical clustering and principal 
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component analysis for data pre-processing and feature extraction, will show 

satisfactory predictive capabilities for these behaviour issues. 

Intervention Scenarios: It is proposed that the identification of effective 

strategies to prevent pen fouling can be achieved using Bayesian Networks to 

simulate and assess different intervention scenarios. Specifically, it is anticipated 

that the likelihood of fouling can be significantly decreased by measures such as 

reducing extreme ventilation output and keeping the lying area cooler. 

These hypotheses lay the foundation for this doctoral research, steering 

investigations and algorithm development towards the early prediction and 

comprehension of animal welfare issues in commercially farmed pigs. This study 

is consequently dedicated to elevating the surveillance and management of pigs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

11 
 

Chapter 2: Investigating the feasibility of using 
mechanistic modelling to detect tail biting and pen fouling.
  

2.1 Abstract 

This study investigates the dynamics of water consumption and zonal 

temperature difference in a pig population to establish a transfer function model 

that captures the relationship between these aforementioned variables. The zonal 

temperature difference is a proxy for animal spatial positioning within the pens. 

System identification techniques are used to identify the optimal model structure 

and accurately characterise the underlying behavioural patterns. Two distinct 

behavioural modes are discovered by analysing the poles and employing k-

means clustering, each representing unique aspects of pig behaviour. The event 

detection system implemented in this study offers valuable insights into abnormal 

behaviour dynamics, although further refinements are necessary to enhance the 

overall predictive performance. In conclusion, this study makes a valuable 

contribution to the progress of precision animal farming practices, highlighting the 

significance of interdisciplinary approaches in enhancing animal welfare within 

controlled environments. 

2.2 Introduction 

The growing need for precision in livestock farming has highlighted the 

importance of advanced monitoring technologies for diagnosing and managing 

animal health and behaviour. This doctoral research focuses on early detection 

and a thorough understanding of animal welfare issues in commercial pig 

farming. While the broader thesis investigates three critical welfare issues, pen 

fouling and tail-biting, this chapter focuses on detecting tail-biting and fouling. 

Chapter 1 sets the groundwork by introducing the topics under discussion and 

outlining the overall scope of the research. Building on this base, this chapter 

presents an innovative behavioural model based on detailed water consumption 

and pen activity analysis. The primary goal is to predict early tail-biting and pen-

fouling in pigs. 

In this chapter, the proposed model uses cost-effective sensor technology to 

observe and interpret pig behaviour. Frequency filtering is employed to 

overcome the challenges posed by the high noise level in sensor data collected 

from farms. In this chapter, ‘frequency’ refers to the rate at which specific 

behaviours occur within a defined period. Recurring behavioural patterns can be 

isolated by identifying these fundamental frequencies, serving as critical 

indicators to detect deviations. Such deviations from the main frequencies may 
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signal signs of stress or poor welfare conditions in pigs. The model employs 

frequency analysis to understand pig behaviour, aiming to promote better animal 

welfare. 

The mechanistic modelling approach presented in this chapter advocates a 

proactive method for detecting tail-biting and pen-fouling incidents in pigs, with 

the potential to improve pig behaviour monitoring. In this research, ‘mechanistic 

modelling’ means modelling the system using the relationship between water 

consumption and spatial positioning with the pens. This study aims to develop a 

robust and responsive system by understanding recurring behavioural patterns 

under normal conditions, enabling early detection of signs of distress or 

discomfort. This chapter’s primary goal is to assess the proposed model’s 

feasibility. This chapter is a step towards achieving the broader objectives of this 

PhD thesis as more innovative methods for enhancing animal welfare are 

explored in subsequent chapters. 

2.3 Material and Methods 

 
The research study was carried out over two years, from 2015 to 2016, strictly 

adhering to a protocol approved by the Danish Animal Experiments Inspectorate 

(Journal no. 2015-15-0201-00593). During this period, four cohorts of pigs were 

sequentially introduced into each pen, marking distinct rounds of the experiment. 

The respective timelines for each round were as follows: 

• Round 1: June 16th, 2015, to September 3rd, 2015. 

• Round 2: September 14th, 2015, to December 3rd, 2015. 

• Round 3: January 12th, 2016, to March 31st, 2016. 

• Round 4: September 7th, 2016, to November 26th, 2016. 

All the data collected for this thesis were part of a broader study (Larsen et al., 

2016, 2017), and all welfare event observations followed a predefined 

observation protocol (Lyderik et al., 2016). 

2.3.1 Animal Selection, Housing, and Management 

The research included 1624 finisher pigs from the same herd, divided among 112 

pens. The pigs, bred from Danavl Yorkshire x Danavl Landrace dams and 

inseminated with Danavl Duroc semen, adhered to Danish production standards. 

The experiment was executed in four batches at the Department of Animal 

Science, Aarhus University, Denmark. The research comprised one weaner 

section (7 to 30 kg) and two finisher sections, each with 16 pens. All the work 
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done in this thesis uses the data from the finisher sections. Figure 2.1 shows an 

illustration of all the pens used. 

 

Figure 2.1: The various pen designs used in the study. Three distinct pen 

designs were used: one for weaners (a), another for finisher pens 

accommodating 1.21 m2 per pig (b), and a third for finisher pens providing 0.73 

m2 per pig (c). Despite having identical outer dimensions, the pens differed in 

their internal features. Water cups’ positions are marked with circles, while solid 

black squares represent wooden sticks placed in separate racks. 

2.3.2 Weaner Section 

Upon arrival, the pigs had an average weight of 9.1 ± 1.7 kg and were distributed 

among 14 weaner pens. Half the pens hosted pigs with docked tails, while the 

other half accommodated pigs with undocked tails. Staff were also trained to 

promptly identify and address early signs of tail damage, which resulted in the 

identification and removal of only five obsessive biters throughout the four 

batches. 

2.3.3 Finisher Section 

Once the pigs reached an average weight of 31.6 ± 6.6 kg, they were transferred 

to the finisher section. The pens were 5.45 m by 2.48 m, with the floor equally 

divided into solid concrete (rest area), drained (activity Area) and slatted floor 

(excreting area). The gap between the slats in the slatted floor and the drained 

floor was 2 cm, while the respective slats were 180 mm and 80m wide. An 

overview of a pen with sensor locations is given in Figure 2.2. 
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Figure 2.2: A top view of a pen with the location of different sensors and the 

designated rest, feeding, and lying area. 

Strict monitoring ensured that no pig with tail damage entered this section. As per 

EU legislation, each pen was provided with a dry feeder and two wooden sticks 

for enrichment. Artificial light was on from 0530 to 1830 h (182 lux). The finisher 

units’ climate (temperature (°C) and humidity (%)) were controlled by activating 

the heating, cooling or ventilation system via the climate control systems (SKOV 

A/S, Roslev, DK). Each pen included an automatically controlled shower system 

(SKOV A/S, Roslev, Denmark) above the slatted floor. The pigs were fed ad 

libitum with a commercial dry feed, and the feeders were filled three times a day 

at 0300, 1000 and 1830h. The educated farm staff performed the general farm 

management. Between 1000h and 1200h, the general routine in the stables was 

performed, including cleaning, straw provision, and a general health check of 

each pen. 

2.3.4 Experimental Design 

The finisher pens were randomly assigned various treatments concerning tail 

docking, provision of straw, and stocking density. The tail docking procedure, 

performed within the first four days post-birth using a hot-iron cutter, conformed 

to Danish legislation. During the research, both docked and undocked pigs were 

placed in pens with or without straw. The pigs were allocated different space 
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allowances, precisely 1.21 m²/pig and 0.73 m²/pig. Each combination of 

conditions had four replicates for the first, third, and fourth batches. However, the 

second batch had three replicates for most conditions, except undocked pigs in 

straw and non-straw pens with a space allowance of 1.21 m²/pig, where only one 

replicate was observed (Larsen et al., 2016, 2018). 

2.3.5 Data Collection and Usage 

The scope of this study required the collection and use of various variables. 

These data points were integral in analysing the pigs’ environmental conditions, 

physiological states, and behaviours that could potentially influence fouling 

events within the pig pen environment. The following sections present the 

variables used, their sampling rate, and, where relevant, the units of 

measurement. 

2.3.5.1 Environmental and Water Variables 

A set of environmental and water variables was captured to assess the conditions 

in the pig pens. These variables include: 

• Temperature (Solid Floor): The pig pens’ solid floor temperature was 

measured in degrees every minute. 

• Temperature (Slatted Floor): Similarly, the temperature of the slatted floor 

was recorded every minute in degrees. 

• Water Consumption (Drinker 1 and Drinker 2): The water consumed by 

two different drinkers was recorded every 10 seconds, measured in litres. 

• Relative Humidity (Finisher Unit): The relative humidity in the finisher unit 

was measured every minute and expressed as a percentage. 

• Ventilation Output (Finisher Unit): The output of the ventilation system in 

the finisher unit was recorded every minute and expressed as a 

percentage. 

• Heating Output (Finisher Unit): The heating output in the finisher unit was 

measured every minute and expressed as a percentage. 

• Cooling Output (Finisher Unit): The cooling output in the finisher unit was 

also captured every minute and expressed as a percentage. 

• Temperature (Finisher Unit): The ambient temperature in the finisher unit 

was recorded every minute.. 

2.3.5.2 Physiological Variables 

Physiological variables related to the pigs were collected to understand the 

correlation between their states and the fouling events: 
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• Age of Pigs: The age of the pigs was recorded daily in terms of days after 

their insertion into the pens. 

• Number of Pigs: The number of pigs in each pen was recorded daily. 

2.3.5.3 Behavioural Variables 

To further understand the behavioural aspects leading to fouling events, 

additional data was collected: 

• Straw: This binary variable indicates whether straw was present in the pig 

pens. 

• Tail Type: These binary variable records whether pigs had curly or 

straight tails. 

2.3.5.4 Behavioural Video Observations 

Behavioural patterns were recorded from view observation for five days before 

each fouling event occurred. Additionally, each pen identified with a fouling event 

was paired with a corresponding control pen for comparative analysis. The 

variables include: 

• % Lying (Rest): The percentage of pigs lying in the resting area was 

recorded daily. 

• % Lying (Activity): The percentage of pigs lying in the activity area was 

recorded daily. 

• % Lying (Excreting): The percentage of pigs lying in the excreting area 

was recorded daily. 

Observations were made during morning (06:00-08:00) and evening (12:00-

14:00) times with an image sampled every 10 minutes. 

2.3.5.5 Additional Category Variables 

A corresponding control pen was identified for every pen that experienced a 

fouling event. This control pen had the same treatment and physiological 

conditions as the fouling pen but did not register any fouling event, thereby 

serving as a benchmark for comparative study. The variables used are: 

• Foul Pen (FOUL): Pens with a recorded fouling event. 

• Control Pen (NO FOUL): Pens with no recorded fouling event chosen as a 

control. 

2.3.5.6 Output Variables 

The outcome variables were binary and recorded daily to identify welfare events 

in the pig pens. All the observations were made according to a set protocol by 
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Lyderik et al. (2016). The observation protocol involves daily monitoring of 

Diarrhoea, Tail Biting, and Fouling in the pens. The output variables are defined 

as: 

• Fouling: This variable denotes whether a fouling event occured on any 

day. A fouling event is characterised by over half of the lying area (solid 

floor) being covered with excreta and/or urine. 

• Diarrhoea: This variable denotes whether any pig showed signs of 

diarrhoea on any given day. The presence of diarrhoea was recorded 

through daily visual inspections of the pen from the outside, with a 

positive record being made when at least one instance of faeces with a 

liquid or runny consistency was spotted. 

• Tail Biting: This variable denotes whether any incidence of tail biting was 

observed on any given day. An occurrence of tail biting was recorded 

when at least one pig was visible in the pen with fresh blood on its tail. 

2.3.6 Variable Usage Across Different Chapters 

Table 2.1: Variable Utilisation Across Research Chapters. 

Variable Name Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6 

Temperature (Solid Floor) ✔ ✔ ✔ ✔ ✔ 

Temperature (Slatted Floor) ✔ ✔ ✔ ✔ ✔ 

Water Consumption (Drinker 1) ✔ ✔ ✔ ✔ ✔ 

Water Consumption (Drinker 2) ✔ ✔ ✔ ✔ ✔ 

Relative Humidity (Finisher Unit)   ✔ ✔ ✔ 

Ventilation Output (Finisher 
Unit) 

  ✔ ✔ ✔ 

Heating Output (Finisher Unit)   ✔   

Cooling Output (Finisher Unit)   ✔   

Temperature (Finisher Unit)  ✔ ✔ ✔ ✔ 

Age of Pigs  ✔ ✔  ✔ 

Number of Pigs  ✔ ✔  ✔ 

Straw  ✔ ✔  ✔ 

Tail Type  ✔ ✔  ✔ 

% Lying (Rest)  ✔   ✔ 

% Lying (Activity)  ✔   ✔ 

% Lying (Excreting)  ✔   ✔ 

Foul Pen (FOUL)  ✔    

Control Pen (NO FOUL)  ✔    

Fouling ✔ ✔ ✔ ✔ ✔ 

Diarrhoea   ✔ ✔  

Tail Biting ✔  ✔ ✔  
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Table 2.1 provides an overview of the collected variables used across different 

chapters. Some variables were employed in multiple chapters, while others were 

used for analyses.  

In addition to the variables, Table 2.2 summarises the data recorded for each 

batch in the study, providing an account of the number of pens, samples, fouling 

instances, tail-biting incidents, and diarrhoea cases. 

Table 2.2: Summary of Data recorded for each batch. 

Batch Section No. of Pens Total Days Fouling Tail Biting Diarrhoea 

1 1 16 944 288 6 52 

1 2 16 944 182 16 80 

2 1 16 1072 158 7 35 

3 1 16 1040 76 18 59 

3 2 16 1040 84 14 72 

4 1 16 1296 175 9 8 

4 2 16 1296 163 8 10 

In the context of this chapter, the availability and utility of data were unfortunately 

hampered by technical challenges. Specifically, only the data from one batch 

(Round 3) was used in this chapter. This limitation was due to missing data in the 

data of the other batches, which was primarily the result of recurrent sensor 

failures. Consequently, the model development in this study will rely solely on 

data procured from Round 3. Round four data was not included in this study as 

the data was not available at the time the analysis was performed. The algorithm 

used in this chapter does not handle corrupt/missing data. 

2.4 Theory and Equations 

In this chapter outlined in Figure 2.3, the study employs the concept of diurnal 

frequencies - patterns recurring over 24 hours - a phenomenon prevalent in the 

behaviour of pigs (Bigelow & Houpt, 1988; Bornett et al., 2000; Jarissa et al., 

2017). To remove noise in the data, bandpass filters were used. These 

bandpass filters selectively allow frequencies that align within a specified range - 

in this scenario, the diurnal frequencies - to pass through while obstructing the 

rest. Following the filtration process, dynamic models are constructed from the 

resulting data. These models effectively serve as mathematical representations 

of the ongoing activities within the pig pens. They represent the evolving patterns 

of behaviour that are continually observed. 
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It is important to note that these dynamic models are not static; they are 

designed to update and refine themselves as new data is received continually. 

This continuous process of adjusting and enhancing the models with new inputs 

is known as recursive identification. This ensures that the models remain 

updated, accurate and effectively represent the real-time behaviour observed 

within the pens. 

Finally, these models are consistently monitored for any deviations or abnormal 

behaviour. Within the context of this study, ‘abnormal’ is defined as any 

significant departure from the patterns that the dynamic models represent. 

In summary, by integrating the principles of diurnal frequencies, bandpass filters, 

recursive identification, and consistent monitoring, this methodology provides a 

robust platform for analysing and comprehending the behavioural patterns within 

the pig pens. Furthermore, it equips the researchers to swiftly detect abnormal 

behaviour, facilitating proactive responses to changes within the pens. 

 
 

.  

Figure 2.3: Schematic representation of the modelling approach utilised in this 

research. The process begins with collecting raw temperature data from two 

probes within each pen, which are T1 and T2. This data is used to calculate the 

difference in temperature between the two points (∆T), which is used as a proxy 

for the pigs’ distribution within the pen. Concurrently, water intake data, denoted 

as w(t), is also recorded, and used to build the dynamic model through system 

identification and parameter monitoring. 

2.4.1 Diurnal Frequency Identification using Discrete Fourier Transform 
(DFT) 

The study uses the observation of water intake, labelled as w(t), and the data 

from two temperature probes (T1 and T2) situated in each pen. To simplify data 

analysis, these recorded measurements were averaged on an hourly basis. This 
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approach enabled the streamlining of the data, making pattern recognition over 

time significantly more manageable. The averaging of the data each hour 

ensured the necessary detail to track daily behavioural and environmental cycles 

without losing valuable information. Additionally, averaging in time series 

reduces noise in the data, making the system identification process to converge 

when finding an optimal solution. 

In this experiment, the difference in readings between the two temperature 

probes was used, designated as ∆T. Instead of the direct temperature readings, 

the rationale for utilising ∆T lies in its capacity to nullify potential influences from 

the pens’ climate control systems. This is because any consistent temperature 

changes caused by the climate control system would impact both probes equally, 

meaning the difference, or ∆T, would remain unaffected. As a result, this 

provided a more accurate behavioural analysis of the pigs, detached from 

environmental temperature variations. 

Moreover, ∆T was critical in revealing the animals’ locations within the pen. The 

reason is that the temperature within each region where the probes were placed 

would shift based on the pigs’ presence. The area inhabited by the pigs would 

naturally record a higher temperature due to their body heat. Thus, tracking ∆T 

made it possible to determine the pigs’ current location in the pen.  

Each data set in this study includes N samples representing a single pen. Data 

was sampled every hour. The primary frequencies present in the water intake, 

denoted as w(t), can be identified using the Fast Fourier Transform (FFT) 

technique. 

The FFT is a computational tool that dissects a complex signal into constituent 

frequencies or harmonics. In other words, it breaks down the w(t) signal into a 

series of simpler sinusoidal signals, each characterised by a unique frequency 

Madsen et al. (2005). The water consumption signal, w(t), is not a singular entity 

but a composite of infinite sinusoidal signals. Each of these signals has its 

unique frequency and phase. The Discrete Fourier Transform, a form of FFT, 

provides a means to analyse the frequency spectrum of the w(t) signal. Through 

this analysis, it is possible to determine the key frequencies that make up the 

water consumption signal, w(t), thereby revealing the primary rhythms of water 

intake. The Fourier transform of the w(t) is defined as: 

 
 

Equation 2.1 

The outcome of this transform is a function in terms of frequency, represented by 
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ω. Wft(ω) quantifies the power or intensity of the water intake function, w(t), at a 

specific frequency ω. In this context, the notion of ‘frequency’ can be thought of 

as the rate at which a specific pattern in the water intake data repeats itself over 

time. In other words, it refers to the regularity of specific behaviours in the water 

consumption of the pigs.  

However, because the water intake signal is both discrete (i.e., it consists of 

distinct, separate values) and of finite duration (encompassing a specific number 

of samples, N), a version of the Fourier Transform tailored for such data, known 

as the Discrete Fourier Transform (DFT) was employed. The DFT is computed 

over a finite range of frequencies called the sampled frequencies ωk’s where: 

 ω𝑘 =
2π

𝑁
k,  where 𝑘 = 0,1,2,… , N − 1. Equation 2.2 

The Discrete Fourier Transform (DFT) of a sequence of N complex numbers 

𝑤(𝑡), 𝑡 =  0, … ,𝑁 − 1 is another sequence of N complex numbers 𝑊(𝜔𝑘), 𝑘 =

 0, … ,𝑁 − 1, defined by the formula: 

 𝑊(𝜔𝑘) =  ∑ 𝑤(𝑡)

{𝑁−1}

{𝑁 =0}

∗ 𝑒−𝑖𝜔𝑘𝑡 Equation 2.3 

The summation is over t from 0 to N-1 (inclusive), and i is the imaginary unit, 

which satisfies the equation i² = -1. The exponential function 𝑒{−𝑖𝜔𝑘𝑡} represents 

a complex exponential, a mathematical construct used to facilitate calculations 

involving both amplitude and phase. In this context, ‘n’ signifies the nth instance 

within a data set that consists of ‘N’ observations or samples. These 

observations are collected over a given period - in this case, each hourly interval 

within each pen. Therefore, each ‘n’ represents an hourly water intake and 

temperature observation within a single pen. The full dataset ‘N’ incorporates all 

these hourly observations made over the study period. It can be shown 

(Sundararajan, 2001) that the DFT of a signal at a frequency ω can be written in 

the complex plane as: 

 𝑊𝐷𝑓𝑡(𝜔𝑘)  =  𝑎 +  𝑏𝑗 Equation 2.4 

In this equation, ‘a’ and ‘b’ represent the real and imaginary components of the 

DFT at the specific frequency ωk. This enables the calculation of the magnitude 

and phase of the water intake signal, w(t), at the different sampled frequencies, 

ωk. 

DFTs are valuable tools as they reveal patterns (or ‘periodicities’) within the input 
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signal and quantify the relative influence of individual components at these 

specific frequencies, ωk. Numerous resources are available in the scientific 

literature (Oppenheim & Schafer, 2014; Sundararajan, 2001) for a more 

comprehensive understanding of DFT. 

Using the Fourier Transform, the water intake signals were deconstructed into 

their various frequency components and dynamically identify the primary 

harmonics that define the pigs’ drinking patterns. This study used the Fast 

Fourier Transform (FFT), a more efficient algorithm than the DFT.Compared to 

the standard DFT computation, FFT reduces the necessary calculations for a 

dataset of N points from 2𝑁2 to 2𝑁𝑙𝑜𝑔𝑁 (Cooley & Tukey, 1964). This enhanced 

efficiency makes FFT a preferred choice, especially for larger datasets like the 

one used in this study. 

2.4.2 Recursive detection of the main diurnal frequencies 

Two bandpass filters were recursively updated only to allow a range of 

frequencies corresponding to the main diurnal frequencies in the water data. A 

20th Butterworth bandpass filter was used for this study; the filter was initialised 

in MATLAB using MATLAB’s designfilt function. The filters were recursively 

updated daily using data from a backward window of 7 days (as shown in Figure 

2.4). Constantly updating the filter with the new frequency range minimises 

information lost in the filtered data. An illustration of two bandpass filters 

implemented on the water signal is shown in Figure 2.5a and Figure 2.5b. 

 i i+1 

 

 0 1 2 3 4 5 6 7 8 9 10 n days 

Figure 2.4: This picture shows the timeline used to estimate new frequency 

ranges recursively. On the ith day, two samples from seven days before are used 

to estimate the new diurnal frequencies and update the bandpass filter with the 

newly identified frequency range. 

In this research, a “window” refers to a specific frame for which the data is 

analysed: seven days. A “sample” denotes a single observation within the data. 

Since this study deals with time-series data, each sample corresponds to a 

specific moment when water consumption data was recorded. Instead of 

analysing this whole data simultaneously, it is broken down into smaller, more 

manageable segments or “windows”. Each window in the analysis includes 

seven days, equating to 168 samples because data is recorded every hour (24 
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hours/day * 7 days = 168 samples). 

For each window, the bandpass filters were initialised by minimising the variance 

in error between the filtered and the original data. The range of frequencies is 

defined as having centre frequency ωBPc with a lower frequency and upper 

frequency bound of ωBPR1 and ωBPR2 respectively, where: 

 ωBPR1 = ωBPc − R1 Equation 2.5 

 ωBPR2 = ωBPc + R2 Equation 2.6 

R1 and R2 are constants. A range of bandpass filters are simulated with varying 

ωBPc. The band pass filter with the least variance of the error signal is chosen. 

Once the bandpass filters are identified, the ∆T signal is passed through the 

filter. ∆T is inherently a very noisy signal. Filtering out ∆T at the diurnal 

frequencies only allows meaningful information to be retained from the ∆T signal. 

 

Figure 2.5a: Frequency decomposition for one week of water data. The effect of 

two bandpass filters is also shown. 

 

Figure 2.5b: Water Signal with Bandpass filter applied. 
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2.4.3 Identifying System Relationships 

A transfer function model was used to identify the relationship between the 

filtered water wf(t) and temperature difference time signal 𝛥𝑇𝑓 (𝑠). Transfer 

functions (𝐺(𝑆)) models are helpful tools to describe the dynamic relationship 

between a pair of input (𝑊𝑓(𝑠)) and output (𝛥𝑇𝑓 (𝑠)): 

 G(𝑠) =
Δ𝑇𝑓(𝑠)

𝑤𝑓(𝑠)
 Equation 2.7 

𝑊𝑓(𝑠) and 𝛥𝑇𝑓 (𝑠) are the filtered water and temperature difference signals 

transformed in the Laplace domain. The polynomial form of the transfer function 

can be represented as: 

 
 

Equation 2.8 

Where 𝑛𝑝 and 𝑛𝑧 are the numbers of poles and zeros of the transfer functions. 𝑎, 

𝑏 and 𝑘 constants, which are identified using MATLAB. These parameters are 

identified using the default MATLAB setting: the instrument variable (IV) method 

as described by Young & Jakeman (1979). 

The numerator and denominator of the transfer function in equation 2.8 can be 

factorised. The denominator of the transfer functions is called the characteristic 

equation and contains the underlying dynamics of the relationship between the 

input and output of the system. Poles of the transfer functions are obtained by 

factorising the characteristic equation of the transfer function. Based on the 

chosen 𝑛𝑧𝑡ℎ order of the transfer function, several modes can be extracted from 

the characteristic’s equation. 

A mode of a transfer function is defined as a complex conjugate pair of poles, 

i.e.: 

 Mk  =  (a  +  bj)(a  −  bj) Equation 2.9 

where a is the real and b is the imaginary part of the kth mode of the system. A 

graphical explanation of the pole placement is given by Figure 2.6. The 

properties of the mode of the transfer function are as follows: 

 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝜔𝑛) =  √𝑎2 + 𝑏2 Equation 2.10 

 𝐷𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜 (𝜁) = −
𝑎

√𝑎2 + 𝑏2
 Equation 2.11 
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𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝜔𝑟) =  𝜔𝑛 ∗  √1 −  2𝜁2 Equation 2.12 

 

Figure 2.6: Significance of pole placement. 

2.5 Results and Discussion 

2.5.1 Frequency Decomposition of water data 

To gain insight into the water data, spectral plots for experimental rounds 1, 2 

and 3 were obtained using the FFT, see Figures 2.7, 2.8 and 2.9. A summary of 

the observed peaks in the spectral plots is given in Table 2.2. Four dominant 

peaks can be observed in the FFT of the water signal. Table 2.2 shows the 

frequencies at which the primary harmonics in the water signals occur. 

Furthermore, similar results were obtained by Madsen and Kristensen (2005). 

The four harmonics in the water data have periods of about 6, 8, 12 and 23 

hours. From the frequency responses (Figures 2.7, 2.8 and 2.9), it can be 

observed that there is a fifth harmonic, consisting of a large period (>100 hours). 

These harmonics can be interpreted as a quasi-linear increase in water 

consumption in the pigs as they grow. This slow increase in water consumption 

is not of interest in this study, as it provides no information on the diurnal pattern. 

However, it could be used in other studies to model growth in pigs. 

The harmonics observed using the FFT confirm the finding by Madsen and 

Kristensen (2005). It was reported that a dynamic linear model composed of four 

harmonics gave the optimum performance in simulating water intake in pigs. The 

harmonics can be regrouped into two explanatory sets. The first set is the 23-

hour harmonic, which could explain the pigs’ main daily feeding pattern. The 

second set, composed of the other three harmonics, could be a result of daily 

adjustments in drinking and feeding. 
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Table 2.2: Periods and magnitudes of the four primary harmonics constituting 

the water signal in two sections for each of the three experimental rounds. Each 

trial corresponds to an experimental round, and each peak corresponds to one of 

the primary harmonics. The periods are measured in hours, and the magnitudes 

are measured in litres. For each section and peak, the period and magnitude 

values indicate when and how strongly the harmonic appears in the water signal. 

  Section 1 Section 2 

 Peak Period (hrs) Magnitude (L) Period (hrs) Magnitude (L) 

R
o

u
n

d
 o

n
e
 

 

Peak one 5.9 0.22 5.7 0.10 

Peak two 7.7 0.43 7.5 0.31 

Peak three 11.6 0.21 11.5 0.20 

Peak four 22.9 1.49 21.9 1.09 

R
o

u
n

d
 t

w
o

 

Peak one n/a n/a 5.9 0.28 

Peak two n/a n/a 7.8 0.56 

Peak three n/a n/a 11.7 0.32 

Peak four n/a n/a 22.9 1.52 

R
o

u
n

d
 t

h
re

e
 

 

Peak one 5.9 0.17 5.9 0.19 

Peak two 7.5 0.27 7.8 0.36 

Peak three 11.3 1.9 11.6 0.22 

Peak four 22.4 0.70 22.4 0.98 

Although the frequencies of the harmonics reported in this study are coherent 

with what was reported in the literature (Madsen & Kristensen, 2005), both 

studies were conducted on a conventional Danish farm setting, hence a very 

similar housing structure. Hence when modelling the water intake, adjustments in 

the four harmonic frequencies might be needed, and the FFT has proven 

beneficial. 

The water signal in a normal state should show a stable diurnal pattern centred 

around the four harmonic frequencies identified in this study. Hence by 

monitoring for this expected dynamic in the water data, it can be expected that 

the chance of an outbreak of welfare issues would increase should the pig’s 

drinking behaviour deviates from normality, that is, the expected pig behaviour. 
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Figure 2.7: Spectral analysis of water intake data for each pen from Round 1. 

The averaged frequency response for each section 1 (red) and section 2 (yellow) 

are also shown in the figure.

 

Figure 2.8: Spectral analysis of water intake data for each pen from Round 2. 

The averaged frequency response for each section 1 (red) and section 2 (yellow) 

are also shown in the figure. 
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Figure 2.9: Spectral analysis of water intake data for each pen from Round 3. 

The averaged frequency response for each section 1 (red) and section 2 (yellow) 

are also shown in the figure. 

2.5.2 Frequency filtering 

It has been shown by Bigelow and Houpt (1988) that 75% of the water bouts 

were closely related to eating bouts. Hence, it is reasonable to assume that the 

frequencies driving the water signal are related to the overall diurnal feeding 

frequencies. Using the diurnal frequencies to initialise a bandpass filter provides 

a robust filtering approach to remove all noise (dynamics not related to diurnal 

behaviour). The filtering approach proposed in this study can also be used to 

reduce noise in the water signal further. 

To obtain signals with frequencies around the driving harmonics in the water 

signals, two bandpass filters were used: the first one to allow the dynamics to 

have a period of around 23 hours and the second one to allow the three smaller 

harmonics through, i.e., ranging from a period of 5 to 13 hours. An illustration of 

the two bandpass filters is given in Figure 2.10. Each of the filters was designed 

to allow signals within a range of an eight-hour window. The optimal window was 

obtained by minimising the error signal variance between the filtered and 

unfiltered water signals. The new bandpass filters were initialised daily based on 

seven days of prior data. A simulation was performed to obtain the percentage 

error between the original and filtered data (from the optimal filter). The error was 

computed for all the pens for three rounds. The mean percentage error of the 

filtering algorithm was calculated to be 0.030% with a standard deviation of 
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1.51%. Figure 2.14 shows the distribution of the mean percentage error. The 

filtering algorithm successfully removes noise in the water data by effectively 

retaining only the four primary harmonics. This robust performance in noise 

reduction validates the efficacy of the filtering approach in enhancing the 

accuracy of the water data analysis. 

 

Figure 2.10: Frequency decomposition for one week of water data. The Effects 

of two bandpass filters are also shown. 

2.5.3 Relationship Modelling 

Two main components are needed to build a transfer function model: an input 

signal and an output signal. In this context, the filtered water signal wf(t) is the 

input, while the filtered zonal temperature difference at the diurnal frequencies, 

∆Tf(t), acts as the output. These filtered signals are used to capture the key 

frequencies that constitute the diurnal rhythms in water consumption and 

temperature difference, eliminating unnecessary noise and facilitating a more 

precise system identification. 

System identification is a method in control engineering for building mathematical 

models of dynamic systems from measured data. In this scenario, the system 

identification algorithm in MATLAB is employed to generate the transfer function 

model, which is a mathematical representation of the relationship between the 

input and output of the system. The transfer function model maps how a change 

in water consumption (input) influences this pig population’s zonal temperature 

difference (output). 

However, the structure of the transfer function model is not predetermined; it 
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must be identified from the data. Different structures or orders of transfer function 

models can be tested to find the best-fitting model. The “order” here refers to the 

degree of the differential equation in the model, with higher-order models having 

more parameters and potentially capturing more complex dynamics. 

To determine the optimal order for the transfer function model, various system 

identification criteria are used. By comparing these criteria across different 

orders of transfer function models, the most suitable model order can be 

determined, and the structure of the transfer function model can be finalised. 

This optimal model will best estimate the system’s dynamics, capturing the 

underlying relationship between the pigs’ water consumption and the zonal 

temperature difference. The different system identification criteria used to 

compare different order of transfer function models are: 

1. Final Prediction Error (FPE), and 

2. Mean Square Error (MSE). 

The research results are shown in Table 2.3. For the optimal transfer function 

structure, the aim was to have the smallest FPE and MSE values while 

considering stability constraints. The FPE and MSE are measures of the model’s 

accuracy, with lower values indicating better accuracy. FPE reflects the error in 

the model’s predictions, with a smaller value suggesting that the model’s 

predictions are closer to the actual data. MSE is a measure of the average 

squared difference between the model’s predictions and the actual data; again, a 

smaller MSE indicates a more accurate model. 

Only consider models with an even number of poles were considered to ensure 

that the model is identifiable. This is done so that conjugate pairs of poles (two 

complex poles that are reflections of each other across the real axis in the 

complex plane) can be identified, which is essential in understanding the 

oscillatory behaviour of the system. Furthermore, the model must have fewer 

zeros than poles for dynamic stability - an important system characteristic that 

ensures it will not produce unexpected or extreme responses. A system with 

more poles than zeros naturally tend to dampen out oscillations, ensuring stable 

behaviour. 

Upon examination of Table 2.3, it becomes evident that the optimal structure for 

the transfer function is a sixth-order model with two zeros. Higher-order models 

were not pursued as they could result in excessively complex dynamics. 

Although the sixth-order model presented optimal results, a fourth-order model 

with two zeros was chosen to reduce the complexity of the dynamic model 



 

31 
 

identified. The minor differences observed between the 4th and 6th-order models 

supported the choice. Therefore, the selected model structure is as follows: 

 

 

Equation 2.13 

Table 2.3: System Identification Criteria for Transfer Function models of different 

orders. The table shows the number of zeros and poles for each order and 

corresponding values, Final Prediction Error (FPE), and Mean Squared Error 

(MSE). These metrics provide a measure of the quality of fit of each model. 

Model Zeros Poles FPE MSE 

1 1 2 0.04850 0.04795 

2 1 4 0.04859 0.04792 

3 1 6 0.04879 0.0479 

4 1 8 0.04964 0.04861 

5 2 2 0.04815 0.04734 

6 2 4 0.03882 0.03809 

7 2 6 0.03605 0.03513 

8 2 8 0.03792 0.03669 

9 4 6 0.03571 0.03467 

 

Where ∆(T(s)) is the zonal temperature difference and w(s) is the water 

consumption in the Laplace domain. 

The pole locations for each day were calculated, and an average was taken 

across all the pens. These averages are graphically represented in Figure 2.12. 

Upon visual analysis of this figure, it was observed that the two modes of the 

transfer function could be separated into two distinct regions within the complex 

plane. The characteristics of these modes are discernible based on their 

positions on the complex plane, as represented in Figure 2.12. A closer look at 

Figure 2.12 reveals that the identified modes can indeed be categorised into two 

distinct regions. 
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Figure 2.11: Illustration of the impulse response of the modes. 

 

Figure 2.12: Poles and Zero maps of identified modes. 

To substantiate the observed groupings, a k-means clustering algorithm was 

used. This unsupervised machine learning technique partitions a set of n 

observations into k clusters, such that each observation is associated with the 

cluster with the nearest mean, also known as the centroid. In this context, k-

means clustering was leveraged to segregate the pole locations into distinct 
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clusters, guided by their locations in the complex plane. The optimal number of 

clusters, k, was determined through the Elbow Method, as shown in Figure 2.13. 

The Elbow plot clearly indicated a distinct “elbow” point at k-2, suggesting that 

the pole locations can be most effectively categorised into two distinct clusters. 

This data-driven approach provided a robust basis for the observations, 

reinforcing the notion that the transfer function’s two modes could be 

differentiated into two distinct regions within the complex plane. 

 

Figure 2.13: Elbow Method plot for determining the optimal number of clusters in 

k-means clustering. The plot shows the normalised error (within-cluster sum of 

squares) against the number of clusters (k). A clear ‘elbow’ point is observed at 

k=2 (highlighted in red), indicating that this dataset’s optimal number of clusters.  

By employing this method, the two distinct regions were confirmed, and the 

mean locations for the two characteristic modes of the systems were precisely 

determined. This data-driven approach, utilising k-means clustering, provides a 

more robust confirmation of the observations made through visual inspection, 

ensuring a sound basis for the findings. The mean location for the two 

characteristic modes of the systems is given by: 

 Mode 1: (s ± p1) Equation 2.14 

 Mode 2: (s ± p1) Equation 2.15 
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Figure 2.12 shows the average pole placement for each throughout the whole 

experiment. The two modes can be used to describe two different dynamics: 

1. Mode 1: A fast-moving mode (0-3 hours) 

2. Mode 2: A slow mowing mode (4-7 hours) 

The average location and the standard deviations of each of the modes for 

experimental round three are given in Table 2.4. The features of these poles are 

listed in Table 2.3. An illustration of the impulse responses of the two modes is 

given in Figure 2.11. 

The first mode (Mode 1) can be used to characterise periods that are not related 

to their feeding pattern. That is, the animals move to the drinking station driven 

by their need to hydrate. This mode can be caused by animal socialising 

behaviour that triggers thirst. The pens with eleven pigs had faster periods than 

those with eighteen pigs. This difference could be the result of reduced 

accessibility of water stations. Hence, pigs tend to spend more time drinking in 

larger groups. Mode 1 is also characterised by a high damping ratio (between 

0.6 to 1). A high damping ratio signifies that these modes are not oscillatory. 

Mode 1 represents an animal moving towards the drinking area for water and 

then returning to the resting area to rest. The faster mode can be used to 

characterise individual activities. The small undershoot in the fast response can 

be due to the increase in movement because of drinking. 

The second and slower mode (Mode 2) can result from the animals’ diurnal 

feeding pattern. Water and feed intake have a clear relationship (Bigelow & 

Houpt, 1988; Yang et al., 1981). Pigs tend to consume a large amount of water 

before feeding. Hence, these slower modes describe the daily needs for feeding. 

The mode with a period of 4-6 hours (as seen in Table 2.3) can be interpreted as 

follows: the pigs move towards the feeding and dunging area during their feeding 

period; this thus increases the temperature in the feeding and dunging area. 

Before feeding, the animals return to their resting area with an elevated body 

temperature, which temporarily elevates the resting area’s temperature. Mode 2 

is also observed to occur with a low damping ratio, which signifies that the mode 

is oscillatory; hence it would be the primary driving mode for a diurnal response. 
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Table 2.4: Characteristics of the mean modes for all experiments. The table 

shows the resonant frequency (𝜔𝑟), damping ratio (ζ), and natural frequency (𝜔𝑛) 

for two distinct modes in experiments with 18 and 11 pigs, respectively. 

No of Pigs Modes 𝝎𝒓 (hr) ζ 𝝎𝒏 (hr) 

18 Mode 1 1.68 2.44 0.73 

18 Mode 2 4.84 4.46 0.091 

11 Mode 1 0.51 2.69 0.98 

11 Mode 2 4.97 5.01 0.12 

 

Table 2.5: Mean values and standard deviations of the real and imaginary parts 

for the modes across all experiments. The table details the mean and standard 

deviation of the real and imaginary components of two different modes observed 

in the experiments. 

 Real Part Imaginary Part 

 Mean Std Mean Std 

Mode 1 -0.00012 0.00028 0.00011 0.000041 

Mode 2 -0.0000052 0.0000028 0.000057 0.000016 

Mode 1 -0.00053 0.0022 0.00010 0.000023 

Mode 2 -0.0000068 0.0000038 0.0000055 0.000014 

2.5.4 Event Detection 

The present study introduces an event detection system to monitor the dynamics 

between poles to establish a frequency range defining ‘normal’ behaviour in pigs. 

This system predicts and flags potential fouling and tail-biting events, enhancing 

data accuracy. The section outlines the methodology, evaluates the alarm 

system’s performance, and discusses potential improvement areas. 

The methodology involved the identification of two modes, which demonstrated 

mean periods of 2.5 and 4.9 hours for their natural frequencies. For a preliminary 

trial, varying cut-off thresholds were set at 0.7, 0.8, and 0.9 σ (standard 

deviation). An alarm was set to trigger upon the occurrence of two consecutive 

pole movements that exceeded the set threshold within five days. 

The event detection approach employed in this study is non-discriminatory, 

treating multiple instances of tail-biting and fouling collectively as a singular 
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event, focusing on capturing general patterns of irregular behaviour rather than 

specific occurrences. 

Throughout the 50-day study duration, data associated with these combined 

events were aggregated at the farm level. The recorded observations included 

fifteen events in pens housing eleven pigs and fourteen events in pens with 

eighteen pigs. The performance of the alarm system was evaluated using the 

AUROC (Area Under the Receiver Operating Characteristic) values, which are 

commonly used to assess the performance of binary classification models. The 

AUROC values obtained in this study for both datasets were approximately 

0.145 for pens housing eleven pigs and 0.142 for pens housing eighteen pigs. 

These values are relatively low, suggesting that the model’s classification 

performance is not much better than random guessing. 

Analysing the alarm system’s performance in Table 2.5 and Table 2.6, it is 

evident that setting a tighter threshold and quantifying a smaller percentile of 

extreme data as outliers leads to a reduction in sensitivity. Conversely, using a 

more relaxed threshold resulted in a higher number of false positives. The 

current detection method may not be optimal for event detection, as the literature 

offers better methodologies for setting alarms to detect events (Jensen, 2016). 

Previous research in the literature utilises a probabilistic approach to predict 

events, which is a valuable tool for observational data. However, this 

methodology lacks insights into the dynamics of behavioural models. 

In contrast, the methodology presented in this paper for alarm detection adopts a 

mechanistic approach. Understanding the mechanics leading to abnormal 

behaviour makes it possible to develop methodologies to control these events. 

The current model incorporates water consumption as an input, but this may not 

be a controllable variable in an environment where water is distributed ad libitum. 

However, in more controlled environments with stricter control of feeding times, 

understanding the feeding and activity dynamics would significantly minimise 

animal stress, thereby increasing the system's welfare. 
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Figure 2.14: Gaussian distribution of mean percentage error between filtered 

and unfiltered water signal. 

The relatively low AUROC values obtained could be attributed to several factors. 

Firstly, the non-discriminatory event detection approach might mask the 

distinctions between tail-biting and fouling events, reducing sensitivity in 

identifying specific behaviours. Secondly, the reliance on aggregated data at the 

farm level may have overlooked subtle variations in behaviour within individual 

pens, impacting the overall performance of the alarm system. 

In conclusion, while the mechanistic approach to detecting events provides 

valuable insights into the dynamics of abnormal behaviour, further refinements 

may be necessary to improve the sensitivity and accuracy of the alarm system. 

Exploring alternative methodologies and incorporating more granular data at the 

pen level could enhance the system’s ability to discriminate between different 

event types, leading to more effective event detection and management in pig 

farming practices. 

Table 2.6: Event detection sensitivity for pens with eleven pigs. 

Threshold (%) 
False 

Positive 

True 

Positive 

False 

Negative 

True 

Negative 
Sensitivity 

48 (0.7σ) 22 9 6 13 60% 

54 (0.8σ) 14 8 7 21 53% 

61 (0.9σ) 11 5 10 24 33% 
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Table 2.7: Event detection sensitivity for pens with eighteen pigs 

Threshold (%) 
False 

Positive 

True 

Positive 

False 

Negative 

True 

Negative 
Sensitivity 

48 (0.7σ) 26 10 4 10 71% 

54 (0.8σ) 23 9 5 13 64% 

61 (0.9σ) 18 8 6 18 57% 

 

2.6 Conclusions 

This study developed a transfer function model to establish the relationship 

between water consumption and zonal temperature difference in a pig 

population. The optimal model structure was identified using system identification 

techniques, comparing various system identification criteria. The selected fourth-

order transfer function model with two zeros exhibited an excellent fit to the data 

while maintaining model simplicity. 

By conducting pole analysis and employing k-means clustering, two distinct 

modes in the system dynamics were found. Mode 1, characterised by a fast 

response period, captured the animals’ movement towards drinking stations, 

likely influenced by socialising behaviour. Mode 2, with a slower response 

period, corresponded to the diurnal feeding pattern of the pigs. 

The implemented event detection system used a non-discriminatory approach, 

capturing general patterns of irregular behaviour without distinguishing between 

tail-biting and fouling events. Despite obtaining relatively low AUROC values, the 

mechanistic approach provided valuable insights into abnormal behaviour 

dynamics. To enhance the sensitivity and accuracy of the alarm system, further 

research should explore alternative methodologies, including incorporating more 

granular data at the pen level, and consider adopting probabilistic approaches 

from the literature. 

Overall, this study contributes to understanding pig behaviour dynamics and 

establishes a foundation for more effective event detection and management in 

pig farming practices. By gaining insights into the complex interactions between 

water consumption and zonal temperature difference, opportunities to optimise 

pig welfare and potentially reduce stress in controlled environments with stricter 

feeding schedules emerge. 

In conclusion, this research serves as a steppingstone towards better animal 

welfare practices, emphasising the importance of employing data-driven 
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approaches to unravel the intricacies of animal behaviour. Future studies stand 

to benefit from exploring more sophisticated models and integrating advanced 

machine-learning techniques for improved event detection and monitoring in pig 

farming systems. The findings underscore the significance of interdisciplinary 

approaches that bridge engineering, biology, and data analysis to advance the 

field of precision animal farming and enhance animal welfare. 
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Chapter 3: Can early changes in behaviour be used to 
predict fouling? 

3.1 Abstract 

This study aims to explore the feasibility of using early changes in behaviour as 

indicators of fouling in conventionally housed slaughter pigs. The research 

investigates whether specific factors, including temperature variations between 

resting and excreting areas, water consumption, and spatial positioning of the 

pigs, can reliably predict fouling events. The spatial positioning of pigs was 

monitored using video recordings, allowing for accurate observations of their 

behaviour. The pen was divided into three areas: the Activity area, the Excreting 

area, and the Rest area. The Activity, Excreting and Rest areas are covered with 

slatted, drained, and solid areas, respectively. 

The study found that a reduction in the number of pigs lying in the Activity area 

occurred 5 and 4 days before fouling events, resulting in 8.1% (p=0.02) and 

9.0% (p=0.03) fewer pigs in that area, respectively. In contrast, pens 

experiencing fouling had, on average, 14.0% (p=<0.001) more pigs in the Activity 

area, 2.8% (p=0.003) fewer pigs in the Excreting area, and 11.0% (p<0.001) 

fewer pigs in the Rest area. 

Moreover, the temperature difference between the Rest and Excreting areas 

emerged as a more reliable fouling indicator. Fouled pens exhibited a smaller 

temperature difference of 0.52°C (p<0.007). This finding suggests that the spatial 

positioning of pigs significantly influenced the temperature in both areas. For 

every 10% increase in pigs in the activity area, there was a decrease of -0.2°C 

(p=0.01) and an increase of 0.62°C (p<0.001) in temperature in the rest and 

slatted areas, respectively.  

In conclusion, this study highlights the potential of early behaviour changes, 

particularly spatial positioning, as valuable predictors of fouling in conventionally 

housed slaughter pigs. The results underscore the importance of monitoring 

these indicators to improve the management of pig fouling events, leading to 

better animal welfare and enhanced productivity. Further research could explore 

temperature variation as a proxy for assessing pig activity, streamlining the 

monitoring process for farmers and researchers alike. 

Keywords: Fouling, Linear Regression, Pigs Behaviour 
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3.2 Introduction 

Pen fouling is a complex issue influenced by multiple factors, including space 

allowance, floor design, thermal climate, and pig behaviour (Bertelsen et al., 

2017). The space allowance impacts pigs' ability to access designated excreting 

areas and distinguish between rest and excreting spaces. In contrast, excessive 

space may reduce pig movement and increase excretion in designated areas. 

Additionally, pigs are susceptible to overheating as they are homeothermic 

animals. In response to high ambient temperatures, pigs seek colder spots to lie 

down, resulting in the disappearance of distinct activity areas at lower 

temperatures (Fraser, 1985). While factors like floor design and pigs' earlier 

experience remain constant during pigs' housing, they are not the focus of this 

study. 

Although prior research has explored the impact of temperature (Spoolder et al., 

2012), humidity (Huynh et al., 2005), and space allowance (Bench et al., 2013) 

on pen fouling and overall animal behaviour, it remains unclear why some pens 

experience fouling while others do not, despite similar physiological status and 

environmental conditions. A comparative analysis between the factors presents 

prior to in contrast to non-fouling pens will be carried out in this chapter. The 

previous chapter's findings, where water consumption and zonal temperature 

difference were investigated as indicators of pig spatial positioning, will be built 

upon. 

In Chapter 2, system identification techniques and event detection systems were 

used to identify unique behavioural patterns associated with pig behaviours. 

Valuable insights into abnormal behaviour dynamics were provided. In this 

chapter, a deeper understanding of pig behaviours will be achieved by examining 

specific factors during prior to the occurrence of fouling events. 

The primary objectives of this chapter are to: 

• Investigate the influence of temperature variations between resting and 

excreting areas prior to fouling events. 

• Examine the changes in water consumption patterns prior to a fouling 

event. 

• Analyse the impact of pigs' spatial positioning prior to fouling events. 

Valuable insights will be gained in this chapter, which will form the basis for 

future chapters where machine learning models will be explored. By key factors 

that affect fouling behaviour being identified, a reliable predictive framework will 

be created that uses advanced machine learning techniques to accurately 



 

42 
 

forecast fouling events in traditionally housed slaughter pigs. The integration of 

machine learning models will enhance the ability to manage and optimize pig 

welfare in controlled environments, representing a significant advance in 

precision animal farming.  

3.3 Materials and Methods 

The experiment was conducted at the Finisher unit at Aarhus University, 

Denmark, from 2015 to 2016. A more detailed description of the experimental 

setup can be found in Chapter 2. The study included 112 pens housing 1624 

slaughter pigs, divided into four batches (batch 1, 3, and 4: n = 32 pens each; 

batch 2: n = 16 pens). The pigs were inserted randomly into the pens with an 

average weight of 31.6 ± 6.6 kg. Each pen measured 5.45 m by 2.48 m and had 

the floor divided into solid concrete (rest area), drained (activity area), and 

slatted floor (excreting area). Artificial light was provided from 0530 to 1830 h 

(182 lx). During the daily check-up performed by the herd staff from 1000 to 1200 

h, a protocol for scoring diarrhoea, fouling and tail-biting events was followed. As 

mentioned in chapter 2, fouling was defined as when more than half of the solid 

floor was wet with excreta and/or urine. These zones are arranged from left to 

right, as indicated by the blue markings that demarcate the borders between the 

different floor types. A schematic of the pen is given in Figure 2.1 and Figure 3.1.  

 

Figure 3.1: Screenshot from the video observation made via a recorder video, 

capturing the arrangement of the three distinct zones within the pig pens. The 

zones are designated as the "Rest Area," "Activity Area," and "Excreting Area." 

3.3.1 Behavioural Video Observations 

For each recorded fouling event, video data was collected for five consecutive 

days leading up to the event, including the day of fouling (day (0)). The average 
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percentage of pigs lying in each of the three distinct areas (% Lying (Rest), % 

Lying (Activity), and % Lying (Excreting)), as shown in Figure 3.1, was calculated 

for each of these days (day (-5), day (-4), day (-3), day (-2), day (-1), day (0)). 

To ensure comprehensive data collection, video recordings were taken twice 

daily during the morning (06:00-08:00h) and evening (12:00-14:00h), with 

images sampled every 10 minutes. For every pen with a fouling event, a control 

pen with the same treatment and physiological condition but without any fouling 

event was selected. The video footage of the control pen was also observed for 

the same five days. The study labelled fouled pens as "FOUL," while the control 

pens were labelled as "NO FOUL." This meticulous approach allowed for a 

thorough assessment of the factors influencing fouling behaviour. 

3.3.2 Sensor Observations. 

This chapter used environmental sensor recordings to assess the pig pens' 

environmental conditions and physiological states. These sensor data points 

were integral to understanding the factors that might influence fouling events and 

pig behaviour. The key sensor recordings used in this chapter are summarised in 

Table 3.1. For a more comprehensive view of the sensors used throughout this 

research, refer to Table 2.1 in Chapter 2. 

Table 3.1: Summary of Key Sensor Recordings 

Sensor Recording Description 

Temperature (Rest 

Area) 

VE10-A temperature probes by Veng System (VengSystem, 

Denmark) were placed at pig level in the resting area. 

Temperature 

(Slatted Area) 

VE10-A temperature probes by Veng System (VengSystem, 

Denmark) were placed at pig level in the excreting area. 

Temperature 

(Section) 

The climate control system records the average temperature of 

all pens within the finisher unit. 

Water Intake 
Water flow was measured using flow meters in each pen, 

providing insights into drinking behaviour. 

3.4 Statistical Analysis 

To analyse the influence of different environmental factors on the occurrence of 

fouling events, a combination of logistic and linear regression models was 

employed. All computations were performed using R version 3.2.4. 

The presence of fouling was used as the binary result variable in logistic 
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regression, and environmental factors such as temperature and water consumed 

per pig were considered as predictors. The regression models were constructed 

with a stepwise selection process only to retain noteworthy variables. Linear 

regression models were used to further explore the relationship between the 

significant predictors and fouling. In these models, DAY and FOUL were 

considered as factors, re-levelled around DAY (0) and NO FOUL, respectively. 

The stepAIC function was also used here for dimensionality reduction. 

3.4.1 Logistic Regression Analysis (Fouling) 

In this study, twenty-one distinct fouling outbreaks were identified. An outbreak is 

defined as the first observation of fouling within a specific batch or section, 

marking the beginning of a fouling issue. The 21 outbreaks analysed in this 

section were selected from a broader set of pens evaluated for fouling. Any data 

compromised by corrupted sensors or video were excluded. It's important to 

differentiate between these outbreaks and the total of 1,126 fouling incidents, 

which accounts for every individual fouling occurrence throughout the research. 

For each of these twenty-one fouling outbreaks, corresponding observations 

were made in twenty-one other control pens. This pairing resulted in a temporal 

dataset for each outbreak event. This dataset encompassed six-time steps 

(days) leading up to the onset of the fouling outbreak, allowing for a detailed 

understanding of the conditions and factors that may have contributed to the 

initiation of fouling. The dataset incorporated several features: average 

temperature (Section, Rest, Excreting), water consumed per pig, and the 

percentage of pigs lying in different areas (Rest, Activity, Excreting). The water 

consumed per pig was calculated by dividing the total amount of water 

consumed in each pen by the number of pigs in that pen. 

A mixed logistic regression model was employed to investigate these 

independent variables' impact on fouling. The mixed logistic regression model 

can be expressed as: 

𝑙𝑜𝑔(𝑃(𝑌 = 1)) =  𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + … +  𝛽ₙ ∗ 𝑋ₙ +  𝜀 Equation 3.1 

Here: 

• 𝑃(𝑌 = 1) represents the probability of a fouling event happening. 

• 𝛽₀ is the intercept, which captures the log odds of fouling when all 

predictors are zero. 

• 𝛽₁, 𝛽₂, . . . , 𝛽ₙ are the coefficients of the predictors X₁, X₂, Xₙ respectively, 
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indicating the change in log odds of fouling for a unit increase in these 

predictors. 

• 𝑋₁, 𝑋₂, . . . , 𝑋ₙ represent the predictors. 

• 𝑏 represents the random effects, i.e., variability at the pen level. 

• 𝜀 is the error term, capturing the variability not explained by the predictors 

or random effects. 

The stepAIC function in R was used, which implements a hybrid feature selection 

strategy backwards and forward feature elimination) to create an optimal model. 

This model included all significant predictors, disregarding the insignificant 

interaction terms. 

Since the R-Square statistic cannot be computed for regression models with a 

categorical dependent variable, an approximation known as McFadden's R-

Square was used. This measure offers a ratio of the log-likelihood of the full 

model to the log-likelihood of a model with no predictors, thereby estimating the 

proportion of variance in the dependent variable that is explained by the 

independent variables. 

3.4.2 Linear Regression Analysis (Dependent Variables) 

Linear regression models were used to analyse the significant predictors of 

fouling, with the relationships between dependent variables and predictors being 

examined. The mathematical representation of the linear regression models 

used in this study is as follows: 

 𝑌 =  𝛽₀ +  𝛽₁𝑿₁ +  𝜷₂𝑋₂ + . . . + 𝛽ₙ𝑋ₙ +  𝜀 Equation 3.2 

In this formulation: 

• 𝑌 represents the dependent variable, which in this context could be 

temperature or percentage of pigs lying in a specific area. 

• 𝛽₀ is the intercept, indicating the expected value of Y when all predictors 

are zero. 

• 𝛽₁, 𝛽₂, . . . , 𝛽ₙ are the coefficients of the predictors 𝑋₁, 𝑋₂, . . . , 𝑋ₙ, 

respectively. They measure the change in the dependent variable for a 

unit increase in the corresponding predictor, all other predictors being 

held constant. 

• 𝑋₁, 𝑋₂, . . . , 𝑋ₙ are the predictors or independent variables. In the models in 

this chapter, these represent the environmental factors and pig behaviour 

variables. 
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• ε is the error term, which accounts for the variability in the dependent 

variable that the predictors do not explain. 

In these linear regression models, DAY and FOUL were incorporated as factors. 

The factors were adjusted to use DAY (0) and NO FOUL as the reference levels. 

The stepAIC method, as with the logistic regression model, was used here for 

dimensionality reduction, resulting in a model that only includes the predictors 

that significantly contribute to the explanation of the dependent variable's 

variance. 

3.5 Results  

In Table 3.1, the dependent variable's intercept was determined to be 9.418, with 

a 95% confidence interval (CI) ranging from 3.078 to 16.612. This result was 

found to be statistically significant (P-Value = 0.021). When examining the full 

model for Foul, the influence of different variables such as % Lying (Rest Area), 

% Lying (Activity Area), % Lying (Excreting Area), Temperature (Section), 

Temperature (Rest Area), Temperature (Excreting Area), and water consumed 

per pig (Litres) were found to have various levels of significance, with varying 

degrees of statistical significance. The model's fitness was indicated by 

McFadden's Pseudo R Square, which was 0.370. In the reduced model for Foul, 

significant variables included the intercept, % Lying (Activity Area), % Lying 

(Excreting Area), Temperature (Rest Area), Temperature (Excreting Area), and 

Water consumed per pig (Litres). McFadden's Pseudo R Square for the reduced 

model remained the same as the full model (0.370), indicating the reduced 

model's effective representation of the data. 

Table 3.2 focused on the effect of temperature in different areas. Different 

variables such as % Lying (Rest Area), % Lying (Activity Area), % Lying 

(Excreting Area), and Temperature (Section) demonstrated varying degrees of 

influence on the temperature in the rest area, excreting area, and temperature 

difference. The Adjusted R Square, used to show the goodness of fit of the 

models in this study was 0.845, 0.822, and 0.688 for Temperature (Rest Area), 

Temperature (Excreting Area), and Temperature Difference, respectively. Figure 

3.3 shows the relationship between the temperature difference and the % of pigs 

in the excreting area. 

Table 3.3 shows the dependent variables (Excreting Area, Activity Area, and 

Rest Area) and their relationship with various variables such as Day and FOUL 

were explored. The adjusted R-Squares for the Excreting Area, Activity Area, 

and Rest Area models were 0.150, 0.210, and 0.130, respectively, suggesting 
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how well these variables could explain the percentage of pigs lying in the 

respective areas. Figure 3.2 summarises the percentage of pigs lying in each 

area before fouling. 

Table 3.1: Full and reduced order model for predicting the logarithmic odds of 

fouling (𝛽̂), 5% and 95% confidence correspond to logistic regression 

coefficients and p-values. McFadden's Pseudo R Square is used for an 

indication of model fit. 

 
Dependent Variable 𝜷̂ CI (5%) CI (95%) P-Value 

 
Intercept 9.418 3.078 16.612 0.021 

Full 

Model 

(Foul) 

% Lying (Rest Area) 0.076 -0.166 0.007 0.148 

% Lying (Activity Area) 0.075 -0.007 0.163 0.013 

% Lying (Excreting Area) 0.010 -0.069 0.087 0.016 

Temperature (Section) 0.075 -0.279 0.426 0.723 

Temperature (Rest Area) -0.947 -1.502 -0.452 0.003 

Temperature (Excreting Area) 0.547 0.150 0.959 0.025 

Water consumed per pig (Litres) -0.254 -0.438 -0.084 0.017 

Pseudo R Square (McFadden) 0.370    

      

Reduced 

Model 

(Foul) 

Intercept 9.827 5.241 15.064 <0.001 

% Lying (Activity Area) 0.063 0.024 0.109 <0.001 

% Lying (Excreting Area) 0.084 -0.135 -0.046 <0.001 

Temperature (Rest Area) 0.253 0.092 0.423 <0.001 

Temperature (Excreting Area) -0.571 -0.730 -0.355 0.056 

Water consumed per pig (Litres) -0.085 -0.146 -0.028 0.030 

Pseudo R Square (McFadden) 0.370    
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Table 3.2: Reduced-order linear regression model for predicting Temperature in 

Rest, Excreting Area, and Temperature Difference. The coefficients (𝛽̂), indicates 

the change in oC for a unit increase in the dependent variable. The 5% and 95% 

confidence intervals (CI) for each of the coefficients and p-values are also 

shown.  

Independent 

Variable 
Dependent Variable 𝜷̂ CI (5%) CI (95%) P-Value 

Temperature 

(Rest Area), 

oC 

Intercept 5.678 4.662 6.695 <0.001 

% Lying (Rest Area) 0.040 0.019 0.061 <0.001 

% Lying (Activity Area) -0.020 -0.029 -0.011 <0.001 

% Lying (Excreting Area) 0.004 -0.023 0.032 0.760 

Temperature (Section), oC 0.816 0.754 0.878 <0.001 

Adjusted R Square 0.845    

      

Temperature 

(Excreting 

Area), oC 

Intercept -0.676 -2.911 1.560 0.552 

% Lying (Rest Area) 0.106 0.073 0.139 <0.001 

% Lying (Activity Area) 0.062 0.032 0.092 <0.001 

% Lying (Excreting Area) 0.025 -0.008 0.057 0.132 

Temperature (Section), oC 0.820 0.743 0.898 <0.001 

Adjusted R Square 0.822    

      

Temperature 

Difference, oC 

Intercept 4.539 4.001 5.077 <0.001 

% Lying (Activity Area) -0.516 -0.895 -0.137 0.008 

% Lying (Excreting Area) -0.056 -0.077 -0.035 <0.001 

No of Pigs -0.116 -0.163 -0.069 <0.001 

Foul -0.051 -0.062 -0.041 <0.001 

Adjusted R Square 0.688    
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Table 3.3: Reduced order linear regression model for predicting the percentage 

of pigs lying in the Excreting, Activity and Rest Area. Temperatures were omitted 

from the reduced order mondel as they strongly correlate with activity within each 

zona. The model was level on the day (0), and no foul.  

Dependent 

Variable 
Dependent Variable 𝜷̂ 5% CI 95% CI P-Value 

% Lying 

(Excreting 

Area) 

Intercept 19.060 16.524 22.517 <0.001 

Day (-5) 1.521 -2.548 5.788 0.504 

Day (-4) 3.077 -2.401 6.045 0.177 

Day (-3) 2.173 -2.473 6.377 0.358 

Day (-2) 1.022 -3.177 4.956 0.643 

Day (-1) 2.377 -1.723 6.507 0.286 

FOUL -2.828 -7.384 -2.709 0.004 

Adjusted R-Square 0.150    

% Lying 

(Activity 

Area) 

Intercept 16.395 10.747 22.811 <0.001 

Day (-5) -8.102 -16.720 0.060 0.026 

Day (-4) -8.992 -16.873 0.127 0.029 

Day (-3) -5.868 -15.411 2.401 0.115 

Day (-2) -5.411 -14.252 2.117 0.120 

Day (-1) -0.404 -7.963 8.602 0.928 

FOUL 13.976 10.890 20.301 <0.001 

Adjusted R-Square 0.210    

Lying (Rest 

Area) 

Intercept 47.957 43.060 54.023 <0.001 

Day (-5) 3.852 -4.117 11.132 0.340 

Day (-4) 3.595 -4.016 11.433 0.372 

Day (-3) 0.613 -6.585 9.602 0.883 

Day (-2) 3.043 -3.767 11.109 0.436 

Day (-1) -2.467 -11.099 3.954 0.531 

FOUL -10.952 -15.714 -7.161 <0.001 

Adjusted R-Square 0.130    



 

50 
 

 

Figure 3.2: Box plots representing the distributions of the "% Lying" variables 

across five days for Pen where Fouling was observed. The variables are "% 

Lying (Excreting Area)", "% Lying (Rest Area)", and "Lying (Activity Area)", 

depicted from top to bottom respectively. Each box plot demonstrates the 

median (the horizontal line inside the box), interquartile range (the box itself), 

and minimum and maximum value. 
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Table 3.4 models the relationship between variables such as % Lying (Rest 

Area), % Lying (Activity Area), % Lying (Excreting Area), Temperature (Section), 

and Age, and the amount of water consumed per pig was analysed. Further 

details are to be presented in the following section. 

Table 3.4: Reduced order linear regression model for predicting water consumed 

per pig (Litres). The coefficients (𝛽̂) indicate the change in Litres for a unit 

increase in the dependent variable. The 5% and 95% confidence intervals (CI) 

for each of the coefficients and p-values are also shown. 

Dependent Variable 𝜷̂ 5% CI 95% CI P-Value 

Intercept 9.008 7.440 10.491 <0.001 

% Lying (Rest Area) 0.025 0.063 0.134 0.018 

% Lying (Activity Area) 0.028 0.022 0.032 <0.001 

% Lying (Excreting Area) -0.019 -0.168 0.020 <0.001 

Temperature (Section) -0.407 -0.380 -0.424 0.016 

Age 0.160 0.124 0.207 <0.001 

Adjusted R-Square 0.5455    

 

 

Figure 3.3: Plot Showing the Relationship between Temperature Difference and 

% Lying (Excreting Area). 
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3.6 Discussion 

Factors increasing the odds of fouling were obtained using logistic regression 

(see Table 3.1). The probability of fouling can seem to be significantly influenced 

by the pig's preferred lying area, the temperature in the rest and excreting area 

and water consumption. 

3.6.1 Pigs Activity Prior to Fouling  

The connection between thermal distress and changes in lying posture in pigs 

highlights a behavioural adaptation that favours increased heat dissipation. 

When faced with heat stress, pigs tend to assume a lateral lying position, 

exposing more of their skin surface to the cooler ground. This pattern is 

potentially a precursor to severe heat stress reactions such as fouling. 

Our statistical analysis shows a significant correlation (P<0.01) between an 

increased presence of pigs in the activity and excreting areas and the rising risk 

of fouling. However, the activity within the rest area had no noticeable impact on 

fouling. A multi-level linear regression model was employed to ascertain factors 

influencing pig lying behaviour across three distinct areas: rest, activity, and 

excreting areas. The model factored in variables including DAY and FOUL and 

their interactions, with DAY (0) and NO FOUL as the starting points. 

No substantial difference was detected in lying activity and days leading to 

fouling within the Excreting and Rest areas. However, there was a noticeable 

decline in the number of pigs (8.1%, p=0.02 and 9.0%, P=0.03 respectively) lying 

in the Activity area five and four days before the detection of fouling. This trend 

was observed in both FOUL and NO FOUL pens. No significant difference was 

found when FOUL and DAYS interacted with pigs lying in the Activity area. 

Despite similarities in pen design, climate control, and physiological 

characteristics between the fouled and non-fouling pens, variations in the activity 

area can be attributed to increased lateral lying by pigs, which necessitates more 

space for heat dissipation. This behaviour typically initiates when the 

temperature crosses a certain threshold (Aarnink et al., 2006). Before reaching 

this point, pigs employ other coping mechanisms to maximise heat dissipation, 

thereby increasing activity in both FOUL and NO FOUL pens. 

As temperatures rise, the space requirements of pig’s surge significantly due to 

the adoption of lateral lying positions aimed at maximising heat transfer by 

exposing more skin surface area. The occurrence of lateral lying increased by 

0.8% per oC (Huynh et al., 2005), 1.9% per oC (Aarnink et al., 2006), and 1.40 % 
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per oC (Brehme et al., 2004). 

Fouling pens showed an average of 14.0% (p<0.001) more pigs in the Activity 

area and 2.8% (p=0.003) and 11.0% (p<0.001) fewer pigs in the Excreting and 

Rest areas, respectively. This implies that a key distinction between fouling and 

non-fouling pens is the significant surge in the number of pigs in the Activity area 

in fouling pens. Although the increased presence of pigs in the activity area does 

not directly result in a fouling event, it is a potent indicator of thermal discomfort 

in pigs. 

Notably, despite pigs' well-documented aversion to lying in excreting areas 

(Huynh et al., 2006; Stolba & Wood-Gush, 1989), this study suggests that 

extreme thermal distress might alter this behaviour. Under severe heat stress, 

pigs might lie in their excrement as an alternative form of wallowing without mud 

or water wallows. This behaviour can be seen as a step in behavioural 

thermoregulation and might be regarded as a desperate move by the pigs to find 

relief from heat stress. 

This displacement from the activity area to the excreting area might suggest that 

a lack of space for adopting a lateral lying position could lead to this behavioural 

change. As the pigs' space requirements increase due to lateral lying, the 

excreting area could become an additional space for heat dissipation. This could 

further explain the significant correlation between the increased presence of pigs 

in the activity and excreting areas and the higher risk of fouling. 

Drawing on the review by Bracke (2011), wallowing behaviour in pigs is primarily 

driven by the need for thermoregulation. Therefore, confined feeding operations 

should consider providing ample space for pigs to adopt lateral lying positions or 

alternatives such as mud wallows or water troughs to accommodate pigs' natural 

thermoregulatory behaviours. 

In conclusion, thermal conditions heavily influence pigs' behaviour, such as 

lateral lying and potentially wallowing in faeces. These behaviours could serve 

as early indicators of thermal distress and an increased risk of fouling, providing 

valuable insights for farmers to optimise pig-rearing practices for improved 

animal welfare and productivity. 

3.6.2 Water Consumption and Fouling  

The present study found that the risk of fouling decreases with increasing water 

consumption (p=0.03). This is an unexpected observation, as, under heat stress, 

pigs have a higher daily water intake than those in a cold environment (Huynh et 
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al., 2005; Mount, 1975; Patience et al., 2005). This study shows that a 1% 

increase of pigs in the resting and activity area is associated with a change of 

0.025 (p=0.02) and 0.027 (p<0.001) Litres in water consumption per pig, 

respectively. Hence, the strong positive interaction between percentages of pigs 

in the activity area shows that pigs moving from the rest to the activity area will 

drink more water. A hypothetical explanation of why the risk of fouling decreases 

when pigs consume more water may be because pigs that are unable to 

thermoregulate through water consumption are more prone to fouling. No 

significant difference was observed in water consumption between the fouling 

and non-fouling groups over the five observed days. 

Water consumption in pigs is found to be strongly influenced by their age (p < 

0.001). This finding supports the logical hypothesis that as pigs grow, they tend 

to consume more water, which has been previously demonstrated in studies by 

Meiszberg et al. (2009), Patience et al. (2005), and Yang et al. (1981). 

An intriguing aspect of the study is the adjustment of the stable temperature 

based on the age of the pigs. As the pigs mature, the temperature in the stable is 

gradually reduced to provide them with maximum comfort. It can be expected 

that the pigs would drink more water as the temperature increases to 

thermoregulate. However, the results showed an unexpected negative 

interaction between stable temperature and water consumption. This finding 

suggests that contrary to the conventional assumption, a decrease in stable 

temperature was associated with an increase in water consumption (p = 0.02). 

This unexpected outcome raises questions about the relationship between stable 

temperature and water intake in pigs. It is essential to acknowledge that this 

study's observation of an unexpected negative interaction between temperature 

and water consumption points to potential limitations in using stable temperature 

as the sole determinant for predicting pig water consumption. Other factors not 

considered in the study may be at play, influencing how pigs respond to 

temperature changes and their resulting water intake. 

Therefore, while the temperature adjustment in the stable is intended to optimise 

the pigs' comfort, the study's results suggest that this may not be a 

straightforward predictor of water consumption. Further research and 

investigation are warranted to understand better the complex factors that govern 

water consumption in pigs and to avoid oversimplification in management 

practices. 
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3.6.3 Temperature and Fouling 

From logistic regression, see Table 3.1, it can be observed that an increase in 

the temperature in the rest area is associated (p=0.001) with an increased risk of 

fouling, while variation in temperature in the excreting region has no significance 

on fouling (p=0.06).  

The full linear regression model used to predict the temperature in the slatted 

and rest areas included all the dependent variables, including the DAYS and 

FOUL, as the factors. No significant difference in temperature in the rest and 

excreting areas was observed between fouling and non-fouling groups. However, 

it was interesting to observe that five,four and three days before fouling was 

observed, the temperature in the excreting area was significantly lower by 0.61 

oC (p=0.04), 0.66 oC (p=0.05), 0.60 oC (p=0.04) compared to the day that fouling 

was observed. This increase in temperature in the excreting area indicates pigs 

starting to move away from their resting area to thermoregulate, as previously 

discussed and can be related to increases in activity in the rest area. 

The significant terms were selected and summarised in the reduced model, see 

Table 3.2. As expected, the temperature in the rest and excreting areas are 

significantly influenced by changes in the overall section temperature. However, 

the temperature in the rest and excreting area is significantly different from the 

measured section temperature (temperature sensed by the climate controller) by 

5.6 oC (p<0.001) and -0.64 oC (p=0.02), respectively. This temperature difference 

is normal (Børge and Kristensen, 2016) and results from the body heat 

dissipated by pigs in the resting area.  

For every 10% more pig in the activity area, there is a -0.2 oC (p=0.01) and 0.62 

oC (p<0.001) change in temperature in the rest and slatted area, respectively. 

This shows a strong relationship between the percentage of pigs lying in the 

different zones and the temperature in the slatted and rest areas.  

Temperature difference (Temperature (Rest) minus Temperature (Excreting)) 

was analysed using a linear regression model. Pens, where fouling was 

observed, had a smaller difference in temperature between the two areas by 

0.52 oC (p<0.007). This can be explained by the increase in some pigs in the 

Activity area before fouling, thus dissipating in areas other than the rest area. A 

10% increase in pigs in the activity and excreting area resulted in a decrease in a 

temperature difference of 0.5 oC (p<0.001) and 0.6 oC (p<0.001), respectively. 

The average temperature difference also depends on the total number of pigs in 

the pen; for every additional pig, the temperature difference drops by 0.1 oC 



 

56 
 

(p<0.001). Hence it can be concluded that Temperature difference is a good 

indication of the spatial distribution of pigs within their pens.  

3.7 Conclusion 

In conclusion, this chapter has identified early behavioural changes, particularly 

spatial positioning, as potential fouling indicators in conventionally housed 

slaughter pigs. Significant correlations were found between the increased 

presence of pigs in the activity and excreting areas and the rising risk of fouling. 

Moreover, the temperature difference between the Rest and Excreting areas 

emerged as a reliable predictor of fouling. The study also found that water 

consumption decreases with the increased risk of fouling, contradicting the 

common assumption of higher water intake under heat stress. This suggests the 

complex interplay of various factors influencing pigs' water consumption.  

The results underscore the importance of monitoring these indicators for 

effectively managing pig fouling events, leading to better animal welfare and 

enhanced productivity. The findings also highlight the limitations of using stable 

temperature as the sole determinant for predicting pig water consumption and 

suggest further research to understand the complex factors governing water 

consumption in pigs.  

The insights gained from this study can provide valuable input for developing 

machine learning models to accurately predict fouling events, marking a 

significant advancement in precision animal farming. Further research could 

explore temperature variation as a proxy for assessing pig activity, streamlining 

the monitoring process for farmers and researchers alike. 
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Chapter 4: Prediction of tail-biting, fouling and diarrhoea in 
pigs. 

4.1 Abstract 

Tail-biting, fouling, and diarrhoea affect the welfare condition of commercially 

farmed pigs and reduce the profitability and sustainability of commercial farms. 

Early detection of these unwanted events can be achieved by detecting 

behavioural changes. Pigs will likely change their diurnal behaviour when their 

health and welfare conditions are compromised. However, early detection of 

diurnal behavioural change is challenging due to the erratic nature of the pig's 

behaviour. 

This study proposed using a stacked bidirectional long short-term memory and 

feed-forward neural network architecture to address the complexity of identifying 

behavioural changes in commercially farmed pigs. This study aims to train the 

proposed neural network to automatically learn and classify patterns from time 

series data to predict tail-biting, fouling and diarrhoea on commercial pig farms. 

Using the common neural network architecture, three separate models were 

trained to predict the occurrence of each event within specific pens.  

To infer the behavioural state of each pen, pig water consumption, pen level 

temperatures, indoor climatic data (ventilation, cooling, heating, and relative 

humidity), and the pen characteristics were used. In this study, data were 

collected from 112 pens. A total of 7632 samples were used to train and test the 

proposed neural network. The network was trained using a stratified 10-fold 

cross-validation approach to minimise training bias. 

The performance on the test set was measured using the area Under the curve 

of the Receiver Operating Characteristic (AUROC). Using a 7-day window, 

AUROC of 0.782, 0.775 and 0.820 was obtained to predict tail-biting, diarrhoea, 

and fouling. This study demonstrated that the proposed neural network 

architecture could successfully learn the behavioural changes that cause specific 

welfare and health problems in pigs. 

To conclude, besides the ability to effectively learn to predict a range of health 

and welfare problems robustly, the approach taken in this study did not involve 

the laborious task of manual feature engineering that traditional machine learning 

often requires. The neural network proposed in this study can automatically learn 

complex non-linear relationships from temporal data, speeding the model 

development process for health and welfare problem detection. However, the 

features that neural network models learn are often abstract and difficult to 
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interpret. For more interpretability, future studies will investigate how machine 

learning techniques perform using a range of manually extracted features from 

temporal data. 

Keywords: Neural Network, Behavioural Detection, Automatic Feature Learning. 

4.2 Introduction 

In recent years, there has been growing concern over pig welfare in intensive 

production systems (Mellor, 2016). Keeping high health and welfare of pigs 

reared for commercial consumption can have many implications, including 

production profitability and sustainability. Therefore, minimising health and 

welfare-related issues on a commercial pig farm has become increasingly 

important. Changes in behaviour may occur prior to clinical observation of a 

disease or an unwanted event and may thus indicate a compromised health and 

welfare state. Such changes often occur prior to signs of injury or disease 

outbreak (González et al., 2008; Kyriazakis et al., 1998; Tolkamp et al., 2011) or 

even outbreaks of tail biting (Larsen et al., 2016). However, manual 

quantification of behavioural changes by farm staff is impractical on commercial 

farms as they are subjective and time-consuming, especially for intensive 

production systems (Hemsworth et al., 2000). In addition, behavioural changes 

may be subtle and shown as alterations in the diurnal pattern (Andersen et al., 

2016).  

The development of automatic early detection systems relies on monitoring 

quantifiable variables associated with health and welfare problems. For example, 

changes in feeding behaviour have been associated with dehydration from 

diarrhoea (Madsen & Kristensen, 2005), stress (Averos et al., 2008) and high 

ambient temperature (Rushen et al., 2012). Changes in excreting behaviour can 

indicate fouling, while changes in diurnal activity patterns have been linked with 

outbreaks of infection (Escobar et al., 2007; Reiner et al., 2009), tail biting 

(Statham et al., 2009) and stress (Salak-Johnson et al., 2004). 

In practice, behavioural data have a temporal structure, i.e., they are time-

dependent. Hence, the sensor-based systems developed in pig research for 

event detection have been feature-based (Exadaktylos et al., 2008; Jensen et 

al., 2017; Madsen & Kristensen, 2005), i.e., models that parameterise a 

mathematical function to model the temporal structure of the data. Numerous 

methods have been used to model pigs' behaviour, such as linear regression, 

analysis of variance (Brown-Brandl, 2013; Quiniou et al., 2001), Gaussian 

models (Morgan et al., 2000), logistic models (Kyriazakis et al., 1998), feed-
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forward neural network (Cross et al., 2018), and dynamic linear models (Jensen 

et al., 2017). The parameters of these models (features) could then be passed 

through a classifier that will classify a set of features as malign or benign. Two 

major drawbacks of these types of approaches are their complexity, as they rely 

heavily on carefully engineered features and their dependency on expert 

knowledge of the relationships between the events to be predicted and the 

possible predictors of such events.  

In many cases, the occurrence of a specific event is often a non-linear 

combination of several features (Larsen et al., 2016). Hence, the feature-based 

approaches currently available from the literature would require complex feature 

engineering to identify the features in the data that can be used to predict 

specific health and welfare problems. Feature-based models often fail to 

generalise on unseen data, as the features causing health and welfare problems 

often vary between herds and are hard to identify (Larsen et al., 2018b). 

Because of the complexity of event prediction, models available in the literature 

have generalised the events as one class, i.e., predicting that something unusual 

will happen without distinguishing what that specific event might be (Jensen et 

al., 2017).  

Recently, recurrent neural networks (R.N.N.s), a type of artificial neural network 

(A.N.N), have excelled in the task of automatic feature learning and classification 

of temporal data. Compared to traditional classification algorithms, R.N.N.s can 

better generalise (Liu et al., 2017) as they can learn and classify highly non-

linear features from the data. R.N.N.s are more accurate and robust in 

comparison with the more traditional Feed Forward Neural Networks (F.N.N.) in 

areas where the temporal structure of the data is important as they focus on 

learning directly from a sequence of data rather than individual time samples 

(Bengio et al., 1994). For this reason, R.N.N.s have been applied to solve 

problems where the temporal structure of the data is important, such as 

handwriting recognition (Graves & Schmidhuber, 2009), behaviour recognition 

(Williams & Zipser, 1989), speech recognition (Graves et al., 2013), image 

classification (Ciresan et al., 2012), natural language processing (Mikolov et al., 

2011), and time series classification (Karim et al., 2018).  

The use of the neural network in pig research for event detection has been very 

limited and restricted to feed-forward neural networks (Cross et al., 2018; Oczak 

et al., 2014) and machine vision (Hansen et al., 2018; Smulders et al., 2006; 

Wang et al., 2008). To combine the power of both R.N.N.s and FFNNs, stacked 

or a combination of both neural networks has often resulted in state-of-the-art 
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performance (Schmidhuber, 2015). While there exist several variants of R.N.N.s, 

in this study, the more widely used Long-Short-Term-Memory (LSTM) recurrent 

neural network (Hochreiter & Schmidhuber, 1997) was used in combination with 

more advanced optimisation methods that have proven to increase the 

performance and robustness of the LSTM (Salehinejad et al., 2018). 

This study aimed to provide an alternative solution to feature-based models that 

is robust and capable of generalising well on a range of event prediction tasks. 

As a solution, this study has used a stacked LSTM-FNN to extract non-linear 

temporal features to be used for predicting a range of distinct events in pig 

production (tail-biting, fouling, and diarrhoea), hence bypassing the laborious and 

expert-dependent feature engineering step that the current literature has 

adopted. The use of recurrent neural networks for event monitoring on 

commercial pig farms is considered novel.  

The objectives of this study were: 

• To develop an approach that can be used to automatically train a neural 

network to predict specific events on commercial pig farms, 

• To demonstrate the ability of a neural network to perform well on a range 

of prediction tasks: tail-biting, diarrhoea, and fouling, 

• To show the robustness of the neural network by applying the model to 

unseen data. 

4.3. Materials and Methods 

4.3.1 Animals, housing, and management 

The data used in this study was recorded at the finisher unit at Aarhus University 

(Denmark) from 2015 to 2016 by a protocol approved by the Danish Animal 

Experiments Inspectorate (Journal no. 2015-15-0201-00593). The finisher unit 

housed three sections, each of 16 Finisher pens. A full description of the 

experimental setup can be found in the literature (Larsen et al., 2017, 2016). 

The dataset comprised 112 pens (1624 slaughter pigs). The 112 pens were 

divided into four batches (batch 1, 3 and 4: 32 pens each; batch 2: 16 pens) from 

June 2015 to November 2016. The pigs were randomly inserted into their pens 

at an average weight of 31.6 ± 6.6 kg. The pens were 5.45 m by 2.48 m, with the 

floor equally divided into solid concrete (rest area), drained (activity Area) and 

slatted floor (excreting area). The gap between the slats in the slatted floor and 

the drained floor was both 2 cm, while the respective slats were 180 mm and 

80m cm wide. An overview of a pen with sensor locations is given in Figure 4.1. 
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Artificial light was on from 0530 to 1830 h (182 lux). The finisher units' climate 

(temperature (°C) and humidity (%)) were controlled by activating the heating, 

cooling or ventilation system via the climate control systems (SKOV A/S, Roslev, 

DK). Each pen included an automatically controlled shower system (SKOV A/S, 

Roslev, Denmark) above the slatted floor. The pigs were fed ad libitum with a 

commercial dry feed, and the feeders were filled three times a day at 0300, 1000 

and 1830 h. The educated farm staff performed the general farm management. 

Between 1000 and 1200 h, the general routine in the stables was performed, 

including cleaning, straw provision, and a general health check of each pen. 

During the daily check-up performed by the farm staff, the occurrence of 

diarrhoea, fouling, and tail-biting events was recorded according to the set 

protocol (Larsen et al., 2016, 2018a). The events were given a binary score of 0, 

indicating an event not occurring. A fouling event was defined as when more 

than half of the solid floor was wet with excreta and/or urine. The occurrence of 

diarrhoea was recorded daily by visual inspection of the pen from outside. 

Diarrhoea was recorded when at least one dropping of faeces with a liquid or 

runny consistency was observed. Tail biting was recorded to occur when at least 

one pig was observed in the pen with visible fresh blood on the tail (Larsen et al., 

2017). 

 

Figure 4.1: A top view of a pen with the location of different sensors and the 
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designated rest, feeding, and lying area. 

4.3.2 Raw Data Description 

Behavioural changes were monitored using a range of variables indicating 

drinking behaviour, the climate in individual finisher pens and the overall unit, 

and the characteristics of each pen. For clarification, a unit in this study refers to 

a stable section housing sixteen pens. The drinking behaviour was monitored 

using photo-electric flow sensors (RS V8189 15 mm Dia. Pipe) on the two 

drinkers in each pen (Figure 4.1). The temperature of each pen was monitored 

using two temperature probes (VE10 by Veng System) located 50 cm above 

floor level in the slatted and solid floor area (See Figure 4.1). 

Table 4.1: Summary of Variables recorded with the raw sampling frequency and 

associated unit.  

 Variable Name Sampling Frequency Unit 

Input 

Variables 

Temperature (Solid Floor) 1 Minute Degrees 

Temperature (Slatted Floor) 1 Minute Degrees 

Water (Drinker 1) 10 Seconds Litres 

Water (Drinker 2) 10 Seconds Litres 

Relative Humidity (Finisher Unit) 1 Minute % 

Ventilation Output (Finisher Unit) 1 Minute % 

Heating Output (Finisher Unit) 1 Minute % 

Cooling Output (Finisher Unit) 1 Minute % 

Temperature (Finisher Unit) 1 Minute Sensor 

Age of Pigs Daily 
Days after 

Insertion 

Number of Pigs Daily N/A 

Straw N/A (Constant) Binary 

Tail Type N/A (Constant) Binary 

Output 

Variables 

Fouling Daily Binary 

Diarrhoea Daily Binary 

Tail Biting Daily Binary 
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Measurements from the Finisher Unit climate control system (SKOV A/S, Roslev, 

Denmark) were extracted: these measurements included the temperature and 

relative humidity of the Finisher unit. Each unit's output from the cooling, heating, 

and ventilation systems (SKOV A/S, Roslev, Denmark) was recorded as a 

percentage of the system's maximum output capacity. In addition, pen-level 

information on the age of the pig and the number of pigs were recorded daily. 

Categorical variables describing the individual pen characteristics (Tail type 

(Docked or undocked) and Pen type (Straw or No Straw)) were included in the 

dataset. The categorical variables were encoded as binary constants. A total of 

thirteen variables were recorded for each pen, as shown in Table 4.1. The raw 

sampling frequency of all the variables used in this study is shown in Table 4.1. 

The raw continuous sensor data were resampled to a 10-minute sampling 

interval. 

The objective of the neural networks was to learn potential precursors of tail-

biting, fouling or diarrhoea. Three different models were trained for the detection 

of each task. To train the neural network on detecting precursors for each task. 

The network was fed with labelled data samples. A data sample, 𝑋𝑚, 

corresponds to a day of continuous recording of the thirteen variables sampled at 

10-minute intervals (144 time steps). Hence 𝑋𝑚 is a matrix of dimension 

13 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 × 144 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝𝑠. Each vector 𝑥𝑚
<𝑡> in  𝑋𝑚 represents the vector of 

variables measured at time < 𝑡 >. The labelled data for 𝑋𝑚 (i.e., fouling, tail-

biting, and diarrhoea occurrence) were encoded as binary targets for each 

sample. 0 and 1 indicating negative and positive samples, respectively. A mean 

normalisation function was learned for each sensor using the training data. The 

learned functions were used when testing and validating the model. Hence 

keeping the normalisation procedure constant for all datasets. 

4.3.3 Training, Test and Validation Dataset 

Figure 4.2 shows a standard neural network-building workflow (Chollet, 2017; 

Gron, 2017) that was used in this study. The dataset was divided into a training, 

validation, and test data set. The training set was used to parameterise the 

weights (parameters) of the neural network; the validation set was used to find 

the optimum neural network architecture (hyperparameters). The test set was 

used to evaluate the performance of the trained neural network with the optimum 

architecture. A summary of the data sets used in this study is given in Table 4.2. 
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Table 4.2: Overview of data showing each group's start and end date, with the total number of pens, the number of samples and the 

number of fouling, tail-biting and diarrhoea occurrences recorded.  

Start End No. of Pens Purpose Samples (𝐗𝐦) Fouling Tail Biting Diarrhoea 

16/06/2015 03/09/2015 16 Train 944 288 6 52 

16/06/2015 03/09/2015 16 Train 944 182 16 80 

14/09/2015 03/12/2015 16 Train 1072 158 7 35 

12/01/2016 31/03/2016 16 Train 1040 76 18 59 

12/01/2016 31/03/2016 16 validation 1040 84 14 72 

07/09/2016 26/11/2016 16 Test 1296 175 9 8 

07/09/2016 26/11/2016 16 Test 1296 163 8 10 
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Figure 4.2: Neural network building workflow. The neural network parameter 

learning procedure and neural network Hyperparameter tuning procedure are 

also shown.  

4.3.4 The Neural Network Architecture 

The neural network models in this study were implemented using the Keras 

Application Programming Interface (Chollet, 2015) with a TensorFlow Backend 

(Abadi et al., 2016). The customised neural model architecture is 

programmatically defined in Python using Keras's Functional Application 

Programming Interface. 

4.3.4.1 Temporal Feature Learning 

A recurrent neural network (R.N.N.) learns to detect patterns in time-series data 

that indicate whether a signal belongs to the malign or benign class. These 

patterns are learned by looking at previous time series from both classes and 

memorising the useful patterns within the training data. R.N.N. is a class of 

neural networks and there exist several R.N.N. variants (Salehinejad et al., 

2018). This study used the Long-Short-Term-Memory R.N.N. (LSTM), proposed 

by Hochreiter & Schmidhuber (1997). The LSTM is widely used because of its 

ability to learn non-linear, longer-term patterns from time-series data (Greff et al., 

2015).  

The LSTM transforms time-series data into a useful set of features using a series 
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of gated functions controlling information flow in memory cells. An LSTM cell has 

two forms of memory: the short-memory cell ℎ<𝑡> and long-memory cell 𝐶<𝑡>. 

The short-term memory memorises temporal dependencies from the previous 

time step,  𝑡 − 1, while the long-term memory memorises meaningful temporal 

dependencies from all previous time steps. The mapping of the time series to a 

non-linear stationary feature vector is encoded in the weights (𝑊) and biases (𝑏) 

of the LSTM. Figure 4.3 shows how an LSTM processes information at time <

𝑡 >. 

 

Figure 4.3: Illustration of a Long Short-Term Memory Cell. Short-term (h) and 

long-term (C) information from the previous time step (t-1) enters the current 

LSTM cell at the current time step (t). The information from the previous time 

step,  𝒉<𝒕−𝟏> and  𝑪<𝒕−𝟏>, are filtered using a series of gated functions. The 

output from the LSTM cell is filtered short and long-term information for the 

current time step, denoted by 𝒉<𝒕> 𝒂𝒏𝒅 𝑪<𝒕> Respectively. 

The long-term memory cell at the current time step 𝐶<𝑡> drops' some' memory 

from the previous time step 𝐶<𝑡−1> and then adds 'some' relatively new 

memories. All the information from the current time step is computed in the 

temporary cell. 𝐶̃<𝑡>. The filtration of useful information in 𝐶<𝑡> is controlled by 

the forget Г𝑓 and input gates Г𝑢. Equations 4.1 to 4.4 show the computations to 

update 𝐶<𝑡>. 
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𝐶<𝑡> = Г𝑢  ⊗ 𝐶̃<𝑡> + Г𝑓 ⊗ 𝐶<𝑡−1> Equation 4.1 

 

𝐶̃<𝑡> = 𝑡𝑎𝑛ℎ(𝑊𝐶
𝑇[ℎ<𝑡−1>, 𝑥𝑡] + 𝑏𝑐) Equation 4.2 

 

Г𝑢 = 𝜎(𝑊𝑢
𝑇[ℎ<𝑡−1>, 𝑥𝑡] + 𝑏𝑢) Equation 4.3 

 

Г𝑓 = 𝜎(𝑊𝑓
𝑇[ℎ<𝑡−1>, 𝑥𝑡] + 𝑏𝑓) Equation 4.4 

The 𝑏 and ⊗ operations represent bias and element-wise multiplication, while 

the term [ℎ<𝑡−1>, 𝑥𝑡] represents the horizontal concatenation of the matrices  

ℎ<𝑡−1> and  𝑥𝑡 respectively. The gates in an LSTM cell are all bounded by the 

logistic sigmoid function 𝜎( . ). The hyperbolic tangent function (𝑡𝑎𝑛ℎ) is used for 

the temporary cell, 𝐶̃<𝑡> .𝐶<𝑡> is passed to the next time step without any further 

transformation. The short-term state ℎ<𝑡>, also the current cell output 𝑦<𝑡> are 

described by equations 4.5 and 4.6:   

Г𝑜 = 𝜎(𝑊𝑜
𝑇[ℎ<𝑡−1>, 𝑥𝑡] + 𝑏𝑜) Equation 4.5 

 

𝑦<𝑡> = ℎ<𝑡>Г𝑜 ⊗ 𝑡𝑎𝑛ℎ (𝐶<𝑡>) Equation 4.6 

The subscripts 𝑢, 𝑓, 𝑜 and 𝑐 represent the input gate, forget gate, output gate 

and temporary cell, respectively.  

An LSTM network consists of interconnected LSTM cells unrolled for each time 

step in a sequence. The original LSTM only processes information in the forward 

directions. In this study, the Bi-directional LSTM (BLSTM), proposed by Schuster 

& Paliwal (1997), was also tested to learn more complex features in both 

backward and forward directions. An unfolded BLSTM consisting of a forward 

and a backward LSTM layer is illustrated in Figure 4.4 
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Figure 4.4: A Bidirectional Network with Long-Short-Term-Memory (LSTM) cells. 

The BLSTM calculates the forward ℎ⃗  and backward layer ℎ⃖ outputs by going 

iteratively through the sequence of inputs in both directions. Both the forward 

and backward layer output is calculated using the standard LSTM operations, 

Equations 4.1 to 4.6. The output vector 𝑌𝐵𝐷
<𝑡> of the BLSTM concatenates the 

outputs from ℎ⃗  and ℎ⃖, see equation 4.7. 

𝑌𝐵𝐷
<𝑡> = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ⃗ , ℎ⃖) Equation 4.7 

 

4.4.4.2 Feature Classification  

For feature classification, using the output from the last LSTM/BLSTM cell as the 

output of the LSTM/BLSTM network is recommended (Graves, 2012; Schuster & 

Paliwal, 1997). The number of hidden units controls the number of features 

learned,𝐻𝑟 , in the LSTM/BLSTM cell. Hence the vector of features from the 

LSTM/BLSTM network is 𝑦<𝑇>.  

A feed-forward neural network (F.N.N.) was stacked on top of the LSTM/BLSTM 

network (see Figure 4.5). Stacked neural network layers can learn more complex 

features and improve overall model performance (Cui et al., 2018; Schmidhuber, 

2015). The output vector from the LSTM/BLSTM network, 𝑦<𝑇>,  with length  𝐻𝑟 

is fed into an F.N.N. layer with 𝐻𝑓 hidden units (neurons in hidden layer). A more 

detailed description of the F.N.N. can be found in the literature (Chollet, 2017; 

Goodfellow et al., 2016).  

 

 



 

69 
 

 

Figure 4.5: Neural Network Architecture was used for this study. The neural 

network classifies a matrix of input n by T, where n is the number of sensors and 

T is the fixed length of the time series of data for each sensor. The neural 

network automatically learns and classifies the n by T matrix as either malign or 

benign. T has a length of 144, sampled every 10 minutes daily. 

4.4.5 Initialisation, Loss function, Optimisation, and Dropout 

In the forward propagation step, a neural network maps an input 𝑥 to a prediction 

output 𝑦̂. During the propagation step, information at the output 𝑦̂ is compared 

with the ground truth 𝑦 through the scalar cost,𝐽(𝜃). For classification problems, 

the cross-entropy loss function (equation 4.8) is best suited (Goodfellow et al., 

2016) and was used in this study. 

𝐽(𝜃) = −
1

𝑛
∑[𝑦𝑖 𝑙𝑜𝑔 (𝑦̂𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔  (1 − 𝑦̂𝑖)]

𝑛

𝑖=1

 

 

Equation 4.8 

where n is the total number of samples indexed i.  

The proposed neural network architecture parameters (weights and biases) were 

randomly initialised using the Glorot initialisation (Glorot & Bengio, 2010). The 

cost function of the neural network was minimised using stochastic gradient 

descent (S.G.D.) with mini batches. In this study, Adam (Kingma & Ba, 2014), a 

more efficient gradient-based optimisation algorithm was used. The maximum 
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number of iterations for the optimisation algorithms was fixed at two hundred for 

this study. 

The neural network gradient was calculated through backpropagation (Rumelhart 

et al., 1986). Backpropagation allows the information from the loss function to 

flow backwards through the neural network to compute the gradient. The 

backpropagation through time-variant (Werbos, 1990) was used for recurrent 

layers.  

The neural network can 'cheat' by learning complex co-adaptation that only 

solves the time-series classification problem for the training data while lacking 

the ability to generalise to unseen data. Dropout (Srivastava et al., 2014) was 

used to regularise the neural network model. Dropout is a regularisation 

technique that makes any hidden unit within the neural network unreliable. This 

technique has been used to improve the neural network's performance for many 

sequence classification problems (Cui et al., 2018; Srivastava et al., 2014; Zhang 

et al., 2018).  

4.4.6 Hyperparameter Tuning 

The neural network does all the learning through its weights and biases. One 

crucial step in building a neural network is the fine-tuning of the network 

architecture: the structure of the neural network is defined by its 

hyperparameters. There is no straightforward approach for hyperparameter 

tuning. In this study, the optimal architecture for each sequence classification 

task was found using the tree of Parzen Estimators optimisation (TPE) algorithm 

(Bergstra et al., 2011) from the Hyperopts python library (Bergstra et al., 2013). 

The TPE algorithm has proven to improve model performance when compared 

to the more traditionally used random hyperparameter search (Bergstra & 

Bengio, 2012; Pinto et al., 2009). 

Numerous parameters can be tuned; however, in this study, only parameters that 

have a high importance on recurrent neural network performance (Reimers & 

Gurevych, 2017) were varied. The other 'insignificant' hyper-parameters were 

kept at their default settings. The hyperparameter space used to find the optimal 

model for each classification task is detailed in Table 4.3. The hyperparameter 

space was optimised over a range of dropout probabilities (𝐷𝑃), Hidden Units in 

the recurrent and feed-forward layer. The optimisation algorithm was also given 

a choice of either the LSTM or BLSTM. The range of dropout probabilities varied 

around 0.5: the recommended setting (Srivastava et al., 2014).  
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4.4.7 Performance Evaluation 

The trained neural models were tested an unseen dataset to access the model's 

performance. To be consistent with the existing literature (Jensen et al., 2017; 

Jensen and Kristensen, 2016), a time window of detection (Hogeveen et al., 

2010) was used to test the performance of the model in predicting the 

occurrence of tail-biting, fouling, and diarrhoea. An alarm was raised when the 

probability of an event happening exceeded a set control limit 𝐶𝐿. In this study, 

since the output of the neural model was a logistic sigmoid function, 𝐶𝐿 is the 

probability of an event occurring.  

Table 4.3: The hyper-parameter space is searched during the optimisation 

process of the neural network. 

Hyper-Parameters Values 

Dropout Probability 𝑫𝑷 0.3, 0.4, 0.5, 0.6, 0.7 

Hidden Units (Recurrent Layer) 𝑯𝒓 16, 32, 64, 128, 256,512 

Hidden Units (Feed Forward Layer) 𝑯𝒇 16, 32, 64, 128, 256,512 

Recurrent Layer LSTM, BLSTM 

Epoch 200 

Batch Size 32 

Optimisation Algorithm Adam 

Output Layer activation Sigmoid Function 

Loss Function Cross Entropy 

Weight Initialisation Glorot Initialisation 

The true negative (T.N.), true positive (T.P.), false negative (F.N.) and false 

positive (F.P.) were defined as follows using the Time window of detection: 

• T.P.: An event occurring 𝑊𝑎𝑙𝑎𝑟𝑚 days after an alarm was raised. 

• F.P.: No event occurring 𝑊𝑎𝑙𝑎𝑟𝑚 days after an alarm was raised. 

• F.N.: An alarm was raised, and no event occurred in 𝑊𝑎𝑙𝑎𝑟𝑚. 

• TN: No alarm was raised, and no event occurred in. 

Simply using accuracy as a measurement for binary classification algorithms has 

been argued to be misleading, and a Receiver Operator Characteristic (R.O.C.) 

curve was recommended (Provost et al., 1998). The R.O.C. curve shows how 

the number of correctly predicted positive samples varies with the number of 
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incorrectly predicted samples. Each point of the R.O.C. space represents a 

confusion matrix corresponding to a control limit. 𝐶𝐿. The R.O.C. space is 

constructed by plotting the True Positive Rate (T.P.R.)/sensitivity on the y-axis 

and the False Positive Rate (1-Specificity) on the x-axis. The specificity and 

sensitivity are described by equations 4.9 and 4.10, respectively: 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
 Equation 4.9 

 

Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 Equation 4.10 

The area under the R.O.C. curve (AUROC) is often preferred for comparing 

classification algorithms as it is a single metric that defines how an algorithm is 

performing over the entire R.O.C. space (Bradley, 1997; Singla and Domingos, 

2005). An AUROC of 0.5 is equivalent to a model that makes random guesses, 

while an AUROC of 1.0 is a perfect model. While the R.O.C. curves and AUROC 

give a global overview of the performance of an algorithm, it is common in the 

literature to define the sensitivity and specificity at the optimum control limit. 𝐶𝐿: 

the optimum decision threshold. In this study, the optimum decision threshold 

was the threshold with the highest Youden Index (Fluss et al., 2005). The 

Youden index is equivalent to  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (Krzanowski and Hand, 

2009).  

A 10-fold stratified cross-validation scheme was used to evaluate the AUROC 

using the training and test data to minimise any estimation bias. Stratification of 

the cross-validation splits ensures that each fold is representative of the dataset. 

This scheme has been shown to provide an adequate and accurate estimate of 

the prediction error and expected error on future, unseen samples (Breiman et 

al., 1984; McLachlan et al., 2005). 

4.4 Results and Discussion 

4.4.1 Neural Network Architecture 

The final neural architectures were obtained using the TPE optimisation 

algorithm for a range of hyper-parameters (see Table 4.3). The algorithms 

iteratively trained different neural network architectures using the training data, 

and the performance of each trained architecture was tested on the validation 

data set to obtain the validation loss. The best model for each classification task 

corresponds to the model with the lowest validation loss score. A summary of the 

losses and a description of the best neural network architecture for each 
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detection task is shown in Table 4.4.   

Using an independent validation set to tune the hyperparameters of the neural 

network is common practice (Chollet, 2015; Larochelle et al., 2009) as it helps 

the model to learn a more general solution of the classification task, hence 

reducing any bias the model might have learned from the training dataset 

(Goodfellow et al., 2016). 

Table 4.4: Summary of best model architecture for each detection task with the 

mean losses and standard deviation for all the model architecture tested and 

loss of the best model architecture. 

  Fouling Tail - Biting Diarrhoea 

Best 

Architecture 

Dropout Probability 𝐷𝑃 0.4 0.6 0.6 

Hidden Units ( 𝐻𝑟) 128 128 128 

Hidden Units (𝐻𝑓) 64 64 256 

Recurrent Layer BLSTM BLSTM BLSTM 

 Mean Loss (Std) 0.431 (0.055) 0.860 (0.124) 0.549 (0.064) 

 Best Loss 0.375 0.684 0.411 

The optimal solution for each neural network architecture, with a maximum 

number of twenty iterations, was found after 18 hours (approximately) search 

using an Nvidia Quadro 4000m graphics card with an Intel Xeon E3 1535M 

clocked at 2.90 GHz. The best model architecture for each of the classification 

tasks was further trained for a maximum of two hundred epochs. It is to be noted 

that the BLSTM was chosen as the best recurrent cell for all the classification 

tasks; this was an expected outcome as BLTSM can learn to extract more 

complex information.  

4.4.2 Performance Evaluation  

The model was evaluated using a 10-fold cross-validation scheme to assess the 

neural network's performance developed in this study. The sensitivity, specificity 

at the optimum control limit and the mean AUROC curve for the prediction of tail-

biting, fouling and diarrhoea are shown in Table 4.5. The 95th Confidence 

interval for the AUROC is also displayed in Table 4.5. The minimum observed 

AUROC (1-day window) were 0.542, 0.619 and 0.719, while the maximum 

A.U.C. (7-day windows) were 0.782, 0.775 and 0.820, respectively, for tail-biting, 

diarrhoea and fouling. Since all the minimum AUROC are above the 0.500 (P < 

0.001) threshold mark, indicative of a model making random guessing, it can be 
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concluded that the neural networks have successfully learned features to predict 

tail-biting, diarrhoea and fouling from temporal farm signals. 

The novelty of this research lies in the specific discrimination abilities of the neural 

network model proposed in this study. While previous research by Jensen et al. (2017) 

yielded comparable performance in predicting either diarrhoea or fouling within 1-day and 

7-day prediction windows, their approach was limited to indiscriminate event detection. In 

contrast, the model developed in the present study matches the performance of the 

Jensen et al. model and advances beyond its capabilities. Specifically, the neural network 

model presented can learn features specific to discriminate events. This ability to 

distinguish between different events, rather than detecting them indiscriminately, 

represents a significant advance in the application of machine learning to farming 

practices. This fine-grained analysis ability enhances the model's potential usability and 

adaptability in real-world farm settings. 

Predicting what type of event might occur is important as it allows farm staff to apply the 

right treatment to prevent specific health and welfare problems. Using a single model 

architecture for the detection of multiple events is novel. The ability of the recurrent neural 

network to automatically learn complex features from temporal data simplifies the task of 

learning compared to more traditional feature-based learning approaches. Hence, the 

approach taken in this study removed the need for feature engineering and expert 

knowledge about specific events. By automating the pattern learning task using recurrent 

neural networks, this study has demonstrated that R.N.N. is an efficient solution when the 

objective is to train a single model architecture for the distinct detection of a range of 

events.  

A prediction window (described in 2.7) was used for event detection. Figures 4.6, 4.7, and 

4.8 show a relationship between the prediction windows and the model performance 

(AUROC, Sensitivity, and Specificity): longer prediction windows lead to higher model 

performance. Such a relationship is consistent with what has been previously reported in 

the literature for detection models used for cows (Hogeveen et al., 2010) and pigs (Jensen 

et al., 2017; Oczak et al., 2014). The use of detection windows is motivated by the 

difficulty associated with predicting unwanted events in animals by observing behavioural 

changes: visible signs of unwanted behaviours often occur a few days after a specific 

behavioural change has occurred. 
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Table 4.5: The Sensitivity (S.E.), Specificity (S.P.) and Area under the Receiver Operator Characteristic Curve (AUROC) of the optimal 

control limit for tail-biting, diarrhoea, and fouling are shown. The confidence interval for the AUROC was calculated using the results from the 

10-fold cross-validation. 

 Tail Biting Diarrhoea Fouling 

Window SE SP AUROC 

(5th, 95th) CI 

SE SP AUROC 

(5th, 95th) CI 

SE SP AUROC 

(5th, 95th) CI 

1 59.1% 65.8% 0.542 

(0.540,0.544) 

85.2% 57.2% 0.619 

(0.615,0.623) 

86.2% 65.2% 0.719 

(0.718,0.720) 

2 72.0% 64.0% 0.640 

(0.545,0.644) 

89.2% 57.2% 0.653 

(0.650,0.657) 

90.0% 65.2% 0.774 

(.0.771,0.777) 

3 80.6% 62.7% 0.710 

(0.707,0.712) 

82.0% 68.0% 0.678 

(0.776,0.680) 

90.0% 67.6% 0.812 

(0.810,0.814) 

4 86.1% 62.7% 0.742 

(0.739,0.746) 

84.5% 68.0% 0.705 

(0.700,0.710) 

91.8% 67.6% 0.822 

(0.824,0.825) 

5 89.7% 62.7% 0.787 

(0.784,0.791) 

86.8% 68.0% 0.738 

(0.736,0.742) 

91.2% 69.8% 0.830 

(0.829,0.831) 

6 91.7% 67.1% 0.791 

(0.792,0.793) 

84.0% 72.7% 0.755 

(0.750,0.760) 

92.3% 69.8% 0.832 

(0.822,0.843) 

7 92.5% 67.1% 0.782 

(0.780,0.785) 

85.8% 72.7% 0.775 

(0.770,0.780) 

93.0% 70.7% 0.820 

(0.812,0.826) 
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The performance metric used to evaluate the model's performance with 

prediction is consistent with the literature. From Table 4.6, increasing prediction 

windows increases the chance of the model being 'correct', hence better model 

accuracy. It can be inferred that increasing the Time window of detection either 

leads to an overestimation of the T.N. and T.P., an underestimation of F.P. or 

F.N., or a combination of both. The effect of the time window on model 

performance will vary between different detection tasks. To compare model 

performance and mitigate the effect of the time window on model performance, 

models should be compared using a time window of 1 day. For practical 

implementations of such a model, the window of detection needs to be carefully 

identified for individual tasks to optimise model performance in line with the 

monitoring strategy of the farmers. Further investigation of the effect of the time 

window of detection on the model is beyond the scope of this study and should 

be investigated in future work. 

 

Figure 4.6: Area under the rate of recall curve (AUROC) plotted against different 

windows for the train, validation, and test set for Diarrhoea prediction. 
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Figure 4.7: Area under the rate of recall curve (AUROC) plotted against different 

windows for the train, validation, and test set for tail-biting classification. 

 

Figure 4.8: Area under the rate of recall curve (AUROC) plotted against different 

windows for the train, validation, and test set for fouling classification. 

It has been demonstrated that the model's performance on the test set is 

comparable to the literature. The model's performance to generalise on unseen 

data can be evaluated by comparing the performance of the training and test 

data set. The difference between the AUROC scores of the training and test set 

varied from 0.010 to 0.200. Pigs' behaviour heavily depends on the 

management, outside climate and their genetic origin (Bolhuis et al., 2004, 

2006). These factors vary between batches, hence affecting the way the animal 

reacts. The model's ability to generalise well will also depend on the predictability 

of specific events. While the models successfully learned features to predict 

specific events, performance varied for each event. 

It is crucial to understand that while developing a universally applicable model is 
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ideal, farming practices imply considerable diversity in management techniques, 

environmental conditions, and animal genetics. While the goal is a universally 

applicable model, each farm's unique environment and management may 

require some model re-training or fine-tuning. This would ensure that the model 

can adapt to the distinct data patterns present on each farm. Transfer learning 

techniques may be of value in such contexts. 

Overfitting, where a model overly specialises in the training data at the expense 

of generalizability, is a crucial concern. This study used a 10-fold cross-validation 

scheme to help mitigate this risk, alongside considering other regularisation 

techniques that penalise overly complex model behaviours. Future strategies 

could include data augmentation, ensemble methods, or early stopping to 

prevent overfitting further. 

In this study, it is anticipated that the approach outlined will have broad 

applicability to other farms. However, the necessity of making adjustments to 

accommodate specific farm conditions and the significance of preventing 

overfitting is acknowledged. The objective is to fine-tune the trade-off between 

customization and versatility through multiple methods to ensure that the model 

is resilient in various situations. Further research will help establish the 

effectiveness of the model in diverse farming environments. 

4.4.3 Detecting tail-biting, fouling, and diarrhoea. 

The challenge in detecting and predicting unwanted behavioural events is that 

these events are not clinical conditions: no clinical tests can be used to detect 

such events. For an expert human observer, it is impossible to predict the 

occurrence of such events in the pens without the help of specialised testing 

systems. For this reason, the literature has heavily relied on statistical inference 

to bring rationales into the occurrence of tail-biting (Hunter et al., 2001; Moinard 

et al., 2003; Ursinus et al., 2014), fouling (Aarnink et al., 2006, 2001; Bertelsen et 

al., 2017) and diarrhoea (Pluske et al., 1997; Rhouma et al., 2017). 

Tail-biting and fouling can be viewed as behavioural manifestations because of 

environmental changes that stress the pigs. While diarrhoea is a recognised 

clinical manifestation due to the proliferation of bacteria in the intestine, the 

feeding behaviour and environment are also known contributing factors in 

diarrhoea (Rhouma et al., 2017).  

The scope of this study was to automatically use observable changes within a 

pen ecosystem to predict tail-biting, fouling and diarrhoea. The drinking 
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behaviour and micro-environment of pigs were used as predictors of unwanted 

events in this study as these factors are easily observable via sensor 

measurements and have shown a strong correlation in the literature with 

behavioural-related events (Aarnink et al., 2006, 2001; Larsen et al., 2017; 

Sällvik & Walberg, 1984; Ursinus et al., 2014). Feeding behaviour was not 

included in this study as previous studies have shown that drinking and feeding 

are highly correlated (Andersen et al., 2014; Bigelow & Houpt, 1988), and thus, 

drinking patterns may also reflect feeding patterns. The micro-environment was 

monitored by looking at the temperatures, humidity, ventilation output and 

heating output. Thermal stress, humidity, and draft within pens have often been 

associated with poor welfare conditions (Aarnink et al., 2001; Larsen et al., 2017) 

and hence were considered important for this study.  

Building automated systems for behavioural event detection is very challenging 

as pigs' behaviour is chaotic in nature: there is no straightforward answer about 

which predictors or what pattern to use for the detection of specific events. The 

behavioural pattern leading to specific events will defer from different batches. 

The difficulty associated with the prediction of behavioural events is reflected in 

the specificities (57.2 % to 72.2 %) and sensitivities (57.2 % to 93.0 %) reported 

in this study (see Table 4.5).  

No well-defined baseline is available in the literature to compare the specificities 

and sensitivities of behavioural prediction models. One key observation is that 

the sensitivities were consistently lower than the specificities for this study's 

behavioural prediction tasks (see Table 4.5). This is consistent with the literature 

(Jensen et al., 2017; Jensen & Kristensen, 2016): for a sensitivity of 80%, 

specificities of approximately 60% were reported for fouling and diarrhoea 

predictions. Low specificities indicate alarms raised when no event occurred 

(False positive); this is not necessarily indicative of poor model performance. The 

model learned features that can cause a specific event to happen. However, a 

low specificity could indicate all the risk factors being present, but the animals did 

not manifest any signs of the event occurring. Intervention at alarms may 

improve animal welfare in these cases since the underlying stressors are 

removed. 

4.4.4 Feature learning with neural network 

The underlying principle of building any detection system is to classify whether 

specific patterns extracted from time-series signals are malign or benign. Time 

series classification challenges are feature engineering static features to 
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represent the time series signal. Such features include the time-series signal's 

mean, variance, and wavelet transforms. These features characterise the time-

series data into a stationary space. An alternative and more common approach 

in the literature is using parametric functions to describe the time series signal 

(Jensen et al., 2017; Madsen & Kristensen, 2005). The parameters are used as 

a stationary representation of the time series signals. The stationary features can 

further train classification algorithms such as support vector machines (Hearst et 

al., 1998), logistic regression, and decision trees (Breiman, 2001) for prediction.  

The neural network architecture used in this study automatically learns features 

by finding ways to transform the time-series data into a stationary space. The 

mapping from a non-stationary to a stationary space is encoded in the weights 

and biases of the neural network. The features learned by the neural network are 

abstract and very complex. This study has demonstrated the ability of neural 

networks to automate the task of learning; however, it is very difficult to interpret 

the meaning of the features learned by the neural network model. 

4.5 Conclusion 

This research introduced a framework for event detection using a stacked neural 

network that consists of a bi-directional long short-term memory recurrent and 

feed-forward network. The design of this neural network was aimed at 

automating the learning of pertinent temporal features indicative of tail-biting, 

fouling, and diarrhoea on commercial pig farms. 

The model developed within this chapter has demonstrated commendable 

performance in identifying distinct events, delivering an area under the receiver 

operating characteristic curve of 0.782, 0.775, and 0.820 for predicting tail-biting, 

fouling, and diarrhoea, respectively. Despite these results suggesting a degree of 

accuracy that aligns with existing literature and the model's capacity to 

generalise across multiple events, it is acknowledged that the full extent of the 

model's generality requires additional exploration. The model's robustness was 

evaluated on unseen data (test set), and its performance indicates a potential for 

broader generalisation on fresh data. However, a more rigorous and 

comprehensive investigation is imperative to ascertain its broader applicability. 

The methodology deployed in this study presents a substantial benefit to farm 

personnel by accurately anticipating specific events, thereby facilitating precise 

interventions. However, the research concurrently recognises the potential 

fluctuations in real-world agricultural environments, including the availability of 

the identical sensor array employed in this study. As a result, forthcoming 
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research should contemplate the investigation of model adaptability or alternative 

machine learning approaches, such as Bayesian modelling, which may exhibit 

higher flexibility or ease of implementation across diverse farming contexts. 

Furthermore, the neural network's output is a continuous signal that denotes the 

event's probability. This feature can be used as an indicator of welfare levels, 

integrated with climate control systems on commercial pig farms in the future to 

minimise the occurrence of specific events. While the neural network weights 

can be made available, it should be noted that the specific features learned by 

the model are abstract and complex, thus challenging to interpret.  

To conclude, while the model presented in this study can learn and predict 

specific unwanted behavioural events, its limitations are also acknowledged, 

particularly regarding its generality and interpretability. Future research must 

focus on these areas, potentially investigating alternative machine learning 

models and exploring behavioural-related factors using more conventional and 

possibly more interpretable methodologies. 
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Chapter 5: A scalable, adaptive, and interpretable machine 
learning approach for the early detection of tail-biting, pen-
fouling, and diarrhoea on pig farms 

5.1 Abstract 

This chapter of the thesis presents a novel approach to developing an Automatic 

Early Warning System (AEWS) for pig farming. The proposed system uses 

machine learning algorithms and multi-sensor data to predict and detect 

undesirable welfare issues such as tail-biting, pen fouling, and diarrhoea. The 

study includes the development of an efficient clustering strategy to manage vast 

sensor data, applying pattern extraction techniques to reveal trends and 

patterns, and using decision-tree-based classifiers for categorising extracted 

features and flagged-up fouling, diarrhoea, and tail-biting. A thorough analysis of 

F1 scores and the Area Under the Receiver Operating Characteristic Curve 

(AUROC) was conducted and benchmarked against existing literature. It was 

found that the methods used in this chapter were effective in predicting fouling 

but were unable to accurately predict diarrhoea and tail-biting. Although the 

modelling approach used in this chapter had its limitations, a foundation for 

future research was provided, which could include improving the model's 

precision through advanced sensors and exploring more advanced machine 

learning techniques. 

5.2 Introduction 

In sustainable pig farming, striking a balance between promoting pig well-being 

and ensuring economic viability is paramount. It's essential to intervene early 

when harmful behaviours arise, such as tail biting, fouling, or when there are 

signs of diseases like diarrhoea. While previous chapters underscored the 

importance of traditional human monitoring for early detection, these methods 

can be time consuming, susceptible to human biases, and financially 

challenging. This underscores the pressing need for innovative, cost-effective 

technological solutions. 

Sensor-based Automatic Early Warning Systems (AEWS) are emerging as 

game-changers, marking a pivotal transition from traditional to technology-driven 

pig farming. These systems seek to augment health and welfare management 

practices with the aid of modern technology. Yet, AEWS also face hurdles. 

Managing extensive data from individual sensors and converting this information 

into accurate behavioural or disease forecasts remain challenging. 

 



 

83 
 

In the previous chapter, the use neural networks for predicting pig behaviours 

using data from farm sensors was explored. While potential was shown by these 

methods, the complexity of neural networks makes results difficult to interpret. 

These challenges are aimed to be addressed by this chapter through the 

development of transparent machine learning models that integrate multi-sensor 

data. The goal is to create a system that accurately predicts tail biting, fouling, 

and diarrhoea, and integrates these predictions into an effective early warning 

mechanism. Therefore, two main objectives are pursued by this chapter: 

1. An enhanced machine-learning model is to be developed that combines 

diverse environmental sensor data sources, allowing a comprehensive 

understanding of pig behaviour. 

2. The proposed model is to be ensured to be accurate and transparent so 

that stakeholders - from farmers to researchers - can easily understand 

and trust the system's predictions and actions. 

The approach combines insights from traditional farming practices and emerging 

technological advancements. By integrating these perspectives, the model aims 

to bridge the gap between rich multi-sensor data and its real-world interpretation 

in the context of pig behaviour and health. 

An important aspect of the proposed model is its adaptability. Given the dynamic 

nature of farming environments, any predictive system must be flexible enough 

to adjust to varying conditions and provide consistent results. Thus, the model is 

designed with adaptive algorithms that continually learn and refine predictions 

based on real-time feedback and environmental changes. 

5.3 Materials and Methods 

5.3.1 Experimental Setup and data collection 

This chapter, like the other chapters presented, hinged on collecting and 

analysing a variety of data. A more detailed description of the experimental setup 

is provided in Chapter 2 of this thesis. Table 5.1 summarises the sensor 

information used in this chapter. A brief description of the sensor data used in 

this chapter is presented in the subsequent sections. 

5.3.1.1 Temperature Sensors 

Both solid and slatted floor temperature measurements in this chapter were 

obtained using precision thermocouples. These sensors, calibrated to an 

accuracy of ±0.5°C, were strategically placed within the pig housing units. The 

thermocouples were interfaced with data loggers that sampled temperature 
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readings every minute. 

5.3.1.2 Water Consumption Sensors 

Flow meters were employed to measure water consumption in the two Drinkers 

(Drinker 1 and Drinker 2). These flow meters captured the water intake rates of 

the pigs and were calibrated to ensure an accuracy of ±1%. Data from these flow 

meters was logged every 10 seconds. 

5.3.1.3 Relative Humidity, Ventilation, Heating, and Cooling Output Sensors 

Relative Humidity, Ventilation Output, and the unit’s average temperature were 

extracted from the climatic control systems. 

Table 5.1: Summary of Data used in this chapter. 

Variable Sampling Frequency Unit 

Temperature (Solid Floor) 1 Minute Degrees 

Temperature (Slatted Floor) 1 Minute Degrees 

Water (Drinker 1) 10 seconds Liters 

Water (Drinker 2) 10 seconds Liters 

Relative Humidity (Finisher Unit) 1 Minute % 

Ventilation Output (Finisher Unit) 1 Minute % 

Temperature (Finisher Unit) 1 Minute Degrees 

5.3.2 Development of automatic early warning systems. 

The AEWS development process involved data pre-processing, extracting 

patterns, and classifying key behavioural and health-related occurrences. 

5.3.2.1 Data Clustering 

Data clustering is an integral pre-processing step of the machine-learning 

application designed to deal with redundancy in sensor data. Due to the setup of 

the experimental environment, some sensors, based on their location or type, 

may capture similar information, leading to redundant data. This study used an 

automated approach to data clustering, ensuring accuracy, time efficiency, and 

reduced manual input. 

The automatic clustering employed in this study leaned on the principles of 

hierarchical clustering, as Ward (1963) stipulated. This iterative clustering 

technique allowed the creation of several nested partitions by continuously 

merging similar data sets and groups. The process began by considering each 
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data point as a separate group and gradually combining them based on their 

similarities, eventually forming fewer, larger clusters. The issue of ascertaining 

similarity between time series data sets was solved using a correlation coefficient 

(r). 

For a pair of sensors to be considered a part of the same cluster, the correlation 

coefficient value (r) must surpass a set threshold of 0.95, indicating a very high 

similarity.  These similar data sets, after identification, were integrated through a 

process known as Principal Component Analysis (PCA). The PCA is a statistical 

procedure that orthogonally transforms the original n coordinates of a data set 

into a new set of n coordinates known as the principal components. As a result, it 

condensed the high-dimensional data space into a low-dimensional space, 

reducing the overall complexity of the data while retaining most of the variability 

in the data.  

Thus, the clustering and consolidation of similar sensor data dramatically 

streamlined the data size and reduced the complexity of the input data used for 

subsequent stages of pattern extraction and event classification. It also improved 

the interpretability and transparency of the data, making the system more 

efficient, responsive, and understandable. 

5.3.2.2 Pattern Extraction 

A suite of sophisticated algorithms was used to uncover the latent patterns in the 

time series signals. This exploration was segmented into four key techniques for 

pattern extraction: 

5.3.2.2.1 Statistic-Based Pattern Extraction (Stats) 

The statistic-based approach aimed at extracting statistical attributes from the 

time-series data. This technique incorporated entropy-related features—which 

convey the degree of randomness and unpredictability in the data—and 

computed statistical metrics such as order statistics. The latter assists in 

organising data points and analysing their relationships. 

5.3.2.2.2 Spectral-Based Pattern Extraction (Spec) 

In the spectral-based analysis, the time-series signal was transformed into its 

frequency domain, offering a distinct view of the data in terms of its periodic 

patterns. This technique hinged on two widely recognised spectral 

decomposition methods: the Discrete Wavelet Transform (DWT) and the 

Discrete Fourier Transform (DFT). For this research, the implementations of DFT 

and DWT as presented by Liu et al. (2004) and Frigo & Johnson (1998), were 
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adopted. 

5.3.2.2.3 Similarity-Based Pattern Extraction (Sim) 

The similarity-based technique is particularly beneficial when the data exhibits 

repetitive patterns or baselines. It aims to discern the commonalities and 

deviations between standard behaviour and emerging patterns. For this purpose, 

the Dynamic Time Warping method, as mentioned by Balasubramanian et al. 

(2016), was chosen. This robust approach facilitated the assessment of 

discrepancies in form between the standard diurnal patterns and the newly 

observed ones. 

5.3.2.2.4 Model-Based Pattern Extraction (MB) 

The model-based technique operates on the premise that the patterns observed 

in a time series can be represented using specific models. By aligning these 

models with the data, features about the model's structure and parameters can 

be observed, granting a richer insight into the nature of the data. 

All extraction techniques, except the similarity-based method, were executed 

using the "TsFresh" package (Christ et al., 2018). This involved a detailed 

analysis of a time series represented as T. The length of this series is designated 

as N. Mathematically, this can be expressed as T = {x1, x2, ..., xi}. Here, xi 

stands for the ith sample in the ordered series. 

By applying these diverse pattern extraction methods, a thorough sensor data 

analysis was accomplished, revealing crucial trends and patterns pivotal for 

predicting pig behavioural and health-related events. 

5.3.2.3 Behaviour Classification  

The final stage in developing the AEWS was categorising extracted features and 

designating behavioural events. To facilitate this process, tree-based models 

were applied due to their interpretability and effectiveness in multidimensional 

classification problems. These models made decisions by implementing a series 

of 'if-then' logical conditions, allowing us to categorise different behaviours 

accurately. 

The models were trained using the gradient boosting method incorporated within 

the XGBoost algorithm, as Chen & Guestrin (2016) recommended. Gradient 

Boosting, sequentially adding predictors and correcting previous models 

enhanced the initial model's predictive performance. The relative contribution of 

each feature was determined through an index known as the Gini Importance or 
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Mean Decrease Impurity (MDI). The Gini Importance or MDI of a feature 

measures the total reduction of the criterion (impurity) brought by that feature. 

This provides a quantitative measure of feature significance for classification, 

helping to understand the underlying mechanisms for predicting fouling, 

diarrhoea, and tail-biting. 

5.3.2.4 Training Methodology and Performance Evaluation 

To avoid potential estimation biases in applying the models, a cross-validation 

technique was used, precisely a tenfold cross-validation method. This technique 

divides the dataset into ten equal parts, with a single part reserved for model 

validation and the rest for training. This process is iterated ten times, with each 

part used for validation once.  

Model performance was quantified using the F1 score and Area Under the 

Receiver Operating Characteristic Curve (AUROC) score. The F1 score 

combines precision and recall of the model by calculating their harmonic mean. 

As such, the F1 score provided a balanced measure of the model's precision and 

robustness, crucial for verifying its predictive efficiency. 

In Chapter 4, observations regarding tail-biting, diarrhoea, and fouling were 

analysed across different time windows. The most suitable and balanced choice 

for these behavioural indicators was found to be a 3-day window. Although a 4-

day window showed slightly better AUROC and sensitivity in the context of tail-

biting, the 3-day window was deemed as effective and had the added benefit of a 

shorter window. For diarrhoea, the 3-day window not only achieved maximum 

AUROC but also maintained a harmonious balance between sensitivity and 

specificity. Furthermore, the 3-day window yielded the highest AUROC values for 

fouling, indicating unparalleled model performance for this behaviour. The 3-day 

window offers a robust balance of sensitivity, specificity, and AUROC across all 

three behavioural events. Given that the metrics do not significantly improve 

beyond the 3-day window and considering the practicality of timely interventions, 

a 3-day window seems optimum. 
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5.4 Results and Discussion 

5.4.1 Understanding Diurnal Patterns in Pig Sensors. 

 

Figure 5.1: The correlation matrix for all sensors. W1 stands for water sensor at 

Drinker 1, while W2 stands for water sensor at Drinker 2. Temp stands for 

temperature, moist stands for moisture, and vent stands for ventilation. Exc 

represents the temperature of the excrement area, sld represents the 

temperature of the solid area and out represents the outside temperature. 

In the pre-processing phase, a step was introduced to cluster sensors with 

similar information. Figure 5.2 shows the outcomes of this hierarchical clustering. 

The similarity coefficient, r, had to exceed 0.95 to be classified as a cluster. The 

correlation matrix for the sensors is presented in Figure 5.1. 

 

Figure 5.2: Hierarchical clustering outcomes for the sensors. Sensors with a 

dissimilarity greater than 0.05 are highlighted with blue links. The heatmap 

indicates daily average time series patterns. 
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Figure 5.2 presents sensor data categorized into three distinct groups: the Water 

Intake Group (WI), Moisture Group (M), and Temperature Group (TG). Each 

category captures distinct sets of behaviours or environmental conditions 

identified by the sensors, with their own range of values and units of 

measurement. Achieving valuable insights from this diverse data and ensuring 

consistency and comparability across these groups necessitated normalization of 

the data. Uniform conversion of time-series samples within the range of 0 to 1 

resulted in several significant benefits: 

• Simplified Computation: Algorithms, especially those used in machine 

learning, often converge faster and perform more efficiently when data is 

within a smaller and consistent scale. This normalisation, therefore, 

facilitated quicker and more robust processing by the AWES algorithm. 

• Enhanced Comparability: The comparability of sensor outputs can be 

improved by standardizing the data through normalization. This practice 

allows for easier identification of patterns and relationships between 

different sensor readings, which would otherwise be difficult due to the 

varying nature of the raw data. 

• Reduced Bias: Data based on magnitude from individual sensors was 

excluded. This was done because a high magnitude in one category 

could hide the subtler nuances in others. By doing this, it was ensured 

that the AWES algorithm remained sensitive to all categories and their 

subtle patterns and changes. 

• Robustness Against External Variabilities: Pigs, as living beings, possess 

distinct physiological traits that can affect sensor readings even when 

placed under identical conditions. In addition, inconsistencies may arise 

in sensor readings due to modifications in experimental setups. To 

mitigate these innate variabilities, the algorithm normalizes the data, 

ensuring consistent performance 

Valuable insights are provided by Figure 5.3, particularly in the data from the 

temperature sensor. Specific patterns can be anticipated due to the 

mechanistically controlled climate in the pig housing units. As previous studies 

have emphasized, potential stressors within the pig population may be 

suggested by elevated temperature levels (Barnett et al., 1984; Zone, 2003; 

Larsen et al., 2018). This information can be of significance to researchers and 

practitioners in the field of animal welfare and agriculture. 

A high correlation (R-value of 0.99) was observed between the water sensors. 
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This suggests a consistent water consumption behaviour among the pigs. In 

examining the moisture readings, they appear to exhibit a less pronounced 

correlation with other sensor groups. However, the inverse relationships 

observed—expressly, r = 0.46 with the Temperature Group (TG) and r = -0.42 

with Water Intake (WI)—warrant further investigation into the potential 

interactions or implications. Intriguingly, Figure 5.3 shows distinct hydration 

peaks for the pigs at 08:30, 10:30, and 15:30. This is corroborated by analogous 

findings from Fernandez et al. (2011) and Madsen et al. (2005), even if the exact 

temporal coordinates demonstrate minor variances. Compared with existing 

literature, the consistency of these trends reinforces the validity of these 

observations. 

Furthermore, the relationship between Temperature (TG) and Water Intake (WI) 

provides a deeper understanding of the pig's physiological responses. 

Heightened activity levels during feeding and hydration sessions may increase 

heat production. This notion is substantiated by Nahsiramadi et al. (2017), who 

identified a direct correlation between in-pen temperatures and pig activity levels. 

Additionally, Fernandez et al. (2011) posited a discernible increment in heat 

dissipation during diurnal periods compared to nocturnal spans. 

 
Figure 5.3: The median scaled time series for the three clustered sensors discovered in 

the pre-processing stage. 

Based on the findings of this study, there is significant potential in categorizing 

sensors based on their daily patterns and recorded data. This method is crucial 

in gaining a deeper understanding of pig behaviour and their surrounding 

environment.  

One major advantage of this approach is the ability to predict certain outcomes. 

When sensors are strategically grouped together, patterns like hydration spikes 

or temperature fluctuations become more apparent. This results in the extraction 

of predictive insights, which can assist in anticipating specific behaviours and 

conditions. This is valuable as it enables farmers to take proactive measures in 
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preventing potential issues before they materialize.  

Furthermore, grouping sensors leads to greater resource efficiency. Instead of 

processing each sensor separately, clustering them based on similarities allows 

for batch data processing. This not only conserves computational resources but 

also simplifies the analytics process.  

Finally, when a clear baseline is established for each sensor group, it becomes 

simpler to identify deviations or anomalies. This can trigger alerts in an early 

warning system, enabling timely intervention and highlighting the significance of 

a systematic sensor grouping approach. 

However, while the advantages of sensor grouping are manifold, there are 

potential limitations to consider: 

1. Over-reliance on Correlation: It is important to keep in mind that while 

the R-value is a useful tool for identifying correlations, it is not 

necessarily indicative of causation. There may be other factors at play 

that are not immediately apparent when looking at the sensor data as 

a whole. False Positives/Negatives: An early warning system built on 

this approach could be susceptible to false alarms, especially if the 

system is not fine-tuned to account for natural variations in pig 

behaviours or minor sensor discrepancies. 

2. Adaptive Changes Over Time: Pigs' behaviours and environmental 

conditions might evolve. Relying solely on historical data without 

periodic recalibration could render the early warning system less 

effective. 

3. Technical Failures: Malfunctioning sensors or those affected by 

external interferences might provide skewed data. While the system 

might be built to detect significant anomalies, subtle biases 

introduced by such malfunctions might go unnoticed. 

4. Complexity in Integration: As sensors capture varied data types, 

integrating them into a single cohesive early warning system might 

pose technical challenges. Differences in data granularity, update 

frequencies, or even data transmission methods could introduce 

complexities in building and maintaining the system. 

In conclusion, while using clustered sensor data provides a promising foundation 

for building robust early warning systems, it is imperative to refine, test, and 

calibrate the system continually. Leveraging machine learning techniques that 
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evolve with incoming data, combined with rigorous field testing, will be crucial in 

realising the full potential of such a system in real-world applications.  

5.4.2 Comparison of Pattern Extraction Techniques 

Understanding the underlying patterns is critical in predicting pig behaviours 

using time-series sensor data. This section delves deep into the comparative 

analysis of four prominent pattern extraction techniques employed in this study: 

Statistic-Based Pattern Extraction (Stats), Spectral-Based Pattern Extraction 

(Spec), Similarity-Based Pattern Extraction (Sim), and Model-Based Pattern 

Extraction (MB). By comparing their attributes and assessing their performance 

metrics, this analysis aims to comprehensively understand their capabilities and 

implications for automated early warning systems (AEWS) in pig farming. 

Tables 5.2 and 5.3 show how different methods and sensors performed, 

measured by their f1 and AUROC scores. The p-values presented in Table 5.2 

were obtained using a 10-fold cross-validation comparison. Cross-validation is a 

robust method for evaluating and validating the performance of models, 

especially in scenarios where overfitting is a concern. In 10-fold cross-validation: 

1. The dataset is partitioned into ten equal-sized subsets. 

2. Out of the ten subsets, a single subset is retained as the validation 

data, and the remaining nine subsets serve as training data. 

3. The model is trained on the training set and validated on the 

validation set. 

4. This process is repeated ten times, with each subset serving as the 

validation data exactly once. 

5. Across these ten iterations, performance metrics (like the f1 score) 

are computed and averaged, resulting in a more robust and 

generalised assessment of the model's performance. 

The p-values are derived by comparing these averaged metrics and the 

benchmark values. 

When it came to fouling, the model-based method performed better with an f1 

score difference of 0.039 compared to the benchmark of 0.674. While the 

statistical method wasn't as strong, it still had value with an increase of 0.019 

and a p-value of 0.026. However, the similarity method decreased by 0.046 

when compared to the benchmark. The complexity of capturing patterns for 

diarrhoea is evident in the substantial f1 score decrease of 0.329 when 

compared with the similarity method. In contrast, the statistical and model-based 
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methods, with score differences of -0.012 and 0.008, respectively, presented 

relatively minor deviations from the benchmark of 0.357. 

Tail-biting, inherently challenging, manifested divergent outcomes. Most notably, 

the similarity method, decreasing by 0.181 from the benchmark of 0.180, stands 

out as considerably less effective. The AUROC scores in Table 5.3 echo these 

patterns. The statistical method, for instance, had an AUROC score of 0.55 for 

diarrhoea, exhibiting an enhanced capability over the benchmark of 0.45.  

The moisture sensor's deviation of -0.345 for fouling, compared to the 

benchmark of 0.674, suggests potential pitfalls in singularly depending on it for 

prediction. Meanwhile, temperature and water sensors, with score decreases of 

0.041 and 0.061 for fouling, revealed deficits, though they are more moderate 

than the moisture sensor. Mirroring these sentiments, the AUROC values in 

Table 5.3 further spotlight the moisture sensor's limitations, as evidenced by its 

0.20 score for diarrhoea against the benchmark of 0.45. Though not as 

drastically impacted, the temperature and water sensors also trailed the 

benchmarks with scores of 0.35 and 0.31, respectively, for the same behaviour. 

The results offer nuanced perspectives on the efficacy of the varied extraction 

methods and sensors. Methods such as model-based and statistical have 

showcased potential, whereas the similarity method's performance invites 

scrutiny. From a sensor standpoint, the consistent underperformance of the 

moisture sensor necessitates caution and possibly combined usage with other 

sensors. Undoubtedly, these findings reinforce the intricate challenge of 

predicting pig behaviours. It underscores the imperative nature of meticulously 

selecting feature extraction techniques and sensor data combinations tailored for 

each behaviour.  
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Figure 5.4: Bar chart showing a comparison of F1 scores for the various 

approaches to pattern extraction (which are the spectral features (SPEC), model-

based features (BM), statistical-based features (STAT), and similarity-based 

features (SIM)) in relation to the benchmark performance, 

In the literature, Jensen et al. (2017) used the AUROC (Area under the Receiver 

Operation Curve) to measure the performance of their predictive models, which 

focused on the undiscriminating prediction of diarrhoea and fouling in pigs. Their 

model reported an impressive AUROC of 0.76 over a three-day window. In 

contrast, as depicted in Figure 5.4, this study generated F1 scores of 0.67 for 

fouling, 0.18 for tail-biting, and 0.36 for diarrhoea. Furthermore, as evidenced by 

Table 5.3, the AUROC scores in this study for the same behaviours were 0.75, 

0.45, and 0.30, respectively. The divergence in these metrics may hinge on the 

inherent challenges of forecasting these specific disease events. Notably, 

models relying on undiscriminating predictions tend to boast greater accuracy, 

primarily because of the increased probability of such events occurring after a 

warning signal—one critical distinction between the methodologies used. Many 

past research endeavours have opted for indiscriminate predictions. This means 

they provide generalised forecasts not specific to any events, such as diarrhoea, 

fouling, or tail-biting. In contrast, this research deploys a more discriminate 

prediction approach. This aims to specifically identify and predict individual 

events, making the prediction more targeted. 

Indiscriminate predictions often yield higher accuracy rates. This is because by 

predicting events in a broad sense, without differentiating between them, the 

model has a higher likelihood of a correct prediction following an alert. However, 

the drawback is that while it might predict an event, it will not specify which one, 
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thus potentially compromising on timely and specific interventions. On the other 

hand, discriminate predictions, like the one used in this study, provide more 

granular insights, targeting specific events. The advantage here is that it can 

lead to more targeted interventions, potentially saving resources and improving 

animal welfare. Given the complexities of differentiating between closely related 

behaviours or symptoms, the challenge is that it is harder to achieve high 

accuracy with such a targeted approach. Furthermore, this approach benefits 

from being adaptable to different monitoring systems in the literature. This 

adaptability is crucial given that most modern models that monitor pig behaviour 

are explicitly designed around data from specialised sensors. Kashiha et al. 

(2013) and Jensen et al. (2017) emphasise this point. The implication is that 

while the method used in this study offers a fresh perspective, it is essential to 

consider the kind of sensor data being used, as the model's efficacy could hinge 

on this factor. 

Upon analysing the data presented in Figure 5.5, it becomes evident that certain 

features play a crucial role in predicting pig behaviour. Specifically, the features 

of water signal spectra and temperature prove noteworthy in forecasting fouling, 

tail-biting, and diarrhea, contributing to 78%, 84%, and 65% of the predictions, 

respectively. GINI importance was utilized to determine the significance of these 

features, which measures how often a feature is selected to split the data and 

how impactful those splits are. A high GINI importance indicates that the feature 

was pivotal in segregating the data and integral to the model's predictions. 

In order to provide a clearer picture of which factors most influence the 

predictions, the values of 78%, 84%, and 65% were presented as a proportion of 

the most important feature, which was benchmarked at 100%. Upon further 

analysis of the sensor data, it was discovered that shifts in sinusoidal diurnal 

behaviour patterns often herald the emergence or intensification of certain 

adverse events in pigs, such as fouling or tail-biting. 

This discovery is consistent with previous academic research. Larsen et al. 

(2016, 2018) and Dominiak & Kristensen (2017) have highlighted that short-term 

changes in animal behaviour are crucial for anticipating unfavourable events. 

They suggest that these momentary shifts can reveal more than long-standing 

behaviour patterns, which challenges traditional statistical models that rely 

heavily on order and moment. This perspective is further supported by the work 

of Moinard et al. (2003) and Aarnink et al. (2001, 2006), all indicating the 

importance of capturing and analysing these fleeting changes in behaviour for 

accurate predictions. 
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Table 5.2: Compares f1 scores associated with three pig behaviours: fouling, 

diarrhoea, and tail-biting. Scores are derived based on different feature 

extraction methods and specific sensor readings. The 'Benchmark' row 

establishes a reference f1 score for each behaviour. Subsequent rows under 

'Methods' and 'Sensors' display the mean differences in f1 scores compared to 

this benchmark. The corresponding p-value, which results from a 10-fold cross-

validation comparison alongside each mean difference, indicates the statistical 

significance of the observed mean differences. 

  Fouling Diarrhoea Tail Biting 

  Mean P Value Mean P Value Mean P Value 

 Benchmark 0.674 - 0.357 - 0.180 - 

M
e

th
o

d
s
 

Statistical 0.019 0.026 - 0.012 0.015 -0.131 <0.001 

Model-Based 0.039 <0.001 0.008 0.045 -0.098 0.009 

Spectral -0.003 0.915 -0.056 <0.001 -0.037 <0.001 

Similarity -0.046 <0.001 -0.329 <0.001 -0.181 <0.001 

S
e

n
s

o
rs

 Moisture -0.345 <0.001 -0.344 <0.001 -0.181 <0.001 

Temperature -0.041 <0.001 -0.146 <0.001 -0.088 <0.001 

Water -0.061 <0.001 -0.164 <0.001 -0.118 <0.001 

 

Table 5.3: Comparative Analysis of Area Under the Receiver Operating Characteristic 

Curve (AUROC) Score for Different Pig Behaviours Using Various Feature Extraction 

Methods and Sensor Data 

  Fouling Diarrhoea Tail Biting 

 Benchmark 0.75 0.45 0.30 

Methods 

Statistical 0.77 0.55 0.20 

Model-Based 0.78 0.46 0.25 

Spectral 0.75 0.41 0.28 

Moisture 0.50 0.20 0.15 

Temperature 0.73 0.35 0.23 

Water 0.71 0.31 0.20 
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Figure 5.5: Bar charts showing three most significant features for predicting tail-

biting, diarrhoea, and fouling. The convention of naming applied is in line with the 

one on the TsFresh package (Christ et al., 2018). All the features can be 

accessed at https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html. 

5.5 Conclusion 

This work aimed to develop a multi-sensor-based Automatic Early Warning 

System (AEWS) that employs machine learning algorithms to detect major 

undesired behaviours–diarrhoea, tail-biting, and pen fouling–in pig farms.  

The study achieved several significant milestones. First, it proposed an efficient 

clustering strategy to manage the vast data from disparate sensors. This 

innovative approach led to the formation of three distinct sensor groups, namely, 

Water Intake (WI), Moisture (M), and Temperature Group (TG), thereby 

significantly reducing data redundancy and enhancing the system's 

interpretability and efficiency. 

Secondly, several pattern extraction techniques were effectively employed, 

revealing crucial trends and patterns for predicting pig behavioural and health-

related events. The model-based method, coupled with the statistical method, 

delivered promising results in predicting specific pig behaviours. This comparison 

offers a novel understanding of the efficacy of varied extraction methods in 

behavioural prediction. 

Lastly, the study demonstrated the utility of decision-tree-based classifiers in 

categorising extracted features and flagged-up behavioural events. The 
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employed tree-based models leveraged the power of gradient boosting, 

enhancing the model's predictive performance. 

Despite the accomplishments, the study faced limitations in predicting certain 

behaviours, especially diarrhoea and tail-biting. The deviation in these metrics 

echoed the inherent complexity of forecasting these specific behavioural events. 

However, despite these limitations, the model accurately predicted these events. 

Future work will focus on refining the current machine-learning model. The 

precision can be enhanced by incorporating more advanced sensors that capture 

intricate details about the pigs’ behaviour, movement, and physiology. The use of 

microbiome data to improve diarrhoea prediction also offers promising potential. 

Moreover, future research must continually fine-tune the model to adapt to new 

data and trends. Exploring advanced machine learning techniques, including 

deep learning, could unfold unprecedented avenues in predicting pig behaviours. 
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Chapter 6: Using Bayesian Network to simulate 
intervention effects in pigs. 

6.1 Abstract 

This study presents a Bayesian Network model for predicting pen fouling in pigs 

and compares its performance with other models in the literature. The Bayesian 

Network model is designed to study the effect of different intervention scenarios 

but can also be used as a predictive classifier. Feature selection was performed 

using the LightGBM algorithm, and the top ten features were selected. The 

Bayesian Network model was trained and tested on discrete data and reported 

an Area Under the Receiver Operating Characteristic Curve (AUROC) of 0.778. 

The Light Gradient Boosting Machine (LightGBM) model trained and tested on 

raw data using 10-fold cross-validation achieved an AUROC of 0.940 and was 

the best performer amongst all available models. The study also highlights the 

relationship between temperature and fouling, showing a strong relationship 

between zonal temperatures and the number of pigs in the solid area. The result 

of this study shows the trade-off in performance between the Bayesian Network 

approach and traditional machine learning methods and suggests areas for 

future work, such as incorporating additional features or improving the model’s 

performance. 

Keywords: Pen fouling, welfare, hygiene, Bayesian Network, machine learning, 

pigs, randomised trials, temperature, ventilation, floor enrichment 

6.2 Introduction 

Pigs are naturally clean animals, keeping their rest and excretion areas separate. 

This behaviour has been observed in multiple studies, such as those conducted 

by Aarnink et al. (2006) and Stolba and Wood-Gush (1989), where pigs were 

seen to defecate as far away from their designated resting areas as possible. 

However, in conventional commercial pig farms, pigs are housed in indoor pens 

with either wholly or partly slatted floors to maximise space and minimise costs. 

Slatted floors are implemented to prevent the build-up of excrement within the 

pens.  

Typically rectangular, commercial pens can be divided into three separate 

regions: rest, activity, and excretion areas. These regions are designed to be 

equidistant from each other, with the rest and excretion areas being the farthest 

apart and the activity area being located between them. This layout is chosen 

because pigs usually eat, drink, and defecate in that order (as documented by 

Randall, Armsby, and Sharp, 1983). 
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However, when pigs start to defecate in the designated rest area and vice versa, 

this behaviour is referred to as fouling and can lead to several negative 

consequences, such as poor air quality, poor hygiene, increased farmer 

workload, increased aggression among pigs, and poor resting behaviour. This 

has been documented by numerous studies, including those conducted by 

Aarnink et al. (1996), Hillmann et al. (2004), and Smulders et al. (2006). Thus, it 

is crucial to detect and prevent fouling to maintain the welfare and health of pigs. 

The review by Larsen et al. (2017) provides valuable insights into the factors 

influencing fouling and suggests practical interventions for farmers to prevent it. 

The review identifies four primary factors that directly affect fouling in pig pens: 

insufficient space allowance, the flooring design of the pen, the thermal climate, 

and the pigs’ earlier experience.  

Insufficient space allowance can lead pigs not to make their way to a designated 

dunging area or differentiate between spaces (Hillmann et al., 2005). Pigs may 

be compelled to defecate in their resting area when housed in overcrowded 

conditions. Research has shown that when pigs are provided with adequate 

space, they are more likely to excrete in the defined excretion area, leading to a 

cleaner lying area (Zeng et al., (2023). However, excessive space allowance 

may result in pigs needing to be motivated to move away from the other pigs to 

perform their excretory behaviour (Aarnink et al., 1996). The flooring design of 

the pen can also affect fouling, with slatted floors being more effective at 

reducing fouling than solid floors (Huynh et al. (2004). A well-designed floor 

encourages pigs to utilise the designated dunging area and avoid fouling in their 

resting area (Rantzer et al., 1999). The thermal climate is another important 

factor, with high temperatures and humidity leading to increased fouling (Aarnink 

et al., 2001; Huynh et al., 2005; Spoolder et al., 2012). Finally, pigs’ earlier 

experiences can also affect fouling, with pigs raised in a clean environment less 

likely to foul. 

To prevent fouling, the review suggests several interventions for farmers. 

Optimising the pen climate by controlling temperature, humidity, and airflow is 

one of the most important interventions. Providing a separate dunging area and 

using slatted floors can also help reduce fouling. Additionally, providing pigs with 

a comfortable and stress-free environment can help reduce the likelihood of 

fouling. This can be achieved by providing adequate space allowance, using 

appropriate flooring design, and managing pigs’ earlier experiences (Hacker et 

al., 1994). 

Traditionally, research in understanding behaviour and prediction of fouling in pig 

https://www.sciencedirect.com/science/article/pii/S1751731117001586#ref22
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pens has heavily relied on statistical methods to analyse data and identify 

correlations between various factors (Aarnink et al., 2001; Domun et al., 2019; 

Jensen et al., 2016; Larsen et al., 2016, 2017). While traditional statistical 

analyses have helped identify associations and successfully predict the event of 

fouling, they have limitations. They can only provide insights based on observed 

data and cannot effectively simulate scenarios or predict outcomes for unseen 

data. Causal inference is required to answer questions such as “What fraction of 

fouling events could have been prevented by maintaining a low temperature?” 

which cannot be answered using standard statistical techniques. 

Bayesian Networks offer a powerful tool for causal inference. Bayesian Network 

is a probabilistic graphical model, first introduced by Friedman, Geiger, and 

Goldszmidt (1997), that aims to infer probabilities under static conditions and the 

dynamics of probabilities under changing conditions, such as those induced by 

treatments or external interventions. This method has been successfully applied 

in human medicine for health outcome research and medical decision analysis 

(Oniśko & Druzdzel, 2013) and in agriculture for cause identification, decision 

support, and prediction (Drury et al., 2017).  

Bayesian Networks have been applied in various aspects of animal farming, 

including disease vulnerability assessment, decision-making for sustainability, 

and aquaculture system analysis. (Manyweathers et al., 2021) used a Bayesian 

Network model to analyse the vulnerability of Australian sheep producers to a 

Foot and Mouth Disease (FMD) outbreak. The model was built using data from 

sheep farmers and categorised them into six risk-based typologies. The study 

found that vulnerability increases as property size and ewe numbers decrease, 

with exposure variables such as restricting visitor access and enforcing visitor 

biosecurity practices having the most influence. (Ferro et al., 2023) integrated 

the pillars of sustainability into a Bayesian Belief Network model to select the 

best techniques for reducing NH3 emissions from the agricultural sector. The 

Bayesian Network model was used to evaluate different scenarios’ potential 

effects, providing policymakers with recommendations on the most promising 

emission reduction techniques. Soriano et al., 2022) used the Bayesian Network 

to investigate fish pan-microbiomes and all variables in each aquaculture 

system. They introduced SAMBA, a software implementation of a Bayesian 

model, which integrates quantitative experimental data and qualitative 

stakeholder assessment to provide recommendations for policymakers.  

Bayesian Networks are a highly effective tool for calculating probabilities in a 

variety of scenarios, allowing for the evaluation of different interventions and their 
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impact on these probabilities. This process, referred to as 'scenario analysis,' 

employs the do-calculus (Pearl, 2009), which can modify a specific variable while 

keeping the rest of the network constant. This approach effectively identifies the 

impact of a particular manipulation on the probabilities under investigation. By 

leveraging Bayesian Networks, optimal strategies for reducing pen fouling in 

commercial pig farming can be determined with high accuracy. 

The study aims to build upon these insights and utilise a Bayesian Network 

model to analyse the relationship between pen fouling, environmental conditions, 

and pig activity. The research intends to expand on existing studies by 

investigating the impact of potential interventions on fouling probability and 

unveiling any hidden relationships. By the conclusion of this study, the 

researchers aim to answer the following research questions: 

1. What are the underlying relationships between the factors contributing to 

pen fouling? 

2. How can the impact of each potential intervention on the fouling 

probability be measured? 

3. Is it possible for the outcomes of unseen data or simulated scenarios to 

be predicted with accuracy using the Bayesian Network model? 

The answers to these questions will provide valuable insights into the most 

effective strategies for reducing pen fouling in commercial pig farms, ultimately 

improving pig welfare and health. 

6.3 Materials and Methods 

6.3.1 Animals, housing, and management 

The research study was carried out over two years, from 2015 to 2016, strictly 

adhering to a protocol approved by the Danish Animal Experiments Inspectorate 

(Journal no. 2015-15-0201-00593). During this period, four cohorts of pigs were 

sequentially introduced into each pen, marking distinct rounds of the experiment. 

The respective timelines for each round were as follows: 

• Round 1: June 16th, 2015, to September 3rd, 2015. 

• Round 2: September 14th, 2015, to December 3rd, 2015. 

• Round 3: January 12th, 2016, to March 31st, 2016. 

• Round 4: September 7th, 2016, to November 26th, 2016. 

The experiment involved 112 pens (1624 slaughter pigs), which were divided into 

four batches (batch 1, 3 and 4: 32 pens each; batch 2: 16 pens). The pigs were 

randomly placed in their pens at an average weight of 31.6 ± 6.6 kg. Each pen 
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had a size of 5.45 m by 2.48 m, and its floor was divided into three distinct areas 

- a solid concrete rest area, a drained activity area, and a slatted floor excreting 

area. The gap between the slats in the slatted floor and the drained floor was 2 

cm, while the respective slats were 18 cm and 8 cm wide. A diagram of a pen 

with sensor locations can be found in Figure 6.1. 

 

Figure 6.1: A top view of a pen with the location of different sensors. Zones 1, 2 

and 3 are the designated Lying, activity and fouling areas. 

The finisher pens were randomly assigned various treatments concerning tail 

docking, provision of straw, and stocking density. The tail docking procedure, 

performed within the first four days post-birth using a hot-iron cutter, conformed 

to Danish legislation. During the research, both docked and undocked pigs were 

placed in pens with or without straw. The pigs were allocated different space 

allowances, precisely 1.21 m²/pig and 0.73 m²/pig.  

The artificial light was on from 0530 h to 1830 h, with a light intensity of 182 lux. 

The climate control system controlled the finisher unit’s temperature and 

humidity (SKOV A/S, Roslev, DK). Each pen had an automatically controlled 

shower system (SKOV A/S, Roslev, Denmark) above the slatted floor. The pigs 

were fed ad libitum with a commercial dry feed, and the feeders were filled three 

times a day at 0300, 1000 and 1830 h. The general farm management was 

carried out by educated farm staff. Between 1000 and 1200 h, the farm staff 

performed daily routines in the stables, including cleaning, straw provision, and a 

general health check. 
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A protocol for scoring fouling was followed during the daily check-up between 

1000 and 1200 h. The events were given a binary score, with a score of 0 

indicating that the event did not occur. A fouling event was defined as a situation 

where more than half of the solid floor (Lying Area and Activity Area) was wet 

with excreta and/or urine. 

6.3.2 Behavioural Video Observations 

For each recorded fouling event, video data was extracted for five days prior to 

the event (including the fouling day). The average percentage of pigs lying in 

each of the three distinct areas (% Lying (Rest), % Lying (Activity), and % Lying 

(Excreting)) was calculated for all the frames extracted. Figure 6.2 provides an 

overview of the different areas. 

 

Figure 6.2: Schematic drawing of the pen design used. The location of the 

drinkers is indicated in blue, and the temperature sensors in red. 

The video observation data were augmented with sensor information from the 

climate control system, temperature, and water intake sensors. When variables 

are continuous, Bayesian Networks can be challenging to manage. The 

continuous variables were discretised into groups to overcome this challenge by 

dividing the quantiles uniformly into four levels (Cobb, Rumí, and Salmerón, 

2007; Chen and Pollino, 2012; Suzuki, 2014). Table 6.1 describes each variable 

Fouling Area Activity Area Lying Area 
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and how it was discretised. For instance, Level 0 indicates that the value is in the 

0 to 25th percentile range. 

6.3.3 Data Summary and Discretisation. 

Table 6.1 presents an overview of the variables utilised in constructing the 

Bayesian Network. Two types of constraints were imposed on specific variables: 

Root Nodes: A variable designated as a root node is one that any other variables 

cannot influence in the network. This means that it cannot have any child nodes. 

This study identified the time and tail type of system input as root nodes, as they 

were deemed independent and not influenced by any other factors. 

Leaf Nodes: In a network, a leaf node variable does not exert any influence on 

other variables due to its lack of children. In the current study, the event Variable 

was designated as a leaf node to enable an accurate analysis of fouling impact. 

By making the event Variable a leaf node, the effects of fouling were able to be 

studied with greater precision, without any interference from other variables. 

It is important to note that no constraints were placed on the remaining variables 

in the network. This allowed for a more comprehensive and flexible examination 

of the relationships among the variables in the network. 

6.3.4 Bayesian Network 

The Bayesian Network is a powerful tool for modelling causal relationships 

between variables. It is a probabilistic graphical model that represents a set of 

variables and their probabilistic inter-dependencies. This model can be 

graphically represented by a Directed Acyclic Graph (DAG), a concept 

introduced by Bang-Jensen and Gutin (2009). The DAG comprises two 

fundamental elements: Nodes and Edges. A node symbolises a specific variable, 

while an edge, depicted as an arrow, signifies a directional relationship between 

two nodes. As Cummiskey & Lübke (2022) highlight, DAG serves as a key 

instrument for illustrating the causal structure of variables, often called a causal 

diagram (Dawid, 2002). In a Bayesian Network, each node in the graph 

represents a random variable, and the links between the nodes represent the 

conditional dependencies between the variables. The main idea behind the 

Bayesian Network is to express the joint distribution of a set of variables as a 

product of conditional distributions. The final DAG is shown in Figure 6.3. 
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Figure 6.3: A subgraph containing the Temperature (Foul, Stable, Lying Areas), 

Straw, Solid and Event nodes. 

Consider a joint distribution over three variables: a, b, and c. By applying the 

product rule of probability, the joint distribution can be expressed as: 

𝑝(𝑎, 𝑏, 𝑐)  =  𝑝(𝑐| 𝑎, 𝑏) 𝑝( 𝑏 | 𝑎 ) 𝑝 ( 𝑎 ) Equation 6.1 

Equation 6.1 is valid for any choice of joint distribution and can be extended for 𝐾 

variables by the repeated application of the product rule of probability. The joint 

distribution 𝑝(𝑥1, . . . , 𝑥𝑘) can be written as a product of conditional distributions for 

each variable: 

 Equation 6.2 

For a given choice of 𝐾, Equation 6.2 represents a directed graph having 

𝐾nodes, each corresponding to a conditional distribution on the right-hand side 

of Equation 6.2. This type of graph is called a fully connected graph, where every 

pair of nodes has a link between them.  

This study uses DAG to study the causal interactions between variables. A DAG 

is a graph useful for studying causal relationships between variables, as it does 

not allow for any cycles.  
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Figure 6.5 presents an example of a DAG; the DAG describes the joint 

distribution over a set of variables. 𝑥1, . . .  𝑥7. The joint distribution of the DAG in 

Figure 6.5 is given by: 

 Equation 6.3 

The joint distribution of a DAG can be computed by taking the product, over all 

nodes in the graph, of a conditional distribution for each node conditioned on its 

parent variables in the graph. The joint distribution of a graph with K nodes can 

be represented as: 

 

Equation 6.4 

Where 𝑝𝑎𝑘 denotes the set of parents of variable  𝑥𝑘 , and 𝑥 = {𝑥1 , . . . 𝑥𝑘}. A 

comprehensive treatment of graphical models can be found in the book by 

Whittaker (2009). 

6.3.5 Structure Learning with the NOTEAR Algorithm 

In the context of Bayesian Networks, structure learning refers to the process of 

determining the underlying structure or relationships between the variables in a 

network which a DAG represents. It involves discovering the connections 

between variables, such as which variables are dependent on which other 

variables and how these dependencies are related. This structure is crucial for 

accurately modelling the relationships between variables and making predictions 

about the system’s behaviour described by the Bayesian Network. The previous 

section discussed a DAG’s joint distribution and structure learning’s crucial role 

in building a Bayesian Network. However, learning the structure of DAGs from 

data is an NP-hard problem (Chickering, 1996; Chickering, Heckerman and 

Meek, 2004) due to the exponential growth of the space of possible graphs with 

the increase in the number of nodes. In computational science, “NP-hard” refers 

to problems as hard as the most difficult problems in the class NP 

(nondeterministic polynomial time), for which a solution can be verified in 

polynomial time. If a problem is NP-hard, no known algorithm can solve all 

instances of the problem quickly. 

To overcome this, the literature contains several exact algorithms for structure 

optimisation (Cooper and Herskovits, 1992; Jaakkola et al., 2010; Cussens, 

2012; Malone et al., 2018). However, the traditional approaches, described by 
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equation 5, for solving the combinatorial optimisation problem are inefficient due 

to the acyclicity of DAGs.  

𝑚𝑖𝑛 𝐹(𝑊), 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐺(𝑊) ∈ 𝐷𝐴𝐺𝑠  Equation 6.5 

where 𝐺(𝑊)is the 𝑑-node graph induced by the adjacency matrix 𝑊,𝐹: 𝑅𝑑×𝑑, 

where 𝑅 is a scoring function.   

In this paper, the NOTEAR algorithm (Zheng et al., 2018) that formulates the 

structure learning problem as a purely continuous optimisation problem over real 

was used. This bypasses the traditional combinatorial constraint imposed by 

traditional Structure learning approaches and leads to improved performance. 

The optimisation problem using NOTEARS is characterised by Equation 6.6. 

𝑚𝑖𝑛 𝐹(𝑊), 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐺(𝑊) ∈ 𝐷𝐴𝐺𝑠 Equation 6.6 

 

Equation 6.5 minimises a scoring function F(W) while satisfying the constraint 

G(w) = 0, where G is a smooth function over real matrices that exactly 

characterises acyclic graphs.  

6.3.6 Learning Conditional Probability Distribution (CPD) 

The Conditional Probability Distribution (CPD) is a crucial aspect to consider 

when constructing a Bayesian Network. The CPD of the links in the DAG, which 

represents the relationships between variables in the Bayesian Network, is 

learned through the use of a Bayesian Estimator with K2 Priors 

In the case of pen fouling, understanding the CPD of the different variables' 

relationships can help identify the factors most likely to influence pen fouling. 

This information is useful for developing more precise predictive models of pen 

fouling and for evaluating the impact of various management practices and 

environmental factors. 

To efficiently learn the CPD of the links in the DAG based on available data, the 

Bayesian Estimator employs a commonly used prior for Bayesian Network 

structure learning called the K2 Prior. The implementation of the Bayesian 

Estimator is available through the pgmpy python package, an open-source toolkit 

for working with Bayesian Networks (Ankan & Panda, 2015). 

By combining structure learning with the NOTEAR algorithm and learning the 



 

109 
 

CPD with the Bayesian Estimator, a Bayesian Network can be accurately 

constructed. This network represents the relationships between variables and 

predicts the likelihood of pen fouling in pigs. This information can aid in informed 

decision-making in pig farm management and reduce the occurrence of pen 

fouling. 

6.3.7 Scenario Simulation with Do-Calculus 

Conducting experimental or randomised trials may not always be feasible or 

ethical, especially in animal welfare cases, such as the study of pen fouling in 

pigs. While traditional statistics provide insights into observational relationships, 

i.e., 𝑝(𝑦|𝑥), they are not equipped to handle interventions and estimate the effect 

of intervening on a distribution, i.e., 𝑝(𝑦|𝑑𝑜(𝑥)). For instance, if 𝑦 represents the 

outcome of fouling, 𝑑𝑜(𝑥) 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 an action taken in the model.  

The do-calculus theory was introduced by Pearl (1995) to address the issue of 

limited observation when studying causal effects of interventions. Predictions can 

be made using this concept regarding how a system will respond to hypothetical 

interventions, and the causal impact of such interventions can be estimated. In 

this research, the principles of do-calculus are applied to simulate different 

intervention scenarios and assess their effect on fouling. 

The theorem of do-calculus states that if a set of variables Z satisfies the front-

door criterion relative to the ordered pair of variables (𝑥, 𝑦)and if 𝑃(𝑥, 𝑧)  > 0, 

then the causal effect of 𝑋on 𝑌 can be determined using the following formula: 

 
Equation 6.7 

The Front-Door criterion is defined as follows: A set of Variables Z satisfies the 

front-door criterion relative to (𝑋, 𝑌) if: 

• Z intercepts all directed paths from X to Y. 

• There is no unblocked path from X to Z. 

• All backdoor paths from Z to Y are blocked by X. 

In simpler terms, Z serves as a mediator in the causal relationship between X 

and Y. If one can control for Z (the mediator), the causal effect of X on Y can be 

estimated, even in the presence of unobserved confounding variables that affect 

both X and Y. The Front Door Criterion proves useful in situations where it is not 

feasible to control for all confounding variables, a common scenario in real-world 

observational studies. The causal effect of interest can still be estimated by 

identifying a suitable mediator variable that satisfies the Front Door Criterion. 
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The do-calculus method was used for the study to create hypothetical 

intervention scenarios and analyse their effect on pig fouling. The discretised 

data was subjected to these interventions, as outlined in subsequent sections. 

The simulation was conducted using Python and the CausalNex library. 

6.3.8 Feature Selection and Node Regularisation. 

To improve the efficiency and accuracy of the Bayesian Network, two 

simplification steps were taken in this study. The first step was the use of 

LightGBM (Ke et al., 2017), a gradient-boosting framework that uses tree-based 

learning algorithms for feature selection. This reduces the dimension of the 

dataset and makes the task of fitting the Bayesian Network more efficient. This 

reduced the number of features in the dataset and made the task of fitting the 

Bayesian Network more manageable. The second step involved incorporating 

node regularisation in the NOTEARS algorithm using L2-Regularization (also 

known as Lasso). The steps taken in this study were summarised in Figure 6.4. 

 

 

Figure 6.4: Summary of Data Processing and Simulation Pipeline. 

 

 

 

 

 

https://paperpile.com/c/fULW8U/SPwI
https://paperpile.com/c/fULW8U/SPwI
https://paperpile.com/c/fULW8U/SPwI
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6.3.9 Model Performance  

To evaluate the performance of the Bayesian Network, the data was divided into 

a training and test set. The test set consisted of pigs in pens and time points that 

were not included in the training set. The pens were randomly selected, with 

80% being used to fit the CPD of the Bayesian Network and 20% being used for 

testing the accuracy in predicting fouling. The pens were classified as either 

fouled or not fouled. 

The performance of the Bayesian Network was measured using the area under 

the receiver operating characteristic curve (AUROC). The AUROC is a single 

metric that provides a comprehensive evaluation of the performance of an 

algorithm over the entire ROC space (Bradley, 1997). An AUROC of 0.5 

indicates a model that makes random guesses, while an AUROC of 1.0 

represents a perfect model. 

6.3.10 Feature Selection 

In this study, feature selection was performed using the LightGBM algorithm. The 

algorithm uses gradient-boosting tree-based learning algorithms. The feature 

selection process involved ranking the features based on their importance and 

selecting the top ten features that significantly impacted the prediction of pen 

fouling. In addition, the movements of pigs in the solid area were also selected to 

include a complete representation of the data. The selected features are shown 

in Figure 6.5, describing why they were deemed significant. 

 

Figure 6.5: Summary of Feature Importance 

 

 

https://paperpile.com/c/fULW8U/URRr
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6.3.11 Bayesian Structure 

The Bayesian Network's Directed Acyclic Graph (DAG) was constructed using 

the NOTEARS algorithm and adhering to the constraints outlined in Table 6.1. 

Figure 6.6 displays the resulting DAG, including key variables identified through 

the feature selection process. The accuracy of the Bayesian Network was 

assessed by testing it against a pen data set, resulting in an AUROC value of 

0.778. This indicates the network's efficacy in predicting whether pens belonged 

to the fouling or control group. 

 

Figure 6.6: Example of a directed acyclic graph describing the joint distribution 

over variables 𝑥1, . . .  𝑥7. 

6.3.12 Scenarios Probability 

The objective of this study was to evaluate the influence of various interventions 

on pen fouling. These interventions were based on the preventative measures 

recommended to mitigate fouling, as outlined in the work of Larsen et al. (2018). 

A total of eleven scenarios were tested, which are delineated in Table 6.2. The 

results of these scenarios, in comparison to the likelihood of fouling absent any 

intervention, are provided in Table 6.3a & 6,3b, and these outcomes are 

summarised in Table 6.4. To enhance the comprehensibility of the results, bar 

graphs and heat maps were employed to depict the impact of each intervention 

scenario on the probability of pen fouling. Furthermore, limitations or constraints 

in the interpretation of the findings were discussed. 
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6.4 Results and Discussion  

The results of this study are presented in five tables, each providing a different 

perspective on the data and the outcomes of the scenarios tested. 

Table 6.1: The table below provides a comprehensive overview of all variables 

used in the study. It includes information on the units of measurement, 

categorization, and hierarchical structure of each variable. For example, the 'Tail 

Type' variable has two options, 'Docked' represented by '0' and 'Undocked' 

represented by '1'. Additionally, the 'DAG Constraints' column indicates the 

relationship between variables, with 'Root' variables being independent and 

'Leaf' variables having no dependencies. The 'Stable Temperature' sensor 

measures the ambient temperature controlled by the climate system, while 

'Uniform Quantile (4 Levels)' categorizes continuous data into four equal-sized 

bins, ranging from 0 to 3. 

DAG 
Constraints 

Variable Unite Definition 

Root Tail Type Binary 0 = Docked, 1= Undocked 

Root Time Hour 
Morning (0600 to 1200), Afternoon 

(1200 to 2200), night (2200 to 0600) 

Root 
Temperature 

(Stable) 
Degrees Uniform Quantile (4 Levels) 

 
Temperature 

(Fouling Area) 
Degrees Uniform Quantile (4 Levels) 

 
Temperature 
(Lying Area) 

Degrees Uniform Quantile (4 Levels) 

Root Moisture 
% Relative 
Humidity 

Uniform Quantile (4 Levels) 

 Water Litres Uniform Quantile (4 Levels) 

Root Ventilation Need  Uniform Quantile (4 Levels) 

Root Age 
Weeks after 

Insertion 

Weaner (Age < 21 weeks), Grower (21 
weeks <= Age, 41 weeks), Finisher 

(Age > 41 Weeks) 

Root Straw Binary 0 =Yes, 1 = No 

 
% in Slated 

Area 
% Uniform Quantile (4 Levels) 

 % in Lying Area % Uniform Quantile (4 Levels) 

 % in Solid Area % Uniform Quantile (4 Levels) 

Leaf Event Binary 0 = No Fouling, 1 = Fouling 

 
Group size (No 

Pigs) 
Binary 

Large (more than eleven pigs), Small 
(less or equal to 11) 

 Obsday 
Days Prior to 

Fouling 
1 = 3-5 days before event, 2 = 1-2 days 
before event, 0 = day event occurred. 
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Table 6.1 defines all variables used in the study. For instance, the variable “Tail 

Type” is a binary variable, meaning it can take one of two values: zero for 

docked tails and 1 for undocked tails. Similarly, “Time” is measured in hours and 

is categorised into three periods: morning, afternoon, and night. This table is key 

to understanding the rest of the data in the subsequent tables. It is important to 

note that the variables are discretised into binary or quantile levels, simplifying 

the analysis and allowing for a clear interpretation of the results. 

Table 6.2 outlines the various scenarios that were tested in the study. The 

scenarios are designed to test the effects of different environmental and 

management conditions on the probability of fouling. Each scenario represents a 

unique combination of conditions for the root variables. The ‘do(X)’ column 

indicates the specific intervention applied in each scenario. For example, in 

Scenario 1, the stable temperature was always kept below the 25th percentile. 

This is represented as 𝑃(𝑇𝑆𝑡𝑎𝑏𝑙𝑒 =  0) =  1,, meaning the probability of the stable 

temperature being in the lowest quantile (0) is one, or 100%. 

Table 6.3a & 6.3b presents the conditional probabilities for all scenarios, 

including the baseline case. These probabilities represent the likelihood of a 

given variable assuming a particular value under each scenario. For example, 

row 𝑃(𝑇𝐿𝑦𝑖𝑛𝑔 =  0) represents the conditional probability that the temperature in 

the lying area (𝑇𝐿𝑦𝑖𝑛𝑔) is at level 0, given the conditions specified in each 

scenario. In the baseline scenario, P (𝑇𝐿𝑦𝑖𝑛𝑔 =  0) is 0.246, which means there is 

a 24.6% chance that the temperature in the lying area is at level 0 under normal 

conditions. In Scenario 1, P (𝑇𝐿𝑦𝑖𝑛𝑔 =  0) is 0.439, which means there is a 43.9% 

chance that the temperature in the lying area is at level 0 when the stable 

temperature is always kept below the 25th percentile. This suggests that 

lowering the stable temperature increases the likelihood of the temperature in the 

lying area being at level 0. 

In Scenario 2, 𝑃(𝑇𝐿𝑦𝑖𝑛𝑔 =  0) is 0.208, which means there is a 20.8% chance that 

the temperature in the lying area is at level 0 when the ventilation output is 

always kept below the 25th percentile. This suggests that lowering the ventilation 

output decreases the likelihood of the temperature in the lying area being at level 

0. In Scenarios 3, 4, and 9, 𝑃(𝑇𝐿𝑦𝑖𝑛𝑔 =  0) is one, which means there is a 100% 

chance that the temperature in the lying area is at level 0 under these scenarios. 

This indicates that these scenarios involve significant cooling of the lying area. 

Valuable insights can be gained from the probabilities listed here regarding the 
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influence of environmental and management factors on the temperature of the 

lying area. By comparing these probabilities across various scenarios, the impact 

of different interventions on the temperature in that area can be assessed. 

Table 6.2: Scenario Descriptions and Interventions: This table explains each test 

scenario and corresponding interventions, represented by do(X). For example, in 

Scenario 1, the stable temperature was consistently adjusted to remain below 

the 25th percentile. 

Scenarios Description do(X) 

Scenario 1 
The stable temperature was lowered to 
always be below the 25th percentile. 

𝑃(𝑇𝑆𝑡𝑎𝑏𝑙𝑒 =  0)  =  1 

Scenario 2 
The Ventilation Output was lowered to 
always be below the 25th percentile. 

𝑃(𝑉 =  0)  =  1 

Scenario 3 

A temperature gradient was created 
between the Lying and Fouling Area. The 
temperature in the Lying Area lower to be 
below the 25th percentile, and the 
Temperature in Fouling was set to be 
above the 75th percentile) 

𝑃(𝑇𝐿𝑦𝑖𝑛𝑔 =  0)  =  1 𝐴𝑁𝐷  𝑃(𝑇𝐹𝑜𝑢𝑙

=  3)  =  1 

Scenario 4 
The temperature in both the Lying and 
Fouling areas was reduced to be below 
the 25th percentile. 

𝑃(𝑇𝐿𝑦𝑖𝑛𝑔 =  0)  =  1  𝐴𝑁𝐷  𝑃(𝑇𝐹𝑜𝑢𝑙

=  0)  =  1 

Scenario 5 
The number of pigs was lowered to 
always be equal to 11 pigs. 

𝑃(𝑁𝑜𝑃𝑖𝑔𝑠 =  𝑆𝑚𝑎𝑙𝑙)  =  1 

Scenario 6 

Extreme ventilation output was avoided 
by setting the ventilation output to always 
be between the 25th and 75th percentile 
values. 

𝑃(𝑉 =  1)   =  0.5   𝐴𝑁𝐷  𝑃(𝑉 =  2)   
= 0.5 

Scenario 7 

A temperature gradient was created 
between the Lying and Fouling Area. The 
temperature in the Lying Area was lower 
to be below the 50th percentile, and the 
Temperature in Fouling was set to be 
above the 50th percentile). 

𝑃(𝑇𝐿𝑦𝑖𝑛𝑔 =  0 𝑜𝑟 1)  

=  1 𝐴𝑁𝐷  𝑃(𝑇𝐹𝑜𝑢𝑙

=  2 𝑜𝑟 3)  =  1 

Scenario 8 
Limit temperature Lying and Fouling 
(between 25th and 75th percentile) 

𝑃(𝑇𝐿𝑦𝑖𝑛𝑔 =  1 𝑜𝑟 2)  

=  1 𝐴𝑁𝐷  𝑃(𝑇𝐹𝑜𝑢𝑙

=  1 𝑜𝑟 2)  =  1 

Scenario 9 Apply scenario (6 and 3)  

Scenario 
10 

All pens were set to contain straw. 𝑃(𝑆𝑡𝑟𝑎𝑤 =  1) = 1 

Scenario 
11 

Extreme Stable Temperature was avoided 
by setting the temperature between the 
25th and 75th percentile. 

𝑃(𝑇𝑆𝑡𝑎𝑏𝑙𝑒 =  1)  =  0.5  𝐴𝑁𝐷  𝑃(𝑇𝑆𝑡𝑎𝑏𝑙𝑒

=  2 )  =  0.5 
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The first four rows of the table represent the probabilities of the temperature in 

the lying area (𝑇𝐿𝑦𝑖𝑛𝑔) being at different levels (0, 1, 2, 3). The baseline scenario 

shows an even distribution across all four levels, indicating that the temperature 

in the lying area can vary widely under normal conditions. However, under 

Scenarios 3, 4, and 9, the temperature in the lying area is always at level 0, 

suggesting that these scenarios involve significant cooling of the lying area. This 

could potentially be a strategy to reduce fouling, as lower temperatures might 

discourage pigs from fouling in the lying area. The next four rows represent the 

probabilities of the solid area being at different levels (0, 1, 2, 3). Again, the 

baseline scenario shows an even distribution across all four levels. None of the 

scenarios seems to significantly alter these probabilities, suggesting that the 

conditions specified in the scenarios do not strongly impact the solid area. 

The rows for P (Event = Control) and P (Event = Foul) represent the probabilities 

of a control event (no fouling) and a fouling event, respectively. The baseline 

scenario shows a higher probability for a control event (0.557 or 55.7%) than for 

a fouling event (0.443 or 44.3%). However, under Scenario 2, the probability of a 

fouling event increases to 0.45 or 45%, indicating that reducing the ventilation 

output to always be below the 25th percentile (as specified in Scenario 2) may 

increase the risk of fouling. Conversely, under Scenario 6, the probability of a 

fouling event decreases to 0.381 or 38.1%, suggesting that avoiding extreme 

ventilation output (as specified in Scenario 6) may reduce the risk of fouling. The 

rows for P (NoPigs = Large) and P (NoPigs = Small) represent the probabilities 

of the number of pigs being large (more than 11) and small (less or equal to 11), 

respectively. The baseline scenario shows a higher probability for many pigs 

(0.615 or 61.5%) than for a small number of pigs (0.385 or 38.5%). However, 

under Scenario 5, the number of pigs is always small, suggesting that this 

scenario significantly reduces the number of pigs. This could be another strategy 

to reduce fouling, as fewer pigs might result in less fouling. Overall, the results 

from Tables 6.3a and 6.3b provide valuable insights into how different 

environmental and management conditions can influence the likelihood of 

various outcomes in pig pens, including the temperature in different areas, 

fouling events, and the number of pigs. These insights could be used to develop 

strategies to manage and reduce fouling in pig pens. 
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Table 6.3a: Conditional Probabilities for Scenarios and Baseline: The table 

presents the conditional probabilities for each variable across all scenarios, 

including the baseline. The notation p (K = x) is used to denote the probability of 

variable K taking on value x. 

 

Bas
eline 

Scena
rio 
one 

Scena
rio 2 

Scena
rio 3 

Scena
rio 4 

Scena
rio 5 

Scena
rio 6 

Scena
rio 7 

Scena
rio 8 

Scena
rio 9 

Scena
rio 10 

Scena
rio 11 

𝑃(𝑇𝐿𝑦𝑖𝑛𝑔

=  0) 

0.24
6 

0.439 0.208 1 1 0.246 0.274 0.5 0.5 1 0.246 0.183 

𝑃(𝑇𝐿𝑦𝑖𝑛𝑔

=  1) 

0.26
3 

0.234 0.225 0 0 0.255 0.302 0.5 0.5 0 0.263 0.318 

𝑃(𝑇𝐿𝑦𝑖𝑛𝑔

=  2) 

0.25
3 

0.171 0.255 0 0 0.251 0.247 0 0 0 0.253 0.314 

𝑃(𝑇𝐿𝑦𝑖𝑛𝑔

=  3) 

0.23
8 

0.156 0.311 0 0 0.247 0.176 0 0 0 0.238 0.185 

𝑃(𝑆𝑜𝑙𝑖𝑑
= 0) 

0.24
9 

0.24 0.226 0.253 0.246 0.239 0.233 0.259 0.25 0.239 0.247 0.248 

𝑃(𝑆𝑜𝑙𝑖𝑑
= 1) 

0.25 0.262 0.24 0.25 0.251 0.239 0.251 0.251 0.25 0.254 0.255 0.243 

𝑃(𝑆𝑜𝑙𝑖𝑑
= 2) 

0.25
7 

0.266 0.267 0.248 0.257 0.25 0.262 0.245 0.25 0.26 0.253 0.255 

𝑃(𝑆𝑜𝑙𝑖𝑑
= 3) 

0.24
4 

0.232 0.267 0.248 0.246 0.272 0.254 0.244 0.25 0.247 0.245 0.254 

𝑃(𝐸𝑣𝑒𝑛𝑡
= 𝐶𝑜𝑛𝑡𝑟𝑜𝑙) 

0.55
7 

0.563 0.55 0.606 0.606 0.566 0.619 0.572 0.586 0.644 0.557 0.556 

𝑃(𝐸𝑣𝑒𝑛𝑡
= 𝐹𝑜𝑢𝑙) 

0.44
3 

0.437 0.45 0.394 0.394 0.434 0.381 0.428 0.414 0.356 0.443 0.444 

𝑃(𝑇𝐹𝑜𝑢𝑙  
= 0) 

0.26
2 

0.539 0.214 0 1 0.275 0.362 0 0 1 0.262 0.188 

𝑃(𝑇𝐹𝑜𝑢𝑙  
=  1) 

0.29
3 

0.186 0.265 0 0 0.279 0.344 0 0 0 0.293 0.424 

𝑃(𝑇𝐹𝑜𝑢𝑙  
=  2) 

0.23
3 

0.169 0.251 0 0 0.266 0.209 0.5 0.5 0 0.233 0.279 

𝑃(𝑇𝐹𝑜𝑢𝑙  
=  3) 

0.21
1 

0.106 0.27 1 0 0.181 0.085 0.5 0.5 0 0.211 0.109 

𝑃(𝑁𝑜𝑃𝑖𝑔𝑠
=  𝐿𝑎𝑟𝑔𝑒) 

0.61
5 

0.615 0.615 0.615 0.615 0 0.615 0.615 0 0.615 0.615 0.615 

𝑃(𝑁𝑜𝑃𝑖𝑔𝑠 
=  𝑆𝑚𝑎𝑙𝑙) 

0.38
5 

0.385 0.385 0.385 0.385 1 0.385 0.385 1 0.385 0.385 0.385 
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Table 6.3b: Conditional Probabilities for Scenarios and Baseline: The table 

presents the conditional probabilities for each variable across all scenarios, 

including the baseline. The notation p (K = x) is used to denote the probability of 

variable K taking on value x. 

 
Base
line 

Sce
nari
o 
one 

Scena
rio 2 

Scena
rio 3 

Scena
rio 4 

Scena
rio 5 

Scena
rio 6 

Scena
rio 7 

Scena
rio 8 

Scena
rio 9 

Scena
rio 10 

Scena
rio 11 

𝑃(𝑇𝑆𝑡𝑎𝑏𝑙𝑒

=  0) 
0.248 1 0.248 0.248 0.248 0.248 0.248 0.248 0 

0.248 
0.248 0 

𝑃(𝑇𝑆𝑡𝑎𝑏𝑙𝑒

=  1) 
0.248 0 0.248 0.248 0.248 0.248 0.248 0.248 0.5 

0.248 
0.248 0.5 

𝑃(𝑇𝑆𝑡𝑎𝑏𝑙𝑒

=  2) 
0.252 0 0.252 0.252 0.252 0.252 0.252 0.252 0.5 

0.252 
0.252 0.5 

𝑃(𝑇𝑆𝑡𝑎𝑏𝑙𝑒

=  3) 
0.252 0 0.252 0.252 0.252 0.252 0.252 0.252 0 

0.252 
0.252 0 

𝑃(𝑂𝑏𝑠𝑑𝑎𝑦 
=  0) 

0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 0.47 
0.47 

0.47 0.47 

𝑃(𝑂𝑏𝑠𝑑𝑎𝑦 
=  1) 

0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 0.326 
0.326 

0.326 0.326 

𝑃(𝑂𝑏𝑠𝑑𝑎𝑦 
=  2) 

0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 
0.204 

0.204 0.204 

𝑃(𝑆𝑡𝑟𝑎𝑤 
=  0) 

0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0 
0.733 

0 0.733 

𝑃(𝑆𝑡𝑟𝑎𝑤 
=  1) 

0.267 0.267 0.267 0.267 0.267 0.267 0.267 0.267 1 
0.267 

1 0.267 

𝑃(𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 
=  0) 

0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 
0.251 

0.251 0.251 

𝑃(𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 
=  1) 

0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 
0.247 

0.247 0.247 

𝑃(𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 
=  2) 

0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 
0.251 

0.251 0.251 

𝑃(𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 
=  3) 

0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 
0.251 

0.251 0.251 

𝑃(𝑉 =  0) 0.252 0.252 1 0.252 0.252 0.252 0 0.252 0 
0 

0.252 0.252 

𝑃(𝑉 =  1) 0.248 0.248 0 0.248 0.248 0.248 0.5 0.248 0.5 
0.5 

0.248 0.248 

𝑃(𝑉 =  2) 0.248 0.248 0 0.248 0.248 0.248 0.5 0.248 0.5 
0.5 

0.248 0.248 

𝑃(𝑉 =  3) 0.251 0.251 0 0.251 0.251 0.251 0 0.251 0 
0 

0.251 0.251 

 

 



 

119 
 

Table 6.4 summarises the effects of the different interventions on the probability 

of fouling. Compared to the baseline, the effects are measured as the increase in 

the probability of fouling when a certain intervention is applied. For example, in 

Scenario 6, where the ventilation need was modified, the probability of fouling 

decreased by 6.2% compared to the baseline scenario. 

Table 6.5 compares the predictive performance of the Bayesian network model 

used in this study with other machine learning models reported in the literature. 

The performance is measured using the AUROC. For instance, the Bayesian 

network model used in this study achieved an AUROC of 0.778, indicating a 

77.8% chance of correctly distinguishing between a fouling and a non-fouling 

event. However, the Gradient Boosted Decision Tree (LightGBM) model 

achieved a higher AUROC of 0.940, indicating a 94% chance of correctly 

distinguishing between a fouling and non-fouling event, thus outperforming the 

Bayesian network model. 

Table 6.4: Effect Summary of Interventions on Probability of Fouling: The table 

summarises the impact of different interventions on the Probability of Fouling. 

The ‘Effect’ column provides the change in the Probability of Fouling when the 

respective intervention was applied, compared to the baseline. The table is 

arranged such that the top row indicates the intervention that caused the most 

significant decrease in the probability of fouling. 

 Control Variable Effect 

Scenario 6 Ventilation Need -6.2 

Scenario 3 Temperature (Lying and Fouling Area) -4.9 

Scenario 4 Temperature (Lying and Fouling Area) -4.9 

Scenario 8 Temperature (Lying and Fouling Area) -2.9 

Scenario 7 Temperature (Lying and Fouling Area) -1.5 

Scenario 5 Pig Number -0.9 

Scenario 1 Temperature (Stable) -0.6 

Scenario 10 Straw 0 

Scenario 11 Temperature (Stable) 0.1 

Scenario 2 Ventilation Need 0.7 

Scenario 9 
Ventilation Need & Temperature (Lying 

and Fouling Area) 
2.3 
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6.4.1 Comparing Model Performance with Literature 

This study used two models to predict pen fouling in pigs: a Bayesian Network 

model and a LightGBM (Gradient Boosted Decision Tree) model. Both models 

have their strengths and weaknesses, reflected in their performance. 

Table 6.5: Summary of predictive performance (AUROC) between several 

models. In this study, only show the best AUROC reported in each study are 

shown. 

Models Source 
Climate 

Variables 
Pen Level 

Information 
Pen 

Characteristics 
Activity AUROC 

Bayesian 
Network 

This Study Yes Yes Yes Yes 0.778 

Gradient 
Boosted 

Decision Tree 
(LightGBM) 

This Study Yes Yes Yes Yes 0.940 

Recurrent 
Neural 

Network 

Literature 
(Domun et al. 

2019) Chapter 4 
Yes Yes Yes No 0.820 

Ensemble 
Learning 

Literature 
(Jensen et al. 

2020) 
No Yes Yes Yes 0.780 

The graphical model known as Bayesian Networks is used to represent the 

dependencies among variables, providing a useful tool for modelling complex 

relationships and handling uncertainty. In the case of predicting pen fouling, the 

model was trained and tested on discrete data, resulting in a simplification of the 

probability space by reducing the number of possible outcomes or states that the 

variables in the model could take on. However, this simplification led to a trade-

off in predictive performance, as evidenced by the AUROC of 0.778. While this 

score is respectable, it suggests that the model's ability to distinguish between 

fouling and non-fouling events could be further improved. It is possible that the 

use of discrete data may have limited the model's ability to capture the full 

complexity of the relationships among the variables, which could have 

contributed to the lower performance. 

On the other hand, the LightGBM model is a gradient-boosting framework that 

uses tree-based learning algorithms. This model is known for its high 

performance and efficiency, and it can handle different types of data, including 

raw data. The LightGBM model was trained and tested on raw data using 10-fold 

https://paperpile.com/c/fULW8U/IWNZ
https://paperpile.com/c/fULW8U/IWNZ
https://paperpile.com/c/fULW8U/K6B3
https://paperpile.com/c/fULW8U/K6B3
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cross-validation, a robust method for estimating the model’s performance on 

unseen data. The LightGBM model achieved an AUROC of 0.940, indicating a 

high level of performance. Using raw data and a larger feature set likely 

contributed to this high performance, as these factors would allow the model to 

capture more complex relationships in the data. Using data up to 5 days before a 

fouling event would also increase the prediction accuracy, as it provides the 

model with more information about the conditions leading up to the event. While 

both models have their strengths, the LightGBM model outperformed the 

Bayesian Network model in this study.  

Several studies have utilised different approaches and features to predict pen 

fouling in the literature. Jensen et al. (2020) used machine learning methods, 

specifically random forests, and artificial neural networks, to predict pen fouling 

days in advance based on the position of pigs within the pen at specific times of 

the day. This approach uses a similar feature set to the Bayesian Network model 

developed in this study but differs in the machine learning techniques. Their 

model achieved high predictive performance, although the exact AUROC was 

not reported. 

Dominiak et al. (2019) presented a multivariate spatial dynamic linear model 

(DLM) predicting diarrhoea and pen-fouling outbreaks amongst growing pigs. 

This dual prediction approach differs significantly from this study, where the 

models were designed to predict only pen fouling. The DLM model’s ability to 

predict two outcomes could impact its performance. On the one hand, the model 

might be more complex due to the need to distinguish between two different 

outcomes, which could decrease performance if the model becomes too complex 

to capture the underlying patterns in the data accurately. On the other hand, the 

ability to predict two outcomes might also provide the model with additional 

information that could improve its performance. For instance, if common factors 

influence diarrhoea and pen fouling, the model might leverage this information to 

make more accurate predictions. These factors could partly explain the 

difference in performance between the models from this study and the DLM 

model. The LightGBM model, designed to predict only pen fouling, achieved an 

AUROC of 0.940, slightly lower than the highest AUROC obtained by the DLM 

model (0.98 for weaners and 0.94 for finishers). This suggests that the ability to 

predict two outcomes might have provided the DLM model with additional 

information that improved its performance. However, it is also important to note 

that the DLM model uses sensor-based water data and applies a standardised 

two-sided Cusum on forecast errors generated by the model, which is a different 
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approach from the one used in this study. These differences in data and 

methodology could also contribute to the differences in performance between the 

models. 

In the study by Domun et al. (2019), a stacked bidirectional long short-term 

memory (LSTM) and feedforward neural network architecture were used to 

predict pen fouling, tail-biting, and diarrhoea in pigs. This approach 

fundamentally differs from this study, using a Bayesian Network model and a 

LightGBM (Gradient Boosted Decision Tree) model to predict only pen fouling. 

The LSTM model used by Domun et al. (2019) is a type of recurrent neural 

network capable of learning patterns in time-series data. This is particularly 

useful for predicting events like pen fouling, tail-biting, and diarrhoea, which are 

likely to be influenced by temporal patterns in the data. However, one potential 

drawback of this approach is that it requires a large amount of data to train 

effectively, and the features used by the LSTM models are abstract and can be 

challenging to interpret. 

In contrast, the Bayesian Network model is a probabilistic graphical model 

representing conditional dependencies among variables. This approach allows 

us to model complex relationships and handle uncertainty, but the training 

process is computationally complex and is an NP-Hard problem. The LightGBM 

model, on the other hand, is a gradient-boosting framework that uses tree-based 

learning algorithms, which are more interpretable and can handle different types 

of data. In terms of performance, the LightGBM model achieved an AUROC of 

0.940, which is higher than the AUROC obtained by the LSTM model used by 

Domun et al. (2019) to predict fouling (0.775). This suggests that the LightGBM 

model may be more effective at predicting pen fouling. However, it is worth 

noting that the LSTM model could also predict tail-biting and diarrhoea with high 

AUROC scores, demonstrating its versatility. 

In conclusion, this study has demonstrated the potential of both the Bayesian 

Network and LightGBM models in predicting pen fouling in pigs, with the 

LightGBM model showing superior performance. The Bayesian Network model, 

while not as performant, offers valuable insights due to its ability to model 

complex relationships and handle uncertainty. However, the computational 

complexity of the Bayesian Network model, an NP-Hard problem, presents a 

significant challenge. Comparisons with other studies in the literature reveal a 

variety of approaches to predicting pen fouling, each with its strengths and 

weaknesses. Each approach has its strengths and weaknesses, and the choice 

between them may depend on the application’s specific requirements, such as 
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data availability, the need for interpretability, and the computational resources 

available. 

6.4.2 The effect of temperature. 

Our study highlights the critical role of temperature and ventilation in managing 

pen fouling, a significant factor impacting pig welfare and productivity. This 

research enhances our understanding of the environmental and management 

factors contributing to pen fouling and offers strategies to mitigate these factors 

effectively. 

The relationship between temperature and fouling established in this study aligns 

with prior literature, thus further consolidating temperature as a pivotal 

determinant of fouling. Studies conducted by Huynh et al. (2005), Aarnink et al. 

(2006), Savary et al. (2009), and Spoolder et al. (2012) have all previously 

emphasised the role of temperature, particularly high ambient temperature, in 

contributing to pen fouling. Pigs’ behavioural adaptation to elevated 

temperatures, precisely their propensity to lie on cooler surfaces such as slatted 

floors, has been recognised as a primary trigger for pen fouling. Our findings 

reaffirm this understanding, substantiating the temperature-fouling connection 

with empirical evidence. 

In the first scenario when the temperature dropped below the 25th percentile, 

there was a decrease in the frequency of pen fouling incidents. This aligns with 

prior studies that highlight the role of temperature in mitigating pen fouling. 

Additionally, in Scenario 2, a slight uptick in fouling incidents was noticed when 

ventilation was reduced. This underscores the importance of ventilation in 

preventing fouling, an aspect that had been overlooked in earlier research. Our 

data strongly indicate that ventilation is a crucial factor in averting pen fouling. 

Interestingly, Scenarios 3 and 7, which involved creating a temperature gradient 

between the Lying and Fouling Area, yielded a decrease in fouling events. These 

results align with prior studies, such as Hillmann et al. (2004), which highlighted 

the importance of effective temperature regulation across different areas within a 

pen. Furthermore, Scenario 4, which entailed a simultaneous reduction in 

temperature in both the Lying and Fouling areas, also resulted in a decrease in 

‘Fouling events. This further emphasised the role of temperature regulation in 

reducing pen fouling, a factor that is often underplayed but influential. Scenario 

5, which involved always limiting the number of pigs to 11, did not yield a 

significant change in the probability of fouling events. This suggests that the 

occupancy rate of the pen might not be as impactful as the factors of 
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temperature and ventilation in our experiment, based on our data set. 

However, Scenarios 6 and 8, which involved controlling ventilation output and 

temperature in the Lying and Fouling area to always be between the 25th and 

75th percentile, resulted in a substantial decrease in fouling events. This 

validates our previous observations about the significant role of temperature and 

ventilation in reducing fouling events. Interestingly, Scenario 9, a combination of 

Scenarios 6 and 3, yielded the most drastic reduction in fouling events. This 

illustrates the crucial need for a comprehensive approach to managing 

temperature and ventilation. In contrast, Scenarios 10 and 11, which involved 

always keeping straw in all pens and avoiding extremely stable temperatures, did 

not induce any significant changes in the probability of fouling events. This hints 

at the overriding influence of temperature and ventilation over other factors, such 

as straw availability and extreme stable temperatures. 

In conclusion, the conditional probability table (Table 6.3a & 6.3b) results for all 

scenarios, including the Baseline case, reinforce the significant influence of 

temperature and ventilation in mitigating pen fouling. When combined with the 

outcomes from the various scenarios, the models’ predictive capabilities provide 

practical and actionable strategies that farm managers can implement to boost 

pig welfare and productivity by effectively controlling these environmental factors. 

While this study provides valuable insights into the relationships between 

temperature, ventilation, and pen fouling in pig farming, its limitations should be 

noted. These include a potential lack of generalizability due to the single-farm 

observational nature of this study and limitations in our modelling approach that 

preclude causal inferences or the consideration of interaction effects between 

variables. Measurement inaccuracies and unaccounted variables may have also 

influenced our findings. Lastly, this study did not entirely capture the complexity 

of pen fouling, influenced by multiple factors beyond temperature and ventilation, 

such as diet, pen design, and individual pig behaviours. These limitations 

underline the need for more comprehensive, experimental, and varied setting 

studies in the future. 

6.4.3 Comfort Level of Lying Area and its Impact on Fouling 

The impact of the comfort level of the designated lying area on pig behaviour and 

subsequent pen fouling is a critical consideration. Pigs will naturally gravitate 

towards more appealing environments; when the lying area is uncomfortable, 

pigs will seek out alternative spaces. Such behaviours often culminate in fouling 

events (Aarnink et al., 1996; Huynh and Aarnink, 2004). In certain situations, if 
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the fouling area appears more inviting than the designated lying area, pigs may 

rest there, increasing pen fouling (Hillmann et al., 2004; Opderbeck et al., 2020).  

Existing literature (Larsen, Bertelsen, and Pedersen, 2018) has pinpointed three 

primary strategies for enhancing the appeal of the lying area: (1) altering the 

flooring material (Minvielle and le Roux, 2009; Savary et al., 2009), (2) 

minimising draughts (Hacker et al., 1994; Huynh et al., 2005), and (3) rendering 

the dunging area less attractive (Aarnink et al., 1997). This study evaluated the 

effects of two techniques: supplying all pens with straw and reducing the 

ventilation needed to mitigate excessive drought conditions. The Bayesian 

Network analysis unveiled an interesting pattern: the introduction of straw 

influences the number of pigs in the lying area, but it did not directly affect the 

incidence of fouling.  

Previous research has indicated that avoiding draughty areas is a common 

behaviour in pigs (Randall, Armsby, and Sharp, 1983). The analysis of the 

Bayesian Network supports these findings, as it demonstrates that proper 

ventilation directly impacts the temperature and fouling of pens. By minimising 

the need for ventilation to between the 25th and 75th percentiles, a reduction of 

6.2% in the probability of fouling was observed. However, this also increased the 

probability of the temperature dropping below the 50th percentile in the lying and 

fouling areas by 6.8% and 15.1%, respectively. It is possible that the decrease in 

turbulence and increase in hot air and pen-level temperature, brought on by the 

limited need for ventilation, is responsible for this reduction in fouling. 

Our study suggests that the combined strategies of reducing draught can 

effectively mitigate pig pen fouling. Nonetheless, future research is warranted to 

delve deeper into the most pragmatic and efficacious techniques to alleviate 

fouling and augment the comfort level of the lying area, aiming to improve pig 

welfare and productivity. 

6.5 Conclusion and Future Works 

This study presents a Bayesian Network model to predict pen fouling in pigs and 

compares its performance with other models in the literature. Results showed 

that the LightGBM model achieved the best performance, but the Bayesian 

Network approach has some strengths, such as the ability to model complex 

relationships and handle uncertainty. The Bayesian Network analysis revealed a 

strong relationship between the zonal temperatures and the number of pigs in 

the solid area. It showed that local temperature control is more effective in 

reducing the probability of fouling in pigs than overall stable temperature control. 



 

126 
 

The comfort level of the designated lying area also plays a crucial role in the 

behaviour of pigs, and literature has identified several techniques to make the 

lying area more appealing. 

Future work can aim to improve the performance of the Bayesian Network model 

by incorporating additional features or improving the model’s training process. 

Additionally, more research is needed to understand better the causal 

relationship between temperature and fouling in pigs and to explore other 

effective temperature control strategies, such as conducting experiments to 

compare the effects of different temperature control methods on pigs and to 

understand better the complex relationships between temperature and other 

variables such as ventilation and moisture. Further research could also aim to 

understand the impact of different flooring materials and pen design on the 

comfort level of the designated lying area and its effect on pen fouling. 
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Chapter 7 General Discussion and Conclusion 

This section's examination of how specific behavioural events in commercially 

farmed pigs can be predicted by machine learning models and provide early 

warning signals is concluded. In the preceding chapters, various models that 

focused on important welfare issues, such as pen fouling, tail-biting, and health-

related issues such as diarrhoea, were developed, validated, and compared. 

Informative and promising results were obtained, revealing previously unknown 

behavioural relationships and demonstrating the potential of advanced machine 

learning algorithms to predict specific events.  

This final discussion summarises the insights gained from this research, and the 

strengths, limitations, and implications of the work done so far are considered. 

The reliability and accuracy of the models are evaluated, the methodologies 

used are critiqued, and the hypotheses are assessed based on the results. The 

challenges encountered, and the lessons learned throughout our journey are 

also explored based on these reflections.  

Furthermore, the potential for future work in this area is discussed. What 

innovative techniques, novel sensors, or adaptive machine-learning models 

could improve the accuracy and robustness of event detection is considered. At 

the same time, the trajectory of these predictions towards an integrated early 

warning system with robust algorithms, state-of-the-art sensor arrays, and 

actionable forecasts, which will contribute significantly to farm management and 

animal welfare, is envisioned.  

Evidence of the applicability of the research is provided, interpreting the 

implications of the findings of this thesis for commercial pig farming practices, 

and speculation on the future of precision animal farming enriched by machine 

learning and intelligent sensors is made. 

7.1 Comparative Assessment of Different Approaches 

This thesis uses distinctive data processing and analysis methodologies, 

contributing to the study’s forecast and interpretation of specific pig behaviours. 

These methodologies are compared and assessed herein, relating to their 

efficacy, robustness, and practical value in enhancing data interpretation and 

outcome prediction in precision pig farming. 

The frequency analysis employed in Chapter 2 and system identification 

techniques revealed two distinct behavioural modes in pigs based on their water 

consumption and pen activity patterns. While these algorithms offer valuable 

insights into pig behaviour dynamics, they only serve as preliminary tools that 
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skim the surface of the intricate connections between behavioural variables, 

lacking explicative power to capture deeper, more complex correlations. 

Complementing fundamental behavioural analysis, advanced machine learning 

algorithms, introduced in Chapter 4, impart greater predictive accuracy. The 

stacked bidirectional long short-term memory and feedforward neural network 

architecture demonstrated high performance in automatically learning and 

classifying patterns in time series data related to pig behaviour. However, the 

architecture’s high complexity and abstractness limit its accessibility and 

interpretability, which may pose challenges for its practical application in routine 

livestock management. This underlines the importance of balancing model 

complexity and interpretability in applied machine learning for precision livestock 

farming (Wang et al., 2018; Dominiak & Kristensen, 2017). 

Chapter 5 introduces a hierarchical clustering approach, adopting a novel yet 

practical angle to handle multi-sensor data. The approach simplifies data 

analysis yet efficiently captures essential behavioural trends critical to pig 

welfare. However, while clustering offers an efficient way of dealing with 

extensive sensor data, it may still overlook subtle variations inherent to individual 

pigs or pens, potentially limiting the precision of predictions (Rashidi & Salah, 

2021). 

The Bayesian Network adopted in Chapter 6 is a significant leap towards 

integrating transparency into machine learning. Unlike the black-box nature that 

typifies many machine learning algorithms, Bayesian Networks provide an 

interpretable cause-and-effect relationship that is much easier to grasp. 

However, building a robust Bayesian Network requires expertise and an 

understanding of the variables under study, potentially limiting its broader 

application (Kalet, 2021). 

This research’s innovative approach lies in its ability to fuse different analytical 

methods - traditional statistical analyses with cutting-edge machine learning and 

Bayesian methods. Appropriate application of these methods can provide 

accurate behavioural predictions and decipher complex relationships between 

variables to provide usable and interpretable insights.  

In conclusion, while each methodology has its merits and limitations, their 

combination in this thesis maximises complementary advantages and constitutes 

a significant step towards comprehensively predicting and understanding pig 

behaviours. These methodologies collectively set a cornerstone for an integrated 

early warning system for pig welfare issues, ushering in a transformative 



 

129 
 

movement in smart pig farming. Future research should aim to refine these 

approaches further, developing more sophisticated, robust, and practicable 

predictive models that can be seamlessly integrated into regular farm 

management. 

7.2 Advances in Machine Learning 

The thesis explored using machine learning algorithms to predict and understand 

animal welfare issues in commercially farmed pigs. The models developed 

focused on three pivotal problems: pen fouling, tail-biting, and diarrhoea. Given 

behavioural data’s intricate and non-stationary nature, these models were 

designed to extract features over time, revealing relationships between variables 

such as water consumption, temperature differences, and the spatial positioning 

of pigs with the welfare above issues. 

The machine learning algorithms employed in this research were adept at 

processing extensive data from sensors monitoring water intake, temperature 

differences, and other farm-level metrics, generating valuable insights. These 

insights can potentially be instrumental for early predicting welfare problems, 

thereby bolstering animal health and welfare in pig farms. However, like many 

pioneering studies, this research also faced challenges, particularly concerning 

the complexity of data interpretation in machine learning models and the 

substantial data requirements for practical algorithm training. 

Recent advancements in precision livestock farming (PLF) have been highlighted 

in a comprehensive review by Jiang et al., 2023, underscoring the evolutionary 

trends and development processes in PLF research, emphasising the growing 

significance of machine learning. The future of this domain holds immense 

promise. Enhanced feature engineering and extraction methodologies can refine 

the precision of machine learning algorithms. As demonstrated by Sozzi et al. 

(2022), the potential of deep learning in animal behaviour analysis suggests that 

more intricate and meaningful features can be extracted from collected data. 

Incorporating more granular data sources, such as individual pig-level data or 

specialised environmental conditions, could further augment the prediction 

accuracy of these models. 

The rapid advancements in sensor technologies and the Internet of Things (IoT) 

are poised to bring transformative changes to data collection and precision 

farming practices. As highlighted by Ali et al. (2023), the increasing 

sophistication and affordability of on-farm sensors enable the integration of a 

more comprehensive range of sensor data in large-scale agricultural settings. 
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When combined with exploring alternative machine learning techniques such as 

reinforcement learning, this integration can pave the way for developing more 

nuanced and efficient models for smart farming. 

Dynamic modelling approaches, which adapt and evolve, are gaining traction in 

precision farming. As Rokade et al. (2022) emphasised, integrating real-time 

data analytics, especially in environments like farming where conditions are in 

perpetual flux, is crucial. Such evolving systems, leveraging the power of 

regression-based supervised machine learning, can recalibrate their parameters 

based on the most recent data. This ensures robustness and enhances the 

accuracy of predictions, making them more attuned to the dynamic nature of 

agricultural settings. 

The generalizability of these machine-learning models across diverse farms and 

environments is another frontier to be explored. Extensive research can be 

undertaken to test these models across varied farms, pig breeds, management 

practices, and environmental conditions. Such endeavours can amplify the 

models’ real-world applicability and efficacy. 

The interdisciplinary approach of this research, amalgamating insights from 

engineering, biology, and data science, sets a precedent for future studies. Such 

holistic approaches are indispensable for addressing the multifaceted animal 

welfare issue in controlled environments. In summation, while the models 

developed in this research exhibit promising predictive capabilities, the 

discussion underscores the vast potential for further exploration and creation of 

even more advanced models to enhance pig welfare in commercial farms. 

The research’s findings and prospects illuminate the path towards sustainable 

and ethical animal farming practices rooted in data insights and precision 

management. The developed models can be integrated into real-time on-farm 

early warning systems, facilitating timely interventions and enhancing overall 

animal welfare. The potential transformation of these algorithms into practical on-

farm solutions can be immensely beneficial for both animals and farmers. 

In conclusion, while this research has laid a solid foundation for using machine 

learning and neural networks for predicting specific pig behaviours, the complex 

nature of these methodologies can sometimes render outcomes challenging to 

interpret. This research paves the way for future studies to delve deeper into 

these methodologies, aiming to develop a reliable system capable of real-time 

predictions about animal welfare in commercial farming environments. 
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7.3 Sensor Analysis: Cost vs. Benefit 

The increasing use of sensor technology in pig farming has opened a new era of 

possibilities for increasing productivity, improving animal welfare, and reducing 

environmental impact. However, the question of cost versus benefit remains a 

significant consideration for farmers in deciding whether to adopt these 

technologies.  

Farmers have diverse needs and priorities, which can influence their perception 

of the value of different sensors. While weight and growth are primary concerns, 

other factors such as animal health and welfare, feed efficiency, and 

environmental sustainability are increasingly important. For instance, sensors 

that can monitor individual pig’s feed intake and growth can provide valuable 

data for optimising feeding strategies, reducing feed costs, and improving growth 

rates. Similarly, sensors that detect early signs of disease or stress can help 

farmers take proactive measures to prevent disease spread, reduce mortality, 

and improve overall animal welfare. 

The economic implications of addressing problems like pen fouling, tail biting, 

and diarrhoea are significant. These issues were highlighted because they are 

common problems in pig farming that can lead to significant economic losses. 

Pen fouling can lead to poor pen hygiene, increased risk of disease, and reduced 

growth rates. Tail biting can result in injury and infection, reducing growth and 

carcass quality. Diarrhoea can result in poor nutrient absorption, weight loss, 

and, in severe cases, death.  

A cost/benefit analysis of using sensors to address these problems would need 

to consider the costs of the sensors, installation, and maintenance against the 

potential benefits of improved productivity and reduced losses due to disease. 

For example, if the use of sensors can reduce the incidence of diarrhoea by early 

detection and treatment, the savings in terms of reduced medication costs, 

improved growth rates, and reduced mortality could potentially outweigh the 

costs of the sensors.  

In addition to these problems, farmers face other economically significant 

challenges, such as diseases that lead to poor growth, reproductive problems, 

and respiratory conditions. Sensors that can monitor individual pig’s behaviour, 

physiological parameters such as heart rate and temperature, and environmental 

conditions such as temperature and humidity can provide valuable data for early 

detection of these problems. 

In conclusion, while the cost of sensor technology can be high, the potential 
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benefits of improved productivity, animal welfare, and environmental 

sustainability could make it a worthwhile investment for many farmers. However, 

more research is needed to fully understand the cost/benefit ratio of different 

sensors in different farming systems and to develop cost-effective sensor-based 

solutions that meet the specific needs of farmers. 

7.4 Can Advance Algorithm make up for cheap sensors? 

The interplay between advanced algorithms and inexpensive sensors is a 

thought-provoking subject in precision animal farming. Can a sophisticated 

algorithm compensatory bridge the gap created by the limitations of basic, 

economical sensors? Would farms be better served by investing in advanced 

analytics rather than splurging on high-end sensor technology? 

From the research conducted in this thesis, a compelling case surfaces 

advocating the effectiveness of robust algorithms in synergising with simple, 

affordable sensors. Several attributes make advanced algorithms a worthy 

cornerstone of cost-effective precision farming strategies. 

Advanced algorithms, such as machine learning models and predictive analytics, 

have demonstrated their potential to leverage the data provided by inexpensive 

sensors to extract meaningful information and make reliable predictions. These 

algorithms can adapt, learn, and improve their performance over time. Contrarily, 

high-end sensors, although providing higher precision measurements and more 

nuanced data, are a more static investment and could be susceptible to 

redundancy over time when technology advances rapidly.  

Advanced algorithms can augment this noise limitation when inexpensive 

sensors generate high noise-level data. Notably, the applied algorithms in this 

research showed the impressive capability to filter noise and isolate patterns 

within the data, thereby drawing upon the existing sensor information more 

comprehensively. It suffices to say that robust algorithms can mitigate the lack of 

sensor precision to a substantial extent. 

Expanded scalability is another advantage yielded by advanced algorithms. As 

algorithms can be manipulated, updated, and fine-tuned virtually, they offer ideal 

scalability. For instance, the machine learning model used in this thesis could 

learn as more data became available, facilitating continuous improvement and 

adaptation. Compared to the static nature of sensors, the scalability of algorithms 

skews the cost-benefit analysis in their favour. 

From a financial perspective, investing in advanced algorithm development may 
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be more economical than acquiring high-end sensors, particularly for small to 

medium-scale producers. Algorithm development incurs costs, but these models 

can be scaled once developed, with maintenance costs relatively minor. 

Conversely, procuring high-end sensors can represent a daunting upfront cost 

often not feasible for smaller-scale operations. 

However, one should not rush to avoid the benefits offered by high-end sensors. 

They offer high-quality data, broader ranges of measurements, and greater 

precision — elements that can undeniably feed into more accurate predictions 

and insights. If available and economically viable, they could undeniably 

enhance the farm’s data ecosystem and, consequently, the accuracy of 

predictions. 

In the real world, choices often boil down to resource availability. It is thus 

essential to evaluate where the investment would bring the most significant 

improvement. If resources permit, investing in high-end sensors and advanced 

algorithms would push the boundaries of precision farming and optimise results. 

Combining high-quality data from advanced sensors with predictive modelling 

introduces a powerful synergy offering extensive insights and predictions. 

However, under constrained resources, the course of investment becomes less 

straightforward. 

The decision insidiously becomes a trade-off between the quality of data and the 

quality of analysis. In the scenario that only inexpensive sensors can be 

afforded, investment in advanced algorithms would be a wise course of action. 

The machine learning models developed in this research offer a testament to the 

prowess of algorithmic analysis. They derived meaningful patterns and predictive 

insights from data generated by relatively basic sensors, showcasing the 

potential of sophisticated algorithms to compensate for sensor constraints. 

Contrarily, the situation could be more evident when the choice is between 

advanced sensors and basic analytics. While high-end sensors guarantee 

superior data, without powerful algorithms, the understanding that can be 

collected from this data may remain superficial. While advanced sensors provide 

more detailed, nuanced information, transferring this additional information into 

actionable insights may be hindered if accompanied only by basic analytical 

methodologies. 

In most cases, an optimised approach may lie in striking a balance between both 

aspects - investing in moderately advanced sensors and developing 

corresponding analytical capabilities. As precision farming evolves, exploiting the 
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benefits of improved sensing technology and increasingly sophisticated 

analytical algorithms becomes crucial. 

In this age of data-driven agriculture, the synthesis of advanced analytics with 

sensor technology has the potential to trigger notable advancements in animal 

welfare and overall operational efficiency in pig farming. This work has 

underscored the potential of combining powerful algorithms with even 

inexpensive sensors to weave a better understanding of pig behaviours and 

predict future outcomes. 

However, it is essential to note that this is not a case of ‘either-or.’ Advanced 

sensors and complex algorithms have unique advantages, and their combined 

efforts offer the highest potential to enhance animal welfare and farm 

productivity. Each farming operation must examine its unique context, goals, and 

resource constraints and decide to invest in sensor hardware and/or analytical 

sophistication to achieve optimal benefits. 

7.5 Conclusion 

In conclusion, this thesis significantly contributes to the growing discourse on the 

application of machine learning in precision livestock farming. It introduced and 

validated various algorithms’ predictive proficiency for welfare and health issues 

such as pen fouling, tail-biting, and diarrhoea within commercial pig farms. 

Although each examined model and methodology demonstrated distinctive 

strengths and limitations, collectively, they fostered a comprehensive 

understanding of pig behaviours.  

Furthermore, this research underscored the value of future exploration of 

machine learning models, enhanced sensor technologies and IoT devices to 

upgrade the scope and accuracy of intelligent pig farming. The endeavour to 

develop a reliable real-time early warning system for pig welfare issues may 

benefit from the building blocks laid by this study. Detailed and extensive testing 

across diverse farm environments remains a promising area for future research. 

The study also raised pertinent questions regarding the economic feasibility of 

sensor technology in commercial pig farming, highlighting the need to analyse 

cost against potential benefits in yield productivity, improved animal welfare, and 

environmental sustainability. 

This research, hence, serves as a reliable foundation and steppingstone for the 

future development of precision pig farming, propelled by machine learning and 

enhanced sensor technology. 
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