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Abstract
Although studies of insect decline have recently dominated headlines worldwide, 
their interpretation requires caution since for most species, we lack long-term popula-
tion baselines. In the tropics, where most insect species thrive, our knowledge is even 
more limited and so reliable insect assessments must originate from well-established 
long-term monitoring efforts. Combining the extensive monitoring data from the 
Arthropod Program of the Smithsonian Tropical Research Institute (STRI) on Barro 
Colorado Island (BCI), Panama, we compare whether known arthropod diversity can be 
detected through metabarcoding of bulk insect samples obtained through automatic 
light-trapping. Our study detected 4402 species based on Barcode Index Numbers 
(BIN) and detected fine-scale differences between wet and dry seasons and sampling 
localities. We further refined our analysis to indicate which families and genera ex-
plained seasonal turnover. Using samples collected in parallel, but sorted manually 
as part of the ongoing arthropod monitoring program, we compared these methods. 
Out of 538 BINs recovered through manual sorting, there was a 70% overlap with the 
metabarcoding data; however, it represented 30% of the total BINs detected through 
metabarcoding. Expecting higher detection through metabarcoding, we also compare 
the results with the 14 years of sampling in BCI to better understand how well the 
monitoring program has captured the diversity of focal groups. Our results revealed a 
~50% overlap between both methods and similar total catch. Barcode Index Numbers 
manually detected but not recovered by metabarcoding highlight some of the limita-
tions of molecular detection methods such as primer bias. Contrastingly, BINs de-
tected with metabarcoding, but not recovered by the traditional monitoring scheme, 
highlight the importance of local and regional barcode reference libraries.
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1  |  INTRODUC TION

With an estimated ~6 million species worldwide, terrestrial ar-
thropods represent the majority of eukaryote diversity on earth 
(Hamilton et  al.,  2010; Stork et  al.,  2015). Given their provision 
of essential ecosystem services, and their intimate association 
with host plants, soil formation, trophic interactions, and func-
tional diversity, arthropod populations are inextricably linked to 
ecosystem functioning and stability (Weisser & Siemann,  2008). 
With thousands of arthropod species awaiting description, includ-
ing complexes of often cryptic species, the taxonomic impediment 
remains a significant challenge (Engel et al., 2021). The estimated 
cost of describing all species is in excess of US$260 billion and 
would take centuries to complete (Carbayo & Marques,  2011). 
As Wagner et  al.  (2021) suggest (with some understatement), 
nature is under siege as the planet enters its sixth mass extinc-
tion event. Understandably, apocalyptic reports on the decline 
of insect abundance have gained worldwide attention (Lister & 
Garcia, 2018; Sánchez-Bayo & Wyckhuys, 2019). Nevertheless, in-
sect decline needs to be interpreted with caution, mainly because 
for most arthropod species, we do not have long-term population 
baselines (Didham et al., 2020; Wagner et al., 2021). Additionally, 
the few long-term monitoring programs that exist target a num-
ber of indicator species or focal groups, given the need for spe-
cialized taxonomic expertise for most insect groups (Hallmann 
et al., 2020, 2021; Ji et al., 2013; Yu et al., 2012). In the tropics, 
where the majority of arthropod species and biomass occurs 
(Basset et al., 2012), the knowledge gap is even wider and partic-
ularly alarming since tropical arthropods may face greater threats 
from habitat loss and the impacts of climate change (Deutsch 
et  al.,  2008; Harvey et  al.,  2023). Coincidentally, the extremely 
high diversity of species in tropical regions is coupled with a lack of 
specialized taxonomists (Engel et al., 2021; Paknia et al., 2015) and 
regular funding (Basset & Lamarre, 2019; Donkersley et al., 2022), 
placing further constraints on comprehensive monitoring schemes 
in the region.

Born from the accelerated need for monitoring species com-
munities, molecular advances have allowed for an integrative 
approach for identifying molecular operational taxonomic units 
(OTUs) based on DNA barcodes (Ratnasingham & Hebert, 2013). 
These barcodes are standard gene regions that enable species dis-
crimination based on sequence variation; in the field of microbiol-
ogy, a 3% sequence variation of the 16S rDNA region delineates 
distinct bacterial linages while fungal studies use a 2% divergence 
of the ITS spacer region to distinguish between species (Kauserud 
et al., 2008; Stackebrandt & Goebl, 1994). For animals, there are 
more than two million available cytochrome c oxidase I (COI) se-
quences which rarely exceed a 2% variation within species making 

this a useful barcode for delimiting species with incomplete taxon-
omy (Hebert et al., 2003). These barcodes alongside collaborative 
repositories allow us to generate highly curated reference data-
bases, which include not only the DNA sequence but also sam-
ple metadata such as geographic, morphological, and taxonomic 
information with the final goal of building a barcode library for 
all eukaryotic life (Porter & Hajibabaei,  2020; Ratnasingham & 
Hebert, 2007). Coupling the use of short and informative genetic 
markers with High Throughput Sequencing technology, known 
as DNA metabarcoding (hereafter metabarcoding), researchers 
can potentially generate community-level biodiversity studies for 
highly diverse regions in which traditional monitoring protocols 
are prohibitively time-consuming, costly, or even impossible.

The field of metabarcoding is gaining traction at a pivotal 
time when species discovery and monitoring need to outpace the 
most serious effects of anthropogenic stressors. Regional and 
global metabarcoding-based studies are currently widely applied. 
Metabarcoding of pollen loads from pollinators has allowed us 
to identify the plant species they visit (Bell et  al.,  2017; Tommasi 
et  al.,  2021), as well as to identify terrestrial arthropods from 
bulk soil samples (Basset et  al.,  2022; Clarke et  al.,  2021; Kirse 
et  al.,  2021). Further, some applications yield trophic information 
(Šigut et  al.,  2017; Toju & Baba,  2018), reveal migratory patterns 
(Suchan et  al.,  2019), and even facilitate arthropod monitoring in 
different tree species based on DNA from rainwater percolating 
from them (Macher et al., 2023). Nevertheless, how to confidently 
link a barcode sequence to a species remains one of the biggest 
challenges in metabarcoding studies (Keck et  al.,  2023; Porter & 
Hajibabaei, 2020). Depending on the desired level of taxonomic res-
olution, a barcode reference database is the most important aspect 
because it determines the accuracy of species detection (Magoga 
et al., 2022; Steinke et al., 2022). Although multiple tools and data 
processing pipelines exist (Liu et al., 2020), the mBRAVE platform 
relies on the Barcode Index Number (BIN) system, an indexed OTU 
equivalent generated for the barcode sequences of the Barcode of 
Life (BOLD) systems database where 99.7% of its 1.81 million re-
cords have an associated voucher specimen and required metadata 
(Ratnasingham & Hebert, 2013).

The Arthropod Program of the Smithsonian Tropical Research 
Institute (STRI), active within the permanent forest dynamic plot of 
Barro Colorado Island in Panama (Anderson-Teixeira et  al.,  2015; 
Lamarre et  al.,  2020), is one of the few ongoing arthropod moni-
toring programs in the tropics. To date, the program has recorded 
more than half a million specimens representing over 2300 species 
(Table S1) with 14 years of continuous data including seasonal rep-
licates (Lamarre et  al.,  2020). Additionally, these data are publicly 
available in the BOLD database having generated over 2850 arthro-
pod BINs from 11,171 DNA sequences for the island.

K E Y W O R D S
arthropod monitoring, Barcode Index Number, Barro Colorado Island, biodiversity, light-
trapping, metabarcoding
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The long-term goal of our study is to incorporate routine me-
tabarcoding of bulk arthropod samples into the Arthropod Initiative 
monitoring program. To achieve this goal, the present study assesses 
how well the Arthropod Program has captured the arthropod diver-
sity of Barro Colorado. Specifically, we (1) compare, for a limited 
number of light trap-nights (see Materials And Methods), the diver-
sity of insects detected through metabarcoding, to that identified 
via manual sorting. Expecting a higher number of species detected 
through metabarcoding, we also (2) compare the overlap between 
species identified through metabarcoding and the 14-year-long data 
of the Arthropod Program. These comparisons allow us to assess 
how our metabarcoding sampling effort captures known insect di-
versity. It also enables us to identify underrepresented groups in 
both surveying methods, highlighting the importance of local and 
regional barcode libraries for biodiversity monitoring. Finally, we (3) 
evaluate seasonal and site variation of insect communities detected 
through metabarcoding, since detecting fine-scale spatiotemporal 
patterns of communities is a prerequisite for any successful long-
term monitoring scheme.

2  |  MATERIAL S AND METHODS

2.1  |  Study site

Samples were collected on Barro Colorado Island (BCI, 9.159.15° N, 
79.85° W; 120–160 m above sea level) in Panama. BCI is a 
1542-hectare lowland tropical forest reserve created ca.1910 during 
the flooding of the Chagres River to fill the Panama Canal. Sampling 
was carried out within and near the 50 ha ForestGEO vegetation dy-
namics plot described in Anderson-Teixeira et al.  (2015). We sam-
pled along the same trails used for the long-term monitoring scheme 
in the Arthropod Program, these have been active since 2009 and 
described in Basset et al. (2013).

2.2  |  Arthropod sampling

Arthropod samples were collected using Robinson light traps, 
a standard method for bulk collections of nocturnal insects 
(Kitching et al., 2001). Robinson light traps are seldom used in me-
tabarcoding studies, unlike Malaise traps or soil surveys (Geiger 
et al., 2016; Kirse et al., 2021), but see Ji et al. (2013). To compare 
the efficacy of metabarcoding, two sets of collections were con-
ducted during the wet season in May 2019 and the dry season in 
March 2021. One set of samples was used for DNA metabarcod-
ing (hereafter “metabarcoding samples”) while the second set of 
samples was manually sorted and identified following standard 
Arthropod Program protocols (hereafter “parallel samples”). In 
both cases, insects were collected with 10 automated bucket-type 
Robinson traps fitted with a 10-watt automated black-light bulb 
(F10T9BL) running on 12-volt DC batteries, fitted with acrylic in-
tercept panes, and an acrylic roof to protect the catch from the 

rain (Basset et al., 2020; Lucas et al., 2016). Traps were set at chest 
height along the forest understory a minimum of 300 m apart; the 
lights were switched on with an automatic timer at 6:00 p.m. and 
ran all night until 6:00 a.m. Sampling was performed at 10 different 
locations for two non-consecutive new moon nights for a total of 
20 sampling nights for each season and for each sampling proto-
col, totaling 40 metabarcoding and 40 parallel samples. Traps used 
for the metabarcoding sampling were further modified to collect 
arthropods directly into 95% ethanol to preserve DNA for extrac-
tion and sequencing. All traps were thoroughly cleaned and steri-
lized between uses with a 10% commercial bleach (Clorox, Clorox 
de Centroamerica) and distilled water solution, or using bleach 
wipes. All instruments were rinsed with distilled water to avoid 
any bleach residue. Ethanol from the traps was replaced imme-
diately after collection with a total of 400 mL of 95% ethanol and 
samples were stored at −20°C until further manipulation. All in-
strument manipulation was carried out using sterilized latex gloves 
to avoid any cross contamination from handling the equipment.

2.3  |  Sample preparation

Metabarcoding samples collected during each season were treated 
differently following Basset et  al.  (2020). Insects collected during 
the wet season (May 2019) were kept whole, except those larger 
than 2.0 cm, in which case one leg was removed and returned to the 
sample bottle while the rest of the body was discarded. The sam-
ple was reduced to a total volume of 50 mL of 95% ethanol. For the 
dry season collections (March 2021), larger insects (>2.0 cm) were 
treated similarly; however, the sample was preserved in 400 mL of 
95% ethanol and thoroughly homogenized using a sterilized hand 
blender (Better Chef model IM-848, Los Angeles, USA). The homog-
enized sample was then separated into four 100 mL aliquots, and 
after leaving the sample to settle (10–15 min), the aliquot with the 
denser insect content was selected for subsequent DNA extraction 
and sequencing. Samples were sent to the Canadian Centre for DNA 
Barcoding (CCDB) in Guelph, Canada. DNA extraction, purification, 
PCR, and sequencing followed standard protocols from the CCDB 
(see Steinke et al., 2022). Samples were filtered to remove all etha-
nol and lysed with a volume of lysis buffer based on the sample's 
wet weight. Four replicates from each sample were transferred to 
separate wells of a standard 96-well microplate for DNA extraction. 
Each plate also included eight positive and eight negative controls 
for quality control.

Parallel samples were sorted manually and identified using 
STRI's Arthropod Program reference collection. In cases where 
morphological identification suggested different morphospecies, 
identification was verified by DNA sequencing of the COI marker 
following standard Arthropod Program protocols. Barcode data 
was deposited in BOLD while pinned specimens were deposited 
in the Arthropod Program collection. Identified species were 
matched to their BOLD BIN based on the Arthropod Program's 
barcode reference library which includes all specimens sequenced 
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to date, even though some do not belong to the focal monitoring 
groups (see Table S1). Species without a BIN were not included in 
our analyses.

2.4  |  DNA extraction, COI amplification,  
and sequencing

A two-stage PCR following CCDB protocols was performed to 
generate amplicon libraries for sequencing. For the first PCR, 
purified extracts were used to amplify a 462 base-pair (bp) frag-
ment of the Cytochrome c Oxidize subunit I (COI) barcode region 
using the primer combination AncientLepF3 (Prosser et al., 2016) 
and C_LepFolR (Hernández-Triana et  al.,  2014). For the second 
PCR, platform-specific unique molecular identifies (UMIs) were 
attached to all samples and pooled for single-end sequencing on 
an Ion Torrent S5 high-throughput sequencer (Thermo Fischer 
Scientific, Waltham, Massachusetts, USA) following the manufac-
turer's instructions.

Sequence reads were associated to their source sample 
using their UMIs, and were uploaded to the mBRAVE platform 
(Ratnasingham, 2019) under the projects MBR-CYB001 and MBR-
CYB002 (for wet and dry seasons, respectively). All reads were 
initially filtered to a minimum length of 100 bp and a maximum 
of 800 bp. Only reads with a minimum quality value (QV) of 20—
allowing a maximum 15% bp with low QV (<20) and 1% bp with 
ultra-low QV (<10)—were retained. Reads were then trimmed by 
25 bp at each end to remove primers and all reads were trimmed 
to a maximum of 500 bp. Retained reads were classified accord-
ing to BINs (Ratnasingham & Hebert,  2013) by comparing them 
against four mBRAVE libraries. Firstly, we used the custom-made 
reference dataset for arthropods from BCI (DS-BCIARTH, 2850 
BINs in 11,171 sequences), followed by three system libraries: 
SYS-CRLINSECTA (695,769 BINs in 978,611 sequences) and SYS-
CRLNONINSECTARTH (78,275 BINs in 108,260 sequences) for all 
insects and non-insect arthropods, and SYS-MBRAVEC (80 BINs 
in 2225 sequences) to screen for potential standard contaminants. 
BINs were assigned conservatively with an ID distance threshold 
of 2%. Reads that did not match any sequence in the reference 
libraries were clustered into OTUs based on a minimum OTU size 
of 5 reads per cluster, and a maximum within OTU distance of 2%. 
Reads were excluded from the OTU threshold of 1% if sequencing 
errors produced spurious haplotypes or chimeras. This parameter-
ization is largely based on benchmarking of the classification algo-
rithm on mBrave (Steinke et al., 2022). OTUs that did not match 
any known BINs at the 2% similarity threshold were excluded from 
further analyses. These amounted to ~419,000 reads across 482 
OTUs available in the Appendix  S1. Admittedly, some of these 
OTU clusters may correspond to species awaiting a BIN or match 
to an existing BIN at a lower percentage than our conservative 
threshold. Nevertheless, our main objective in the current study is 
to assess the implementation of monitoring insect diversity in BCI 
through metabarcoding of bulk DNA samples. As such, a reference 

library of known existing species is of greater importance than in-
cluding every recovered OTU. Using mBRAVE we generated BIN 
tables for all samples, including positive and negative controls and 
four replicates for each sample. All read counts for BINs detected 
in negative controls were subtracted from non-control samples 
using the R package “microDecon” (McKnight et al., 2019), which 
relies on proportions of contaminant OTUs in the blanks rather 
than simply removing the raw number of reads, removing con-
taminant reads rather than entire OTUs. This allowed us to keep 
BINs with low number of reads as long as they were not found 
within the contamination controls. Given the methodological and 
analytical challenges associated with obtaining accurate species 
abundance from DNA-based data (Luo et al., 2023) all reads were 
converted to presence absence data for downstream analyses.

2.5  |  Sequence data analysis

Since taxonomic identification remains a challenge, particularly in 
the tropics, several BINs included multiple species names given that 
users may upload barcode sequences and name them according to 
their morphological identification, or placeholder names. The BIN 
table was manually inspected to ensure that in cases where BINs 
had more than one species name or had a different spelling, we en-
forced Arthropod Program names (public data available at https://​
fgeoa​rthro​pods.​si.​edu/​), and in cases where there was no record we 
selected the name with the highest number of matches to that BIN in 
the BOLD database. Additionally, all BINs were further inspected to 
remove any species and/or genera which do not occur in the region. 
All analyses were performed using R v.4.1.1 (R Core Team,  2022) 
figures were generated with “ggplot2” (Wickham, 2016). Datasets 
were mainly analyzed using the “MicrobiotaProcess” (MBP; Xu 
et al., 2022) and the “Metacoder” (Foster et al., 2017) R packages, 
both of which implement functions from the “Phyloseq” (McMurdie 
& Holmes,  2013) and “Vegan” (Oksanen, 2007) packages. All data 
and scripts are available on GitHub (https://​github.​com/​Danie​lSout​
oV/​metab​arcoding).

2.6  |  Metabarcoding sample analyses

To evaluate seasonal differences in species diversity for metabar-
coding samples, rarefaction curves, and the Shannon diversity index 
were generated using the get_rarecurve and get_alphaindex functions 
of MBP (Xu et al., 2022). To compare differences among sampling 
sites and days, the matrix was filtered among seasons and trans-
formed into a Bray–Curtis dissimilarity matrix. We then performed 
a non-metric multidimensional scaling (NMDS) analysis using the 
function metaNMDS of Vegan (Oksanen,  2007) and plotted using 
the ordihull and ordispider functions (see Results). Non-metric mul-
tidimensional scaling analysis allows us to visualize the differences, 
which were statistically verified through a permutational multivari-
ate analysis of variance (PERMANOVA), as implemented through the 
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adonis2 function of the same package. We ran the same analysis for 
the combined dataset to compare differences between seasons. To 
visualize the number of BINs belonging to the most prevalent orders 
and families during both seasons, we generated percent abundance 
plots using the mp_plot_abundance function of MBP. To refine the 
taxonomic resolution of these differences, data were filtered to 
focus on the most common orders collected in the light traps (i.e., 
Lepidoptera, Diptera, Coleoptera, Hemiptera, Hymenoptera, and 
Blattodea). The diff_analysis function of MBP was used to evaluate 
different taxa prevalence across seasons using a Kruskal–Wallis test 
based on linear discriminant analysis (LDA) and Wilcoxon test with 
the Benjamini–Hochberg correction accounting for false discovery 
rate (FDR; Benjamini & Hochberg, 1995). This difference was visual-
ized using the function ggdiffbox. “Heat trees” built with the package 
“Metacoder,” are hierarchical taxonomic plots that allow visual com-
parisons between samples. Samples were plotted showing pairwise 
comparisons between wet and dry season sampling for all observed 
BINs and further filtered by the most abundant orders as indicated 
above. These trees indicate differences for a specific branch based 
on the mean difference of BINs present at each taxonomic rank using 
the function compare_groups of Metacoder (Foster et al., 2017).

2.7  |  Metabarcoding and traditional classification 
sample analyses

We compared the BINs detected by metabarcoding across 40 light 
trapping nights to the 40 parallel samples and to the 14 years of ar-
thropod sampling on BCI (1120 light trapping nights). Focusing on 
the BINs produced by the Arthropod Program (Table S1), we merged 
these three datasets (metabarcoding, parallel, and Arthropod 
Program sampling), and generated Metacoder heat trees to visualize 
the differences in BINs detected by traditional and metabarcoding 
classification methods. Venn diagrams were generated to visualize 
the distinct and shared BINs between metabarcoding samples, par-
allel samples, and the long-term sampling effort on BCI using the R 
package “VennDiagram” (Chen & Boutros, 2011). Finally, to compare 
species accumulation between datasets (metabarcoding, parallel 
samples, and the 14 years of the Arthropod Program light trapping 
observations), we calculated asymptotic estimates of species rich-
ness using the R package “iNEXT” (Hsieh et al., 2016).

3  |  RESULTS

3.1  |  Metabarcoding samples and spatiotemporal 
variation

Sequencing produced a total of 14.05 and 8.8 million reads for the 
wet and dry season sampling, respectively. After stringent filter-
ing and classification, over 1.4 million reads for the wet season and 
over 525 thousand reads for the dry season were retained and as-
signed to 4402 arthropod species, based on their BIN. During the 

wet season, we detected a total of 2974 BINs while during the dry 
season our analysis revealed 2464 BINs. The mean number of reads 
per sample after filtering was 722,336 ± 3945 (SE) for the wet sea-
son, and 29,589 ± 3385 for the dry season with each sample trap-
night containing an average of 633 BINs ± 17 during the wet season, 
and 365 BINs ± 1 in the dry season. Accumulation curves (Figure 1a) 
indicated that after approximately 20,000 reads the number of new 
species began to level off in both seasons, suggesting that despite 
our conservative filtering steps, our sampling had enough coverage 
to capture most diversity. Observed diversity and Shannon Diversity 
index differed significantly between seasons (Figure 1b). The rela-
tive abundance of the ten most frequent orders can be visualized 
in Figure 1c. As is often observed in light traps, the most abundant 
order was Lepidoptera while during the wet season there was a 
clear increase in the abundance of Diptera and Hemiptera. Figure 1d 
shows the ordination analysis in which the first PCoA axis accounts 
for ~24% of the difference between seasons. Permutational analy-
sis of variance (PERMANOVA) revealed significant differences be-
tween sampling sites during the wet season (R2 = 0.499, F = 1.109, 
p-value = 0.009; Figure  S1), but not during the dry (R2 = 0.457, 
F = 0.937, p-value = 0.933; Figure  S2). Contrastingly, communities 
were significantly different between sampling days in the dry season 
(R2 = 0.0611, F = 1.171, p-value = 0.052), but not in the wet season 
(R2 = 0.0532, F = 1.013, p-value = 0.401).

It is important to note that not every recovered BIN was iden-
tified to species level and in some cases, they could only be classi-
fied to order. For instance, for Lepidoptera, one of the best-studied 
groups, we detected 1834 BINs of which 1427 (~77%) were classified 
to genus level, 602 (~32%) had a species name, while 166 (~9%) BINs 
remained at the order level. For other less well-studied groups, the 
percentage of BINs assigned to species level was much lower. Out 
of 1496 Diptera BINs detected, only ~18% were identified to genus 
and only 5% of BINs had a species name. For Coleoptera, 26% out of 
580 detected BINs were classified to genus level and only 13% had 
a species name. The situation for Hemiptera and Hymenoptera is 
similar with only a fraction of BINs identified to species (22% of de-
scribed species out of 240 and 25% named species out of 246 BINs, 
respectively). Similarly, several groups were detected—although in 
much lower proportions—that are not particularly attracted to light 
traps but probably carried by larger insects such as terrestrial mites 
(e.g., Mesostigmata (10 BINs), Trombidiformes (8 BINs), or parasites 
(e.g., Strepsiptera, 1 BIN)), further strengthening the robustness of 
metabarcoding for detecting often unseen and/or rare organisms. 
For a complete list of detected BINs, refer to Appendix S1.

Focusing on the orders with the highest number of BINs in our 
metabarcoding samples, we can detect differences between BINs 
belonging to each taxonomic rank between seasons. Notably, there 
is an increase of Dipteran BINs in the wet season particularly those 
belonging to Cecidomyiidae and Phoridae, while during the dry 
season, there appears to be an increase of Curculionid beetles and 
Geometridae and Erebidae moths (Figure 2). Metacoder heat trees 
(Figure 2) visually represent these differences highlighting which in-
dividual branches differ between seasons.

 26374943, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/edn3.540 by H

arper A
dam

s U
niversity, W

iley O
nline L

ibrary on [14/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

itiiz:tt:: NA l!l!llmD 
environmental DNA for basic and appl ed scences i-WILEY 



6 of 15  |     SOUTO-­VILARÓS et al.

3.2  |  Metabarcoding and parallel samples

Filtering of the metabarcoding samples allowed us to compare both 
classification approaches by focusing on the Arthropod Program 
focal groups. Manual sorting and classification of the parallel sam-
ples recovered 538 species with an associated BIN. During the wet 

season, the mean number of focal species per trap was 68 ± 3 while 
during the dry season we recovered an average of 65 ± 2 focal spe-
cies. As in the metabarcoding samples, the most abundant orders 
were Lepidoptera followed by Coleoptera and Hemiptera (Figure 3a). 
Figure  3b displays an ordination analysis showing the community 
(dis)similarity of arthropods between methods and seasons. As 

F I G U R E  1 Metabarcoding samples and seasonal variation. (a) Rarefaction curves showing the number of BINs relative to total sample 
reads, each curve represents one light trap-night for wet (blue) and dry (orange) seasons; (b) Diversity indices—Observed diversity and 
Shannon index for wet (blue) and dry (orange) seasons. **p-value < 0.05, ***p-value < 0.001; (c) BIN presence (%) of the most frequent 
insect orders in both seasons, each bar representing one light trap-night. Inset insect figures downloaded from phylo​pic.​com; (d) Principal 
Coordinate Analysis plot based on a Bray-Curtis distance matrix for samples collected in wet (blue) and dry (orange) seasons. Arrows indicate 
notable BINs (see Table S2) driving the differences between seasonal surveys based on presence/absence data for each season.
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expected, metabarcoding detected many more BINs, but when fo-
cusing on focal species, there was a considerable overlap between 
parallel and metabarcoding samples (382 BINs out of 538 ~70% 
overlap; Table 1). Despite the fact that manual sorting detected sev-
eral focal species BINs missed by the metabarcoding approach, the 
sheer quantity of BINs detected, from focal and non-focal groups, is 
a clear advantage of metabarcoding, with this overlap representing 
~30% of the total detection of focal samples only (Table 1).

3.3  |  Metabarcoding and Arthropod Program 
monitoring data

The first axis of the PCoA comparing classification methods between 
all of the Arthropod Program light-trap data (1120 trap-nights) and 
metabarcoding data (40 trap-nights) accounted for 15.63% of the 
variance (Figure  S4) with approximately 50% overlap of the 1263 
BINs recorded through manual classification (Table  2). Excluding 

F I G U R E  2 Seasonal differences in metabarcoding samples focusing on the three most abundant orders sampled via light-traps: 
Lepidoptera, Diptera, and Coleoptera. “Metacoder” heat trees indicate significant differences between presence/absence of BINs detected 
in each season. Terminal nodes of these trees represent a single BIN, while the size of internal nodes represents the number of BINs 
belonging to a given rank (e.g., family). Blue branches indicate more BINs during the wet season, orange branches indicate more BINs during 
the dry season. Gray indicates no significant difference between seasons. Bottom left panel shows the relative abundance of BINs for the 
main recovered families and a log-transformed Linear Discriminant Analysis (LDA) score for the most abundant families in each season in 
terms of BINs. Inset figures representing different orders were downloaded from phylo​pic.​com.
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non-focal groups from the analysis revealed that in most cases, 
even the limited number of metabarcoding trap-nights were able 
to detect several species not previously recorded by the traditional 
monitoring data (Table 2). There were notable exceptions, such as 
Geometridae and Crambidae, where although there was a high spe-
cies overlap between both methods, the traditional approach de-
tected more species than the metabarcoding approach (Table  2). 
PERMANOVA analyses reveal a clearly significant difference in com-
munity composition according to sampling methods; however, they 
do not reveal a significant difference between sampling sites dur-
ing either season (R2 = 0.165, F = 0.878, p-value = 0.794; R2 = 0.173, 
F = 0.930, p-value = 0.736 for the wet and dry seasons respectively). 
NMDS ordination plots visualizing these similarities are available as 
Figures S5 and S6.

4  |  DISCUSSION

Our study detected 4402 arthropod species from bulk collections 
using automated light-traps in a seasonal tropical forest. We were 
able to detect differences in species diversity between wet and dry 
seasons as well as sampling sites, and the taxonomic resolution ob-
tained allowed us to explore which families within the most abun-
dant orders drove the observed seasonal turnover. Metabarcoding 
has been successfully used to detect arthropod species richness 
and diversity across different soil layers (Porter et  al.,  2019), has 
demonstrated the complementarity of different sampling methods 
between above-  and below-ground habitats (Kirse et  al.,  2021), 
and has been used to estimate differences in arthropod diversity 

between host trees, as detected with eDNA extracted from rain-
water (Macher et  al.,  2023). It has been hailed as a reliable and 
cost-effective tool for biomonitoring diverse ecosystems (deWaard 
et al., 2019; Ji et al., 2013; Taberlet et al., 2012). However, classifi-
cation of barcodes fundamentally relies on the reference databases 
used to link barcodes to taxonomic names (Keck et al., 2023) and it 
has been shown to be most effective in cases where the biodiversity 
is well known (Ji et al., 2013). Many metabarcoding studies fail to re-
alize this perceived potential since, for the most part, they lack taxo-
nomic resolution beyond order (Zenker et al., 2020), particularly for 
lesser-studied groups such as invertebrates (e.g., Diptera; Chimeno 
et al., 2022; Sun et al., 2019).

Taxonomic limitations continue to be a major challenge for 
global biodiversity assessments and monitoring. With taxonomists 
themselves facing the risk of extinction, these limitations will con-
tinue to undermine biodiversity estimates, particularly of inverte-
brates (Hochkirch et al., 2022). The Barcode of Life (Ratnasingham 
& Hebert, 2007) database contains over one million sequences and 
is unique among sequence repositories due in part to the stringent 
procedures required for sequence deposition. The mBrave platform 
is a user-friendly platform that seamlessly integrates BOLD data-
bases and facilitates the construction of custom-made local and 
regional reference databases for barcode classification. Although 
the exclusive use of BINs may underestimate the overall diversity 
recovered with OTUs and their similarity to known taxa, we justify 
this approach on the basis that it allows us to confidently assign each 
recovered species to a vouchered BIN. Given our intention of im-
plementing metabarcoding as a long-term monitoring strategy, the 
certainty of recovering common species, which serve as indicator 

F I G U R E  3 Differences between metabarcoding (green) and parallel (purple) samples. (a) Relative abundance of the most frequent orders 
in both classification methods. Each bar represents a single night trap. Inset insect figures downloaded from phylo​pic.​com; (b) Principal 
Coordinate Analysis plot based on a Bray-Curtis distance matrix for samples classified using both methods and during both seasons. Arrows 
represent BOLD BINs which drive the difference between sampling methods.
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species for global change, outweighs the need to include every pos-
sible OTU.

We stress the centrality of establishing local and/or regional 
barcode reference libraries in maximizing the information gathered 
through high-throughput sequencing methods, particularly relevant 
for highly diverse and poorly known ecosystems. As is evident from 
the large number of BINs detected beyond the Arthropod Program's 
focal groups, our results depended on regional barcoding efforts 
such as the BioAlfa program from the Guanacaste Conservation 
Area in Costa Rica (Janzen & Hallwachs, 2016) and global barcoding 
projects such as the Global Malaise Program (Arribas et al., 2022; 
Geiger et al., 2016).

4.1  |  Seasonal and spatial variation in 
metabarcoding data

Incorporating inter-season sampling for monitoring protocols sig-
nificantly increases sampling effort and costs (Basset et al., 2015). 
Scaling up sampling with metabarcoding to multiple sampling nights 
and locations remains costly but with sequencing costs steadily 

decreasing, it will prove advantageous in the long term. Despite our 
study being limited to 20 light-trapping nights during each season, 
our results were robust enough to detect seasonal and spatial vari-
ation in arthropod communities. Insect diversity and abundance are 
directly related to temporal variation in temperature and resource 
availability and most tropical insects have their seasonal peak dur-
ing the wet season (Newell et al., 2023; Richards & Windsor, 2007; 
Wolda, 1980, 1988). Our results not only detected a greater number 
of species during the wet season, but we were also able to identify 
significant differences between sampling locations, and sampling 
days, further supporting metabarcoding as a cost-effective strategy 
to detect fine-scale differences in arthropod communities. Adding 
environmental variables to our analyses such as canopy cover, forest 
debris, and overall forest structure would allow us to identify which 
variables drive these local differences.

Accurate documentation of ecosystem dynamics requires well-
timed surveys. Long-term monitoring efforts rely on frequent 
sampling over seasons and years in order to capture phenological 
variation of arthropod emergence (Novais et  al.,  2016; Richards & 
Windsor,  2007; Wolda,  1980, 1988). Our sampling was performed 
over a single new-moon event for each season, and this represents 

Taxon Metabarcoding BIN overlap Parallel samples

Lepidoptera 749 318 121

Erebidae 268 93 33

Geometridae 117 75 15

Pyralidae 86 18 2

Crambidae 118 75 18

Noctuidae 41 7 4

Notodontidae 51 26 10

Lycaenidae 6 1 2

Saturniidae 4 15 24

Hesperiidae 4 1 5

Nymphalidae 3 0 0

Others 51 7 8

Coleoptera 100 25 4

Curculionidae 74 8 0

Scarabaeidae 26 8 3

Passalidae 0 9 1

Hemiptera 11 31 14

Reduviidae 6 18 11

Flatidae 5 13 3

Hymenoptera 48 6 11

Formicidae 42 3 6

Apidae and Halictidae 6 3 5

Blattodea (termites) 21 2 6

Total 929 382 156

Note: BIN overlap indicates the number of BINs that were detected through both methods. Counts 
include Arthropod Program focal groups collected with light traps but not all subfamilies within 
these represent focal groups.

TA B L E  1 BIN count for species 
identified through metabarcoding and 
through manual sorting.
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a rather short sampling window. By restricting our sampling fre-
quency and periodicity, we were likely to miss much of the diversity 
sampled in previous years through the Arthropod Program surveys. 
Indeed, we miss approximately 50% more if we focus exclusively on 
the monitoring program's focal groups. Repeated sampling, along 
with long-term monitoring protocols, which provide information on 
population dynamics (Lamarre et  al.,  2022), is indispensable for a 
proper metabarcoding-based biodiversity assessment at any local-
ity. Additionally, fine-scale taxonomic resolution, possible only by 
sequence association to known BINs, strengthens the use of me-
tabarcoding data for monitoring protocols as an alternative to manual 
sorting and identification since it integrates local, regional, and global 
databases. As barcode libraries continue to grow, the number of BINs 
recovered through long-term monitoring efforts will also increase, 
particularly when focusing on the less well-studied groups. By filtering 
our metabarcoding data to focal groups, it appears that the Arthropod 
Program has registered a comprehensive inventory of Barro Colorado 
Island. Continued efforts to manually sort and barcode new discover-
ies remain indispensable; however, the greatest strength in metabar-
coding is that it allows us to expand our range of focal taxa.

4.2  |  Unexpected guests

Even though light traps are mainly used for collecting nocturnal 
moths and beetles (Basset et al., 2020; Kitching et al., 2001), our re-
sults show that these traps were effective at collecting other orders, 
such as Diptera and Hemiptera. Although read number cannot be 
used as a proxy for taxon abundance (Ji et al., 2013; Luo et al., 2023; 
Yu et al., 2012), it is interesting to note that at one location during 
the dry season, the highest proportion of reads (~75%) belonged to 
Apoica pallens, a nocturnal eusocial wasp known for its swarming be-
havior, readily attracted to light traps (Warrant et al., 2006). The high 
number of reads recovered may be due to multiple wasps falling into 
the trap located near a nest (Filonila Perez, Yacksecari Lopez, Ricardo 
Bobadilla & José Alejandro Ramírez Silva, pers. obs.). Focusing on 
presence absence data alone, our analyses also detected several 
flightless species, which are probably hitchhiking on the bodies of 
other insects, which is likely the case for acari. Metabarcoding has 
been shown to detect prey sequences from within sampled insects 
(Toju & Baba, 2018). The presence of the little known parasitic in-
sect genus Myrmecolax (Strepsiptera: Mymecolacidae) suggests that 

TA B L E  2 BIN count for species identified through metabarcoding and through the 14-year Arthropod Program light-trapping monitoring 
protocol.

Taxon Metabarcoding BIN overlap Arthropod program data

Lepidoptera 542 525 492

Erebidae 226 135 120

Geometridae 57 135 95

Pyraliidae 74 30 6

Crambidae 48 145 131

Noctuidae 32 16 9

Notodontidae 49 28 19

Lycaenidae 5 2 8

Saturniidae 4 15 24

Hesperiidae 2 3 44

Nymphalidae 2 1 13

Others 43 15 23

Coleoptera 91 34 18

Curculionidae 71 11 2

Scarabaeidae 20 14 15

Passalidae 0 9 1

Hemiptera 5 37 34

Reduviidae 3 21 26

Flatidae 2 16 8

Hymenoptera 39 15 47

Formicidae 34 11 35

Apidae and Halictidae 5 4 12

Blattodea (Termites) 19 4 17

TOTAL 696 615 608

Note: BIN overlap indicates the number of BINs that were detected through both methods for each focal group. Arthropod Program counts include 
all BINs collected by the light-trapping sampling efforts though these do not all belong to the monitoring focal groups.
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we recovered DNA from either an adult free living male (which are 
usually rare), a juvenile male parasitizing an ant, or an endoparasitic 
female from within one of its potential hosts, known to belong to 
multiple orders (Kathirithamby et  al.,  2010). The presence of ants 
and termites is explained by alates attracted to the light trap. These 
examples, although conjectural, demonstrate that even though light-
traps were broadly designed for collecting specific groups attracted 
to light, metabarcoding not only revealed the possibility of speci-
men by-catch but could potentially reveal predator–prey and host-
parasitoid interactions (Šigut et al., 2017; Sow et al., 2019, 2020; Toju 
& Baba, 2018). Including additional sampling methods will undoubt-
edly complement these results, particularly when implementing soil 
sampling protocols (e.g., Winkler or pitfall traps) and flight-intercept 
traps (e.g., Malaise traps). Winkler and Malaise traps capture soil in-
habitants or immature flying arthropods and diurnal flying species 
respectively.

4.3  |  Metabarcoding and traditional monitoring

As expected, parallel sampling yielded fewer species than metabar-
coding samples, even when focusing on the Arthropod Program's 
focal groups. This is evident when considering the total species of 
microlepidoptera collected by either method, which are often dam-
aged in light-traps and thus difficult to identify through morphology. 
Partly, the mismatch between methods appears to be associated 
with species of the same genus (Talara, Diaphania) or groups notori-
ously difficult to identify (e.g., Semaeopus in Sterrhinae, other gen-
era within Chrysauginae and Spilomelinae; see Appendix S1). These 
sources of error have been observed in similar studies comparing 
metabarcoding and traditional sorting of insect communities col-
lected with light-traps (Mata et  al.,  2021). Similarly, the presence 
of unidentified cryptic complexes within the Arthropod Program 
collections may underestimate the true number of species that are 
readily detected through metabarcoding (Hebert et  al.,  2004; Ji 
et al., 2013; Lin et al., 2021).

Combining these metabarcoding data with total monitoring data 
from the Arthropod Program revealed a considerable overlap of both 
methods. Traditional sampling detected fewer species, accounting 
for more than 1000 light-trapping nights over the course of 14 years. 
On the other hand, 20 light-trapping nights per season over a single 
new-moon event yielded almost the same number of focal group 
BINs, with a ~50% overlap with the Arthropod Program long-term 
collections. This suggests that repeated sampling using metabar-
coding would capture the diversity detected by the Program as well 
as additional species that may previously have been overlooked. As 
mentioned above, light trapping is an ideal sampling method for noc-
turnal moths, which include some of the best studied groups in the 
region (Hausmann et al., 2020; Janzen & Hallwachs, 2016; Murillo-
Ramos et  al.,  2019). If we consider Geometridae, the Arthropod 
Program has recorded 230 BINs on BCI while metabarcoding de-
tected 29 additional BINs. This suggests that, at least for this group, 
sampling on BCI has so far been relatively comprehensive. When 

we focus on Saturniidae, metabarcoding identified four BINs, which 
so far have not been recorded by the Arthropod Program. This 
family includes large moths, which due to their size are not readily 
collected by automatic bucket traps, and so it is likely that manual 
sorting may have missed these species (Basset et al., 2017). On the 
other hand, DNA metabarcoding is likely to detect these species as 
scales or wing fragments may have fallen into the trap when individ-
uals attracted to the light bounce into the intercept panes (Patzold 
et al., 2020; Rose et al., 1994).

5  |  CONCLUSIONS

Our study demonstrates the standalone capacity of metabarcod-
ing to detect seasonal and spatial variation in arthropod diversity 
based on a low sampling effort; in our case 20 non-consecutive light 
traps in a single new-moon event per season in 10 different localities 
within the ForestGEO's 50-hectare plot. Detecting spatiotemporal 
differences in species diversity is one of the minimum requirements 
for a successful monitoring program (Montgomery et  al.,  2021). 
Our study successfully detected seasonal and site variation in spe-
cies diversity and allowed us to identify which families were most 
prominent during each. Additionally, we were able to detect differ-
ences of arthropod communities between sampling localities during 
the wet season, and sampling nights during the dry. It is well known 
that microhabitat conditions influence community composition, and 
detecting these fine-scale differences greatly strengthens the ap-
plication of metabarcoding to biomonitoring programs. Perhaps one 
of the biggest bottlenecks for arthropod monitoring relates to the 
time and effort spent in the sorting and identification steps, which 
significantly increases for every additional sample and replicate. The 
scalability of metabarcoding allows for a higher number of yearly 
replicates without the temporal and financial burden of manual sort-
ing and identification. We detected a considerable number of spe-
cies based on Barcode Index Numbers, which permitted a level of 
taxonomic resolution not often seen in DNA metabarcoding studies 
in highly diverse tropical forests. This level of resolution, however, 
was only possible by making use of the extensive international bar-
code data that is available. As metabarcoding studies gain popular-
ity, and considering the thousands of species awaiting description, it 
is of utmost importance that the scientific community continues its 
ongoing efforts to populate barcode databases. These databases are 
essential in delivering on the promise of metabarcoding as a cost-
effective tool for biodiversity monitoring and assessment.
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