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Abstract: The study aimed to quantify carcass fat and protein retention, and the efficiency of carcass
energy utilization (Kre) resulting from feeding broiler chickens diets containing wheat, maize or
mixtures of both as the major cereal ingredient. The apparent metabolizable energy (AME) of the
four cereal samples was determined in adult cockerels. There was a linear (p < 0.001) increase in
AME with increasing amounts of maize within the four cereal mixtures, with analyses indicating
that the AME of maize was 1.4 MJ/kg greater than that of wheat. A second bioassay with growing
chickens was used to determine Kre in each cereal, measured as carcass fat and protein from 7 to 21d
age. Increasing proportions of maize resulted in linear increases in carcass fat and energy retained
from fat (p < 0.001). However, the carcass protein and energy retained from protein did not follow
the same pattern as fat (p = 0.121), but rather decreased numerically (L = 0.032). The Kre tended
(p = 0.060) to increase with greater proportion of maize in a linear fashion (L = 0.009). Although AME
values of cereals were confirmed to be additive, this could not be confirmed for Kre. This data can be
used for optimizing energy utilization models for growing broilers.
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1. Introduction

Feed materials, such as wheat and maize, are known to be major variables when formu-
lating poultry diets, as their nutrient profile and quality are often inconsistent and deviate
from default values used by feed formulation software [1]. Additionally, the feed industry
has access to a wide range of feedstuffs and the use of a particular ingredient will often
depend on its cost, since least cost formulation algorithms are the industry standard [2].
Whilst commodity ingredient prices fluctuate with market forces, the nutrient composition
and available energy content are still the main considerations for nutritionists [3]. Therefore,
it is important that accurate predictions of bioavailable energy and nutrient content are
available.

When formulating diets for poultry and pigs, it is accepted that the energy and nutri-
ents in dietary ingredients can be added together to supply the required nutrient brought
by the diet [4]. The concept of nutrient additivity in diets was studied in swine [5,6],
broilers [7–9] and ducks [10]. However, these authors pointed out that the metabolizable
energy and amino acid values may not always be additive due to some associative effects.
Apparent metabolizable energy (AME) is the most used system to describe the available energy
concentration in poultry feeds [11–14]. However, even if diets are formulated to contain the
same AME, the efficiency of AME utilization when fed to poultry may differ [15,16]. Different
metabolizable nutrients (protein, fat and carbohydrate) are utilized with different relative
efficiencies for energy deposition [17–20] and some apparently available nutrients may
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be fermented in the lower digestive tract. For example, values obtained by AME system
usually underestimate the efficiency of utilization of fats and fat-rich ingredients but overes-
timates protein-rich feedstuffs when compared to carbohydrates [18]. In addition, research
in feeding wheat to broilers [21] found no differences in determined AME concentrations of
the experimental samples, although there was a difference in efficiency of energy retention
that was partially explained by the wheat viscosity. However, even small differences in
the efficiency of dietary energy and nutrient utilization may be economically important
in the commercial poultry meat industry. Understanding energy and nutrient retention is
therefore required in the era of precision feeding.

Cereals or other high starch feedstuffs are the main component in many practical
poultry diets and are used mainly to satisfy the energy requirement of the animals [2,22].
Dietary available energy accounts for approximately half the economic cost of broiler
chicken feed. Although a wide variety of grains are available for use in diets, wheat
and maize are the two main raw materials predominantly used worldwide [22–24]. In
modern cultivars, the AME of wheat can be in the range of 13.5 to 15.8 MJ/kg DM and
in maize between 14.5 and 16.3 MJ/kg DM [22–26]. The AME content is the main factor
that determines the economic value of cereal for poultry. The AME of wheat is somewhat
lower than maize, predominantly because wheat has a lower oil content and a greater
proportion of total non-starch polysaccharides (NSP) than maize [27]. Feed constituents
such as NSP can reduce nutrient and energy availability and are subsequently classified as
antinutrients because they reduce the feeding value of those feedstuffs [23,28,29]. Greater
NSP content in cereals, particularly wheat, are associated with higher intestinal digesta
viscosity, which is also known to negatively impact available energy, nutrient availability
and growth performance [30–32].

Research is therefore needed to determine available energy and nutrient utilization
accurately and precisely, accounting for the complexity of antinutritional factors. The
objectives of the present study were therefore to quantify the carcass fat and protein
retention, and differences in the efficiency of carcass energy retention resulting from feeding
broiler chickens diets containing either wheat, maize or graded levels of both as the major
cereal ingredient. A further objective was to determine the AME of the four cereal levels and
examine the relationship between AME supply from wheat and maize, and the efficiency
of carcass energy retention.

2. Materials and Methods
2.1. Laboratory Analysis

Single batches of wheat and maize were obtained. The cereals were ground to pass a
4 mm screen. Dry matter (DM) was determined by drying in a force draft oven at 100 ◦C
for 24 h. Crude protein (N × 6.25) in the samples was determined by the Kjeldahl method,
using a Kjeltec 1035 Autoanalyzer (Perstorp Analytical, Hoganas, Sweden) [33]. Oil (as
ether extract) was extracted with diethyl ether by the Soxhlet method (HT 1043 Extraction
Unit, Perstorp Analytical, Hoganas, Sweden) [33]. The content of non-starch polysaccha-
rides (NSP) was measured using the method proposed by Englyst and Cumming [27].
Colorimetric measurements were performed on a Beckman DU-640 Spectrophotometer
(Beckman Instruments, Inc., Arlington Heights, IL, USA). Gross energy (GE) of the cere-
als was measured using a Parr isoperibol bomb calorimeter (Parr-6200, Parr Instruments
Company, Moline, IL, USA). Water extract viscosity (in vitro) was measured as follows: 2 g
of each cereal sample were soaked in a tube containing 4 mL distilled water (40 ◦C water
bath) for 30 min. The tube was centrifuged (10,000× g for 2 min), left for 15 min at room
temperature, then a 0.5 mL aliquot was taken from the liquid portion in each of the tubes.
The viscosity of this supernatant was measured in centipoise (cP) units using a rotating
cone and cup viscometer (model DV-II þ LV, Brookfield, Stroughton, MA, USA).
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2.2. Bioassays

Two experiments were conducted at the National Institute of Poultry Husbandry
(NIPH), Harper Adams University. Four cereal samples were used in the experiments.
Ground wheat and maize samples were used. Two additional dietary samples were
produced by blending 333 g/kg ground maize with 667 g/kg ground wheat or 333 g/kg
ground wheat with 667 g/kg ground maize.

2.2.1. Apparent Metabolizable Energy

Apparent metabolizable energy was determined by a precision-feeding procedure
that was adapted from the method described by McNab and Blair [34]. Twenty-four
individually caged ISA Brown cockerels were kept in individual cages (0.6 m × 0.7 m floor
area), at a constant house temperature of 16 ◦C with 16 h of light per day. The birds had
previously been fed ad libitum with a nutritionally complete proprietary feed. All feed was
removed on the first day of the bioassay, although the birds were allowed water ad libitum.
After 24 h, each cockerel had 50 mL of a sucrose solution (600 g sucrose/L water) placed
through a tube into its crop. After a further 24 h, 50 g of one of the four cereal samples
was also placed into the bird’s crop. Each cereal sample was randomly assigned to one of
six replicate birds in a randomized block design. After a further 24 h, all birds were given
50 mL water by tube. The cockerel’s droppings were collected for 48 h after feeding. The
droppings were then dried at 60 ◦C before gross energy and nitrogen analysis. Apparent
metabolizable energy was determined as the difference between gross energy intake and
the gross energy in the droppings per kg of feed intake as previously described [35].

2.2.2. Carcass Energy Retention

Carcass energy retention from the four cereal samples was determined in broiler
chickens from 7 to 21 days of age. A basal feed was formulated (Table 1). Previous
studies [21] had indicated that this diet formulation was given to 7–21 day old broiler
chickens.

Table 1. Ingredient composition of the basal diet for determination of broiler chicken carcass energy
retention.

Ingredients (g/kg) Control

Wheat 300
Maize gluten meal 33.3
Hulless soya bean meal 83.3
Full fat soya 433.3
Fish meal 83.3
Lysine HCl 3.33
Methionine 5.0
Dicalcium phosphate 25.0
Vitamin mineral premix 1 33.33
Total 1000
Calculated analysis
AME MJ kg−1 DM 13.2
Crude protein g kg−1 DM 342
Lysine g kg−1 DM 23.1
Methionine + cystine g kg−1 DM 15.1
Calcium g kg−1 DM 19.3
Phoshorus g kg−1 DM 12.2
Sodium g kg−1 DM 4.0

1 The Vitamin mineral premix contained vitamins and trace elements to meet the requirements specified by
NRC [36]. The major components were: Phosphorus 95 g kg−1, methionine 50 g kg−1, calcium 219 g kg−1,
sodium 30 g kg−1, copper sulphate 0.5 g kg−1, selenium 10 g kg−1, retinol acetate 0.275 g kg−1, cholecalciferol
625 mg kg−1, alpha tocopherol 2.273 g kg−1.



Poultry 2024, 3 88

At 50% of ad libitum intake, the birds were healthy and had a slow growth rate. The
basal feed was mixed with one of the four cereal samples (ground maize, ground wheat
or two mixtures comprising different proportions of the two cereals (as described for the
AME bioassay)). The basal feed and cereal mixture comprised of 50 parts basal feed added
to 40 parts of the cereal sample.

One day old female Cobb 500 chicks were purchased from a commercial hatchery
(Cyril Bason Ltd., Craven Arms, UK) and placed in a single floor pen for 5 days. All birds
were fed a proprietary broiler starter feed during this period. After five days, birds were
placed in cages and continued on the same feed for two further days. Feed and fresh
water were provided ad libitum. At 7d of age, birds in the upper and lower quartiles of
body weight were removed to reduce variation in the experimental material. The average
body weight of broilers at this point was 0.149 kg (STDEV ± 0.0162), carcass dry matter of
0.260 g/kg and dry carcass gross energy of 24.98 MJ/kg. These obtained values were used
to calculate the energy retention of 7d old birds at the beginning of the study.

Following randomization and blocking (spatial within cage tiers), two of the retained
birds were placed into each cage (60 cages total). The birds were given a restricted amount
of feed daily. For four of the treatment groups used for the determination of carcass en-
ergy retention when feeding cereal/blend samples, restriction was 90% of the previously
determined birds’ ad libitum feed intake (740 g for the 14d feeding period with increas-
ing amounts allocated each day) [21]. Each bird therefore received feed that comprised
420 g basal feed and 320 g cereal/blend sample over the 14d feeding period. Chicks in the
fifth treatment group (control group) were fed the basal feed alone with a daily amount
determined to be a 50% restriction from ad libitum feed intake [21]. Each of these birds
therefore received feed that comprised just 420 g basal feed over the 14d feeding period.
For each carcass energy retention determination of each experimental treatment group,
12 cage replicates were used.

At the end of the feeding period all the birds were weighed and then killed by cervical
dislocation. The whole carcasses of both birds from each cage, including feather, intestine,
legs, head and beak, were ground, homogenized and sampled [21]. Following freeze-drying
and milling of the samples, crude protein and crude fat (ether extract) were determined.
Each bird in the experiment ate the same amount of basal feed (420 g over the 14d feeding
period). The effect of the four different cereal samples on carcass energy retention was
therefore described by determining the amount of carcass fat and protein retained in these
birds (90% feed restriction) and deducting it from the carcass fat and protein retained by
the mean of the birds fed the basal feed alone (50% feed restriction). Four dietary treatment
groups were therefore compared. The total carcass energy retention (RE) was obtained as a
difference in energy retained in the carcasses at 21d, adjusting for the values pertaining to
the 7d old birds as previously measured using the equation below:

REf (MJ carcass) = REf 21d − REf 7d
REp (MJ carcass) = REp 21d − REp 7d
RE (MJ carcass) = [(REf 21d − REf 7d) + (REp 21d − REp 7d)]
REf (MJ)—energy retained as carcass fat at 21 and 7d, respectively (39.12 MJ/kg)
REp (MJ)—energy retained as carcass protein at 21 and 7d, respectively (23·6 MJ/kg)

The energy retention resulting from the additional intake of the test cereal only (REc)
was then calculated using the following equation:

REc (MJ kg−1 cereal) = [(REf 90% − REf 50%) + (REp 90% − REp 50%)]/W
REf 90%—energy retained as carcass fat in birds fed at 90% restriction (39.12 MJ/kg)
REf 50%—energy retained as carcass protein in birds fed at 90% restriction (39.12 MJ/kg
REp 90%—energy retained as carcass protein in birds fed at 90% restriction (23.6 MJ/kg)
REp 50%—energy retained as carcass protein in birds fed at 50% restriction (23.6 MJ/kg)
REc (MJ)—energy retained in carcass attributed to cereal only
W—Amount (kg of dry matter) of the experimental cereal sample included in diets fed
with 90% restriction



Poultry 2024, 3 89

Efficiency of AME use for energy retention Kre = REc/AME intake.
The values 39.12 and 23·6 MJ/kg are GE values (constants) per kilogram of fat and

protein, respectively, derived by Okumura and Mori [37].

2.3. Statistical Analyzes

The data were statistically analyzed using the general ANOVA procedure of Genstat
(23rd edition, VSN International Ltd., Oxford, UK), in a randomized block design. Addition-
ally, the effects of the four cereal/blend samples on determined AME and broiler chicken
carcass energy deposition were partitioned into their linear and quadratic effects using
orthogonal polynomial contrasts. In all instances, differences were reported as significant
at p < 0.05 and trends were noted when the p value was ≥0.05 but <0.1. Data were checked
for normality and homogeneity of residuals prior to parametric tests.

3. Results

The determined nutrient compositions of the wheat and maize samples are detailed
in Table 2. Wheat samples had greater CP, less fat and a threefold increase in soluble NSP
that was reflected in the higher in vitro viscosity values. There was a linear (p < 0.001)
increase in AME with increasing amounts of maize within the four cereal mixtures, with
the analysis indicating that the AME of maize was 1.4 MJ/kg (SE = 0.0568) greater than that
of wheat (Table 3). Table 4 details cereal intakes and carcass composition of chickens fed
the experimental diets. The birds in the broiler carcass energy retention experiment ate all
feed that was offered each day. There were no (p > 0.05) differences in growth performance
although the birds fed maize tended (p = 0.074) to have higher weight gains.

Table 2. Determined laboratory analysis of the wheat and maize samples *.

Laboratory Measurements Wheat Maize

Dry matter (g/kg−1) 855 857
Crude protein (N × 6.25)
(g/kg−1 DM) 128 84

Crude fat (g/kg−1 DM) 21 33
Gross energy (MJ/kg−1 DM) 18.41 18.60
Total Non-Starch
Polysaccharides (g/kg−1 DM) 106 82

Suluble Non-Starch
Polysaccharides (g/kg−1 DM) 35 11

Viscosity (cP) 3.2 1.7
* All analyses were performed in technical duplicates.

Table 3. Determined apparent metabolizable energy (AME MJ/kg−1 DM) of four cereal samples
(n = 6) for broilers.

Item Wheat Cereal Mixtures Maize SEM Probability of Differences

0.67 Wheat
0.33 Maize

0.33 Wheat
0.67 Maize p-Value L Q

AME 13.39 13.73 14.25 14.77 0.253 0.007 <0.001 0.731

SEM: pooled standard error of the mean; p-value: Fisher probability; L: linear response; Q: quadratic response.
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Table 4. Cereal/blend intakes and carcass composition of chickens fed four cereal-based diets.

Item Basal Feed Basal + Wheat
Basal + 0.67

Wheat
+ 0.33 Maize

Basal + 0.33
Wheat

+ 0.67 Maize
Basal + Maize SEM p-Value *

Feed allocation 50% restrict 90% restrict 90% restrict 90% restrict 90% restrict - -
Basal feed intake of bird
(kg of DM bird−1) 0.420 0.420 0.420 0.420 0.420 - -

Test cereal intake of bird
(kg of DM bird−1) - 0.320 0.320 0.320 0.320 - -

AME intake from test
cereals (kg of DM bird−1) - 4.28 4.39 4.56 4.73 - -

Live weight of bird at 7d
(kg bird−1) 0.150 0.150 0.153 0.147 0.145 0.0041 0.752

Carcass GE at 7d old (MJ
kg−1 DM) 0.97 0.98 0.99 0.95 0.94 0.027 0.752

Live weight of bird at 21d
(kg bird−1) 0.393 0.605 0.609 0.604 0.612 0.0045 0.074

Carcass GE at 21d old
(MJ kg−1 DM) 21.10 24.04 24.28 24.54 24.86 0.107 0.074

Total carcass dry matter
(g/g) 0.100 0.174 0.179 0.181 0.185 0.0015 0.276

Total carcass fat at 21d
old (g bird−1) 2.12 4.19 4.34 4.46 4.60 0.045 0.131

Total carcass protein at
21d old (g bird−1) 73.2 105.4 103.8 104.2 102.2 0.922 0.321

AME: apparent metabolizable energy; DM: dry matter; GE: gross energy; MJ: megajoules; SEM: pooled standard
error of the mean; p-value: Fisher probability; * The comparison does not include the values for the basal feed
only.

Increasing proportions of maize resulted in linear increases in carcass fat and energy
retained from fat (p < 0.001). There were also linear (L = 0.032) decreases in carcass protein
and energy retained from protein, although these were not significant (p = 0.121) (Table 5).
Overall, birds fed maize as a cereal source retained 18.1% more (p < 0.001) carcass energy
than birds fed wheat, however, the determined AME of these two cereals indicated that the
maize had a 10.5% greater AME concentration (Table 3). The efficiency of carcass energy
retained (Kre) tended (p = 0.060) to increase with greater proportion of dietary maize in a
linear fashion (L = 0.009) (Table 5).

Table 5. Derived carcass energy deposition attributable to the additional dietary cereal intakes
(relative to birds fed basal feed only) of broiler chickens.

Item Wheat Cereal Mixture Maize SEM Probability of Differences

0.67 Wheat
0.33 Maize

0.33 Wheat
0.67 Maize p-Value L Q

Carcass fat from cereals
(g bird−1) 32.7 38.6 40.4 44.1 0.11 <0.001 <0.001 0.320

Carcass GE from fat (MJ) 1.28 1.51 1.58 1.72 0.043 <0.001 <0.001 0.320
Carcass protein from cereals

(g bird−1) 32.2 30.6 31.0 29.0 0.92 0.121 0.032 0.793

Carcass GE from protein (MJ) 0.76 0.72 0.73 0.68 0.022 0.121 0.032 0.793
Carcass GE from fat and

protein (MJ) 2.04 2.23 2.31 2.41 0.052 <0.001 <0.001 0.353

RE (MJ kg−1 DM) 7.45 8.15 8.44 8.79 0.189 <0.001 <0.001 0.353
Kre 0.564 0.589 0.598 0.612 0.012 0.060 0.009 0.610

GE: gross energy; MJ: megajoules; RE: total carcass energy retained; Kre: efficiency of carcass energy utilization;
SEM: pooled standard error of the mean; p-value: Fisher probability; L: linear response; Q: quadratic response.

4. Discussion

The chemical composition of the two cereal samples were in the expected ranges and similar
to the mean of the feed wheat and maize samples [22,24,25,38–40]. The determined AME of the
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maize and wheat were also comparable to previously published data [22,24,25,38–40]. Increasing
proportions of maize in the cereal mixtures gave a linear increase in the determined AME
and this indicates that the AME contribution of the different cereals within the mixtures
were additive. Dale and Fuller [41] and Hong et al. [10] also reported a satisfactory degree
of additivity of metabolizable energy values for both cereals and high protein feeds.

The primary objective of this study was to examine whether there are differences
in efficiency in the use of the AME provided by wheat and maize. Empirical [18] and
modeling [19,20] data suggest that maize would have a higher efficiency of energy utiliza-
tion since maize has a higher content of oil, which has a higher efficiency of utilization
than carbohydrates or proteins [18]. In the present study, maize was confirmed to have a
1.4 MJ/kg advantage over wheat in AME. Wheat has a higher content of NSP and would
be expected to increase the amount of intestinal bacterial fermentation [42,43]. Diets with a
high NSP content can reduce the rate of feed passage which may influence gut development,
increase in vivo digesta viscosity and encourage the proliferation of microflora in the small
intestines [44–46]. Not only can such bacteria ferment and utilize carbohydrate and protein,
therefore competing with the host for nutrients [47], but some species secrete enzymes that
lead to deconjugation of bile acids resulting in an impairment of lipid digestion and ab-
sorption [48,49]. Furthermore, an increase in gut microflora proliferation may also increase
the proportion of nutrients that are fermented within the lumen of the digestive tract, thus
resulting in a higher heat increment of digestion and thus reducing the amount of dietary
energy available for carcass energy retention. Muramatsu et al. [50] demonstrated that
conventional chickens had an increased heat production relative to germ-free chickens
because of their increased microbial proliferation. Different microbial profiles attributed
to wheat and maize, due to differing NSP content and digesta viscosity, may therefore be
important variables when modeling dietary retention. The age of the birds may also play
an important role since the AME values obtained with broilers tended to be slightly lower
than for roosters or poults [41,51]. Research with ad libitum fed broilers [51] also showed
that metabolizable to digestible energy ratio was lowest at 7d of age and higher in birds fed
on maize-based compared to those fed on wheat-based diets. Thus, further confirming the
potential importance of dietary NSP and age of experimental birds.

The bioassay used in the present experiment contained one group of birds fed a
restricted amount of basal feed and four other treatment groups that were given exactly the
same amount of basal feed but supplemented with one of four additional straight cereals
or mixtures. The additional carcass fat and protein retention could then be related directly
to the additional nutrient supply of the four test mixtures. The restricted feeding method
ensured that the feed intakes were as planned.

Research has found a negative relationship between dietary AME and its pentosan/NSP
content [44,47,51–54], which was supported in this study. However, there was no significant
effect of increasing maize levels/reduced NSP content on the Kre although there was a
trend for a relatively small linear increase. The lack of a negative relationship between Kre
and NSP was unexpected. However, the restricted feeding in this study may be a reason for
the relatively low NSP intake, thus preventing possible impact on the rate of feed passage,
in vivo digesta viscosity and microbial proliferation. The birds fed increasing amounts of
maize, i.e., reduced dietary NSP, retained increasing amounts of carcass fat and numerically
decreasing amounts of carcass protein. These birds had increasing AME intakes and so
any energy intake above the bird requirements would have been deposited as fat. The
ME:GE ratio of maize was 0.794 compared to 0.727 for wheat, which represents a 9.2%
advantage for maize. The numerical reduction in the amount of carcass protein, whilst not
significantly different, was not expected, even though the maize sample had less protein
than the wheat sample. The basal feed was formulated (343 g/kg crude protein, with
67 g/kg CP of lysine and 44 g/kg methionine plus cystine) so that the overall diets did not
limit the birds’ abilities to deposit lean tissue. The total reduction in carcass protein was
not large, as there was only a range of 3.2 g between the four dietary treatments, whilst
there was a difference of 14 g (184 vs. 170 g/bird) in dietary crude protein intakes over the
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experimental feeding period. However, the experiment demonstrates that growing broiler
chickens vary the relative proportions of carcass fat and protein deposition depending on
the nutrient composition of their dietary energy supply. MacLeod [55] also demonstrated
that the growing fowl responded to differences in dietary nutrient and energy intakes
by varying the rate of energy deposition as fat and protein. Thus, it is important that
nutritionists understand differences in energy deposition as fat and protein based on the
cereals selected in dietary formulations.

5. Conclusions

The present study confirmed the energy utilization of maize and wheat for growing
chickens. Furthermore, AME values of both cereals were confirmed to be additive. There
were different AME intakes from feeding the different cereal samples, however, the ef-
ficiency in the use of energy for carcass energy retention only tended to be numerically
higher, therefore not conclusively confirming or refuting an additive relationship for Kre.
The information provided by this study can be used to improve models of energy utilization
of different cereal sources for poultry. To further improve the practical diet formulations for
broiler chickens, experiments with a wider variety of feedstuffs and comparison between
different feeding techniques are needed.
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