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Abstract 

Research suggests autonomous machines in open field arable farming can enhance 

biodiversity conservation and ecosystem services restoration. It is hypothesized that 

autonomous equipment could be a profitable alternative to conventional machines with 

human operators irrespective of field size and shape or cropping systems. However, lack 

of agronomic, economic and technical data has constrained economic assessment. 

Noting this, this study evaluated the economics of field size and shape, and mixed 

cropping with autonomous machines using the Hands Free Hectare and Hands Free Farm 

(HFH&HFF) demonstration experience of Harper Adams University, UK. Using the Hands 

Free Hectare Linear Programming (HFH-LP) optimization model results indicated that 

autonomous machines in British farming decreased wheat production cost by €15/ton to 

€29/ton for small rectangular fields and €24/ton to €46/ton for small non-rectangular fields. 

Sensitivity scenarios of increasing wage rates and labour scarcity shows that autonomous 

farms adapted easily and profitably to changing scenarios, whilst conventional 

mechanized farms struggled. The ex-ante economic analysis of corn-soybean strip 

cropping in the North American Corn Belt of Indiana found that per annum return to 

operator labour, management and risk-taking (ROLMRT) was $568.19/ha and $162.58/ha 

higher for autonomous strip cropping as compared to whole field sole cropping and 

conventional strip cropping. Conventional strip cropping was only feasible with a 

substantial amount of labour availability. The ex-ante economic analyses of wheat - barley 

- flower mix - spring bean regenerative strip cropping practices show that for Great Britain 

autonomous regenerative strip cropping ROLMRT was £57,760 and £25,596 higher 

compared to whole field sole cropping and conventional regenerative strip cropping 

practices. The profitability of autonomous machines in small fields irrespective of field size 

and shape, strip cropping systems and regenerative practices imply that autonomous 

machines could offer a win-win farming solution that help achieve the production and 

environmental goals of arable farming. 



 

1 General introduction 

Chapter 1 

General introduction 

 

“Autonomous field management represents the next evolutionary step in agricultural 

technology. ... The integration of multifaceted objectives into a common decision-making 

process poses a great challenge to human farmers and their capacities. Liberated from 

labour constraints, autonomous systems have the potential to align decisions with the 

complex requirements of multiple − even contradicting – goals more easily, and to execute 

them accordingly without exhaustion.” 

 

  Gackstetter et al. (2023): Agricultural Systems, 206, p.103607. 

 

1.1 Introduction 

Robotics and autonomous systems (RAS) for arable open-field crop farm operations are 

being introduced worldwide to reduce social, economic and environmental costs of 

farming (Duckett et al., 2018; Rose and Chilvers, 2018; Lowenberg-DeBoer et al., 2021a; 

Pearson et al., 2022). The robots for livestock rearing (e.g., performing operations like 

milking, feeding, barn cleaning and silage handling) have developed more rapidly as this 

technology is similar to industrial robots and requires less mobility and decision-making 

capacity due to the structured environment. The pioneers among crop robots were the 

greenhouse robots operated on rails in a controlled environment (Lowenberg-DeBoer et 

al., 2020; Daum, 2021). However, the farming environment of arable open-field crops is 

more complex and unstructured. Arable crop farm operations depend on the risk and 

uncertainty of weather, soil attributes, travelling between fields, rolls and slopes, and other 

farm level challenges, and legal and policy constraints (Bechar and Vigneault, 2016; 

Grieve et al., 2019; Fountas et al., 2020; Shockley et al., 2021; Kubota, 2023). 

 

Open-field crop robots are currently used for agricultural tasks (i.e., land preparation, 

transplanting, seeding, plant protection, weed control and harvesting) and supporting 

tasks (i.e., guidance, navigation, mapping, and localization) to maximize production, and 

environmental and food safety (Bechar and Vigneault, 2016; Bellon-Maurel and Huyghe, 

2017; Davies, 2022; Finger et al., 2019). The development of mechatronic technology, 

information and communication Technology (ICT), increasing agricultural labour scarcity 

and higher demand for food and nutritional security has pushed arable crop farming 

towards crop robotics (Duckett et al., 2018; Lowenberg-DeBoer et al., 2020). Arable farm 
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machines having some autonomy and mobility in operations are simultaneously termed 

‘robots’, ‘field crop robots’, ‘automated machines’, and ‘autonomous machines’.  

 

The term ‘robots’ refers to the equipment with decision making capacity through the use of 

artificial intelligence (AI) (Kyriakopoulos and Loizou, 2006; Lowenberg-DeBoer et al., 

2021a). In this study ‘field crop robot’ indicates “a mobile, autonomous, decision making, 

mechatronic device that accomplishes crop production tasks (e.g., soil preparation, 

seeding, transplanting, weeding, pest control and harvesting) under human supervision, 

but without direct human labour”. The term ‘automated machines’ refers to the partially 

robotized mechatronic technology that accomplish arable field operations such as 

seeding, weeding, and harvesting, but with mobility assured by a human operator 

(Lowenberg-DeBoer et al., 2020). In this study ‘autonomous machines’ (or ‘autonomous 

crop robots’ or ‘autonomous crop machines’) are a subset of field crop robots which have 

autonomy in arable field operations using predetermined field paths and itinerary often 

with relatively little decision-making capacity.  

 

Autonomous machines are precision agriculture (PA) technology because they have the 

potential of cost effectively increasing the precision of input applications and to collect 

very detailed data on agricultural production. Autonomous machines considered in this 

study are modelled on the arable field crop machines of the Hands Free Hectare (HFH) 

(https://www.handsfree.farm/) project demonstrated at the Harper Adams University 

(HAU) in the UK (Hands Free Hectare (HFH), 2021). The HFH autonomous machines are 

also labelled as ‘swarm robots’ (or ‘swarm robotics’) because multiple units of smaller 

equipment were used to accomplish arable farm operations that would typically be done 

by a larger conventional machine with a human operator (Lowenberg-DeBoer et al., 

2021a). 

1.2 Autonomous machines for arable field crops  

Worldwide autonomous machines for arable field crops are in an early wave of the 

development and commercialization processes (Shockley et al., 2021; Lowenberg-

DeBoer, 2022b). The market for autonomous machines is expanding with a robust growth 

in large and medium scale farming contexts, such as Australia, the UK, US and European 

Union. Research in the US and UK found that small and medium sized farms could 

purchase low cost small autonomous machines as such farms are potentially profitable 

with autonomous farming (Shockley, Dillon and Shearer, 2019; Lowenberg-DeBoer et al., 

2021a). Autonomous machines could be the future of arable farming (Hekkert, 2021). 

Recent market report shows that autonomous machines manufacturers are investing 

substantially in research and development of equipment where industry players expect 

https://www.handsfree.farm/


 

3 General introduction 

that the market for autonomous machines would be a US$ 150 billion industry by the near 

future in 2031. The report also pointed out that apart from large and medium scale 

farming, smallholders farming could be the thriving market for autonomous tractors and 

harvesters (Claver, 2021).  

 

The interest in autonomous machines is increasing in smallholder’s contexts because of 

the challenges of agricultural labour scarcity, aging of farmers, reluctance of young people 

to choose agriculture as a career and their desire for off-farm employment opportunities in 

the city (Feike et al., 2012; Yanmar, 2017; Tofael, 2019; Devanesan, 2020; Al-Amin and 

Lowenberg-DeBoer, 2021; World Bank, 2021a). Recent market reports identified that the 

autonomous equipment market for smallholders is swelling dramatically (Devanesan, 

2020; Xinhuanet, 2020; Business Wire, 2021; PR Newswire, 2022). Countries like China 

and Bangladesh are taking initiatives for rural revitalization strategies, national 

digitalization vision and smart farming strategy that include automation (Business Wire, 

2021; Bangladesh Delta Plan, 2018; Al-Amin and Lowenberg-DeBoer, 2021; Globe 

Newswire, 2022; Al-Amin, Lowenberg-DeBoer and Mandal, 2023). Among smallholders of 

Asia, more proactive autonomous on-field trails have been demonstrated by universities, 

research institutes, and agribusinesses in Japan (Farm Equipment, 2021; Ministry of 

Agriculture Forestry and Fisheries (MFF), 2022; Nature, 2022; Yanmar, 2022), China 

(New China, 2018; Aguilar, 2021; Qin, 2021), Philippine (Bautista et al., 2021) and 

Thailand (Precision Farming Dealer, 2022c). 

 

Apart from developing new machines, retrofitting conventional machines for autonomy has 

received growing attention worldwide (Karsten, 2019a; Koerhuis, 2021a; Azevedo, 2022; 

Lowenberg-DeBoer, 2022b; Torres, 2022). Agribusiness innovators have been marketing 

retrofit kits for autonomy (Andrews, 2020; Advanced Navigation, 2022; Claver, 2022a; 

Future Farming, 2022; Precision Farming Dealer, 2022a; Sveaverken, 2022). 

 

Autonomous machines as a service model (i.e., custom hire service) has also been 

initiated by service companies (Claver, 2020a, Claver, 2022d; Wilde, 2020). Academics 

and researchers hypothesized that part of the future market may be captured by the 

service model, like Uber or other modes of custom hire services (Lowenberg-DeBoer et 

al., 2020; Al-Amin and Lowenberg-DeBoer, 2021; Daum, 2021; Al-Amin, Lowenberg-

DeBoer and Hasneen, 2022; Al-Amin et al., 2023).  

 

The initial development of autonomous machines for arable field crops were prototypes 

that were demonstrated by universities and research institutes on parking lots and 

playgrounds. A few on-field trials were carried out for specific crop(s) and/or operation(s) 
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(Lowenberg-DeBoer et al., 2020; Lowenberg-DeBoer, 2022b). In the last few decades, 

commercial manufacturers worldwide, ranging from commercial giants to start-ups have 

initiated development of autonomous machines to revolutionize arable crop farming. Many 

companies have developed autonomous prototypes and a smaller number have moved 

towards commercialization. It is often not exactly clear which are prototypes or 

commercial because limited information is publicly available about technology scaling up. 

This study classified the example initiatives as prototype or commercial. Commercial 

initiatives are considered those which have public news available about commercialization 

or the company itself announces this as commercial. Example initiatives of autonomous 

prototype (Table 1.1) and commercial (Table 1.2) machines mainly for arable field crops 

are given as follows.  

Table 1.1: Example initiatives of autonomous prototype machines for arable field crops. 

Year Autonomous 
milestones 

Primary 
operation 
considered 

Enterprise  Company or 
organization 

Country Reference 

2011 Autonomous 
operating 
systems 

Till, puddle, 
transplant 
and harvest 

Rice National 
Agriculture 
Research 
Organization 
(NARO) 

Japan Nagasaka 
et al. (2011)  

2017 Autonomous 
machines  

Whole farm 
operations 
(Plant to 
harvest) 

Wheat, 
oilseed 
rape, 
barley, 
beans and 
grass ley 

Harper 
Adams 
University 
(HAU) 

UK  Hands Free 
Hectare 
(HFH), 
(2021) 

2018 Driverless 
tractors  

Plough, 
rake, seed, 
fertilizer 
and mulch 

Cotton Lovol, and 
South China 
Agricultural 
University 
(SCAU) 

China New China 
(2018)  

2019 Autonomous 
ground 
vehicle 

Plant, 
spray, 
fertilizer, 
crop health 
monitor 
and cover 
crop seed 

Wheat, 
soybeans, 
corn and 
sorghum 

Easton 
Robotics 

US Groeneveld 
(2021a) and 
Easton 
Robotics 
(2023) 

2019 Autonomous 
weeders 

Weed Vegetables FarmWise 
and Roush 

US Claver 
(2019) and 
FarmWise 
(2023) 

2020 Autonomous 
rice-
transplanter 

Transplant Rice Kubota 
Tractor 
Corporation 

Japan Kubota 
(2023) 
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Table 1.1: Example initiatives of autonomous prototype machines for arable field crops 
(Continued). 

2020 Yanmar’s 
agro-bot 

Monitor 
crops, 
detect and 
treat 
diseases, 
soil 
sample, 
and spray 

Vineyard 
and 
spinach 

Yanmar 
R&D 
Europe 
(YRE) and 
Florence 
University 

Italy Claver 
(2020b) 

2020 Fendt Xaver 
robots 

Plant, 
protect, 
weed 
control 
and 
fertilizer 

Grains AGCO US Fendt 
(2020) and  
Fendt 
(2023) 

2021 Autonomous 
implement 
carriers 

Seed, 
plant, 
weed and 
grass cut 

Cereals, 
vegetables 
and 
vineyard 

3D Radar 
AS and 
Norwegian 
University 
of Science 
and 
Technology 

Norway AutoAgri 
(2023)  

2021 Uncrewed 
agricultural 
machinery 

Transplant 
and 
harvest 

Wheat and 
rice 

AIForce 
Tec 

China Qin (2021) 
 

2021 Autonomous 
Hand 
Tractor 

Till Rice University 
of Santo 
Tomas 

Philippine Bautista et 
al. (2021)  

2021 Autonomous 
tractor 
swarm 

Till Open field Yanmar 
and 
Hokkaido 
University 

Japan Yanmar 
(2021)  

2021 Autonomous 
asparagus 
harvester 

Harvest Asparagus University 
of Waikato 
and 
Robotics 
Plus 

New 
Zealand 

Groeneveld 
(2021b) 

2022 Autonomous 
electric 
planter 

Plant Corn and 
soybean  

Salin 247 US Salin 247 
(2022) 

2022 Autonomous 
diesel-
electric field 
robots 

Cultivate, 
plough, 
sow, mow, 
ted and 
rake 

Forage  Krone / 
Lemken 

Germany Krone 
(2022)  

2022 Horsch 
autonomous 
robot tractor 

Plant  Open field Horsch Germany TractorLab 
(2022) and 
Azevedo 
(2023a) 
 

2022 Autonomous 
weeding 
robot  
 

Weed Carrot and 
onion 

Ulf 
Nordbeck 

Sweden Koerhuis 
(2022b) 
and Ekobot 
(2022) 
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Table 1.1: Example initiatives of autonomous prototype machines for arable field crops 
(Continued).  

2022 Autonomous 
weeding 
robot 

Weed Carrot 
and 
onion 

Odd.Bot The 
Netherlands 

Koerhuis 
(2022b) 
and 
Odd.Bot 
(2023) 

2023 Autonomous 
Flex-Ro 
Robot 

Phenotype 
data 
collect 

Cereals University 
of 
Nebraska 
(UNL) 
and 
Farmobile 

US Asscheman 
(2023) and 
University 
of 
Nebraska - 
Lincoln 
(UNL) 
(2023) 

Source: Author's own compilation. 

  

 

Table 1.2: Example initiatives of autonomous commercial machines for arable field crops. 

Year Autonomous 
milestones 

Primary 
operation 
considered 

Enterprise Company or 
organization 

Country Reference 

2011 Naio 
Technologies  

Hoe, weed, 
furrow, 
seed, 
transport 
and 
harvest 

Vegetables 
and 
vineyards 

Naio 
Technologies 

French Naio 
Technologi
es (2023) 

2019 ROBOTTI 
autonomous 
robot 

Seed, 
weed and 
spray 

Cereals, 
oilseeds, 
vegetables 
and grass 
for seeds 

Agrointelli Denmark  Agrointelli 
(2019)  

2019 Ecorobotix Weed Row crops, 
vegetable 
crops and 
grassland 

Ecorobotix 
SA 

Switzerland EcoRobotix 
2023) 

2019 GUSS 
autonomous 
herbicide 
sprayer 
 

Spray Orchard GUSS 
(Global 
Unmanned 
Spray 
System) 

US Agromillora 
(2023) and 
GUSS 
(2023) 

2019 Greenbot and 
X-pert 

Plough, 
mow, sow 
and 
fertilizer  

Vegetables, 
horticultural 
crops, 
orchard and 
golf courses 

Precision 
Makers 

The 
Netherlands 

Van 
Hattum 
(2019) and 
Precision 
Makers 
(2023) 

2019 Pixelfarming 
Robot One 

Plant, hoe 
and crop 
protect 

Cereals, 
vegetables 
and flower 

Pixelfarming 
Robotics 

The 
Netherlands 

Pixelfarmin
g Robotics 
(2019) 
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Table 1.2: Example initiatives of autonomous commercial machines for arable field crops 
(Continued).  

2019 XAG R150 
Unmanned 
Ground 
Vehicle 

Spray, 
weed, 
crop 
monitor 
and on-
farm 
transport 

Orchard and 
vegetables 

XAG China XAG (2023) 

2020 Autonomous 
electric robot 

Seed 
and 
weed  

Rapeseed 
and 
vegetables 
(e.g., sugar 
beets, onions, 
spinach, and 
salad) 

FarmDroid  UK  FarmDroid 
(2020) 

2020 Monarch MK-
V tractor 

Till, 
weed 
and 
spray 

Vineyard Monarch US Monarch 
(2023) 

2020 Sitia 
autonomous 
robot 

Till, 
spray 
and hoe 

Gardens, tree 
crops, and 
vineyards 

Sitia France Sitia (2023a) 

2020 Harvest 
CROO 

Harvest Strawberry Harvest 
CROO 
Robotics 

US Harvest CROO 
(2020) and 
Koerhuis 
(2020) 

2021 H2L 
autonomous 
robotics 

Crop 
protect 

Flower (tulip) H2L 
Robotics 

The 
Netherland
s 

H2L Robotics 
(2021) 

2021 E-tract Weed, 
spray 
and trail 

Vegetable, 
vineyard and 
flowers 

Elatec France Koerhuis 
(2021b) and 
Elatec (2023) 

2021 EarthAutomat
ions Dood 

Plough, 
spray, 
top, 
shoot 
remove, 
disease 
detect 
and pest 
detect 

Cereals, 
vegetables 
and vineyard 

EarthAutom
ations 

Italy EarthAutomati
ons Dood 
(2023) and 
Future 
Farming 
(2023) 

2021 Pek 
Automative 
Slopehelper 

Till, 
fertilizer, 
prune 
and 
spray 

Orchard  Pek 
Automative 

Slovenia   Pek 
Automative 
(2021) 

2022 Autonomous 
larger tractor 

Plough Commodity 
crops 

John Deere US John Deere 
(2022)  

2022 
 

CNH 
autonomous 
solutions 
 

Till, 
spray 
and 
harvest 
 

Commodity 
crops 
 

CNH 
Industrial 
 

 

Italian-
American 
multination
al 
corporation 

CNH 
Industrial 
(2023) 
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Table 1.2: Example initiatives of autonomous commercial machines for arable field crops 
(Continued). 

2022 La Chevre Weed Vegetables Nexus 
Robotics 

Canada Agtecger 
(2022) and 
Nexus 
Robotics 
(2022) 

2023 Raven 
autonomous 
solutions 

Till, spray 
and 
harvest 

Cereals 
and 
vegetables 

Raven 
Industries 

US Bedord 
(2022) and  
Raven (2023) 

2022 AgBots Soil and 
seedbed 
prepare, 
seed, 
spray, roll 
and mow 

Cereals, 
cover crop, 
and grass  

AgXeed The 
Netherlands 

AgXeed 
(2023) 

2022 Swarm Farm 
Robotics 

Crop 
protect, 
Mow and 
slash 

Grain, 
cotton and 
grass 
 

Swarm 
Farm 
Robotics 

Australia Groeneveld 
(2023a) and 
SwarmFarm 
Robotics 
(2023) 

2022 AIGRO UP Weed 
and mow  

Orchared 
 

AIGRO The 
Netherlands 

AIGRO 
(2023) 

2022 Amos Power 
A3/A4 

Till, inter-
seed, 
mow and 
spray 

Cereals 
and 
vineyards 

Amos 
power 

US Precision 
Farming 
Dealer 
(2022b) and  
Amos (2023) 

2022 Directed 
Machines 
Land Care 
Robot 

Light 
plough, 
spray, 
mow and 
trim   

Grass and 
orchard 

Directed 
Machines 

US Bloch (2022) 
and Directed 
Machines 
(2023) 

2022 Exxact 
robotics 

Till and 
spray 

Vineyard, 
cereals and 
vegetables 

Exxact 
Robotics 

France Exxact 
Robotics 
(2023) 

2022 Robotics 
Plus 
Unmanned 
Ground 
Vehicle 

Spray, 
weed 
control, 
mulch, 
mow and 
crop 
analyse 

Orchard 
 

Robotics 
Plus 

New 
Zealand 

Power and 
Motion 
(2022) and 
Robotics 
Plus (2023) 

2022 VitiBot 
Bakus 

Plough, 
weed, 
mow and 
spray 

Vineyard SAME 
Deutz 
Fahr (SDF 
Group) 

French Vitibot (2023) 

2023 Korechi 
RoamIO 

Cultivate, 
seed, 
weed, 
mow, soil 
sample 
and data-
log 

Cereal, 
vineyard, 
golf course, 

Korechi  Canada Korechi 
(2023) 
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Table 1.2: Example initiatives of autonomous commercial machines for arable field crops 
(Continued).  

2023 Smart 
Machine 
Oxin 

Mow, 
mulch, trim 
and spray 

Vineyard The Smart 
Machine 
Company 

New 
Zealand 

Koerhuis 
(2023) and 
Oxin (2023) 

2023 Trabotyx 
autonomous 
robot 

Weed Carrot Trabotyx The 
Netherlands 

Trabotyx 
(2023) 

2023 Tevel Flying 
Harvest 
Robots 

Pick, thin, 
and prune 

Orchard Tevel 
Aerobotics 
Technologies 

Israel Agtecher 
(2023) and  
Tevel Tech 
(2023) 

2023 Solix Hunter 
and Sprayer 

Monitor, 
map, 
protect and 
spray 

Soybean, 
corn, 
sugarcane 
and cotton 

Solinftec Brazil Azevedo 
(2023b) 
and 
Solinftec 
(2023) 

Source: Author's own compilation. 

 

Although autonomous machines are increasingly used for the production of grain-oilseed 

(Shockley, Dillon and Shearer, 2019; Lowenberg-DeBoer et al., 2021a), forage, 

vegetables, fruits and tree nursery (Sitia, 2020; Edwards, 2021; Koerhuis, 2021b; H2L 

Robotics, 2023; Sitia, 2023b), the present study concentrated on autonomous grain-

oilseed farms because of data availability from Hands Free Hectare and Hands Free Farm 

(HFH & HFF) and the worldwide market implications of autonomous grain-oilseed 

production. The grain-oilseed farms, especially for medium and large-scale farming 

contexts are already mechanized, so the transition towards autonomous farming should 

be relatively easy (Gackstetter et al., 2023) compared to the fruit and vegetable farms 

which still depend heavily on manual labour.  The engineering challenge for grain-oilseed 

farms is primarily making already mechanized systems autonomous.  

 

The HFH & HFF also demonstrated autonomous grass ley cutting that could have 

implications for forage harvesting. Prototypes such as Krone and Lemken developed 

autonomous combined powers for forage production including operations such as 

cultivating, ploughing, sowing, mowing, tedding and raking (Claver, 2022c; Krone, 2022). 

There are few commercial autonomous initiatives for grass ley production as detailed in 

Table 1.2.  

 

The HFH & HFF at Harper Adams University, UK, were the world’s first whole farm 

commercial autonomous grain-oilseed farming public demonstration (including planting, 

spraying and harvesting). HFH was initiated in 2016 with the first harvest in 2017. Major 

agricultural machinery companies have had autonomous machine development programs 
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for many years and may have completed full cropping cycles with autonomous machines, 

but their results are proprietary. HFH was a simplified farming system with one hectare of 

a single crop. The HFH focus was on cost effective retrofitting of conventional farm 

machines for autonomy using modified open-source drone software. HFF scaled up 

autonomous farming to 35 hectares with several crops, using commercial auto-guidance 

systems. At the initial stage, HFH was concentrated on whole field sole cropping 

(Lowenberg-DeBoer et al., 2021a). In 2023, the HFF has extended the focus with 

demonstration trials of strip cropping to show the relevance of autonomous machines for 

agroecological and regenerative farming (Franklin, 2022; Harper Adams University (HAU), 

2023). Most autonomous initiatives worldwide other than HFH & HFF for grain-oilseed 

farming are highly concentrated on specific field operations (e.g., seeding, weeding and 

spraying) rather than whole farm production operations.  

 
1.3 Autonomous machines for sustainable intensification solutions 

Autonomous machines are the potential successors of large conventional machines with 

human operators that could lead to a paradigm shift of arable farming (Goense, 2005; 

Shockley, Dillon and Shearer, 2019, Shockley et al., 2021; Revell, Powell and Welsh, 

2020). It is hypothesized that autonomous machines have the possibility to revolutionize 

PA and facilitate the ‘Fourth Agricultural Revolution’ which is also labelled as ‘Agriculture 

4.0’ (Klerkx and Rose, 2020). A number of potential benefits are hypothesized for 

autonomous arable farming that could promote sustainable intensification solutions 

(Duckett et al., 2018; Daum, 2021).  

 

Autonomous machines could help to solve the problem of agricultural labour shortage and 

thereby help to feed the growing population of the world (Kolodny and Brigham, 2018). 

The list of economic benefits of autonomous machines usually start with labour saving 

because worldwide agricultural labour is scarce and agricultural real wage rate is 

increasing over time (Lowenberg-DeBoer et al., 2021a; Lowenberg-DeBoer, 2022b). The 

availability of agricultural labour is one of the prime challenges for medium and large-scale 

arable farming (OECD, 2020; Charlton and Castillo, 2021; World Bank, 2021a; The 

Environment Food and Rural Affairs Committee, 2022) owing to the economic and political 

reasons (e.g., BREXIT, new immigration policies for COVID-19 pandemic) (Shockley et 

al., 2021; Sandford and Hanrahan, 2022; The Migration Observatory, 2022). Smallholders 

around the world also face labour scarcity in agriculture (World Bank, 2021b) due to socio-

economic reasons (Devanesan, 2020; Al-Amin and Lowenberg-DeBoer, 2021; Yanmar, 

2021).  
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Small autonomous machines have numerous benefits beyond labour saving potential 

such as efficiency, reliability, accuracy, economies of size, lower machinery investment 

costs, higher field work rates, timeliness of operations, working 24/7, increasing labour 

and land productivity, and profit maximization (Shockley, Dillon and Shearer, 2019, 

Shockley et al., 2021; Farm Equipment, 2021; Lowenberg-DeBoer et al., 2021a). 

Autonomous machines have the potential of reducing off-target application with localized 

on-the-go application of pesticides, herbicides and fertilizer, plant specific husbandry and 

collection of on-field data supporting farm management decision making (Duckett et al., 

2018; Daum, 2021; Lowenberg-DeBoer, 2022b).  

 

Apart from facilitating production goals (i.e., least cost of production and profit 

maximization) (Shockley, Dillon and Shearer, 2019; Lowenberg-DeBoer et al., 2021a) 

autonomous machines have the potential to support environmental goals of farming 

(Ditzler and Driessen, 2022; Pearson et al., 2022; Gackstetter et al., 2023). In the longer 

run, the biggest impact of autonomous machines may not only be confined to technical 

and economic (i.e., techno-economic) feasibility, rather extend to environmental 

sustainability. Small autonomous machines are expected to reduce environmental 

footprints of agriculture through reducing soil compaction and carbon footprint (Chamen et 

al., 2015; Asseng and Asche, 2019; Karsten, 2019b; McPhee et al., 2020; Revell, Powell 

and Welsh, 2020; Keller and Or, 2022; AutoAgri, 2023).  

 

Autonomous machines are expected to help restore in-field biodiversity that has been 

reduced through whole field sole cropping with larger conventional machines with human 

operators (Blackmore, Have and Fountas, 2001; Robinson and Sutherland, 2002; Duckett 

et al., 2018; Santos and Kienzle, 2020; Lowenberg-DeBoer et al., 2021a). Autonomous 

machines are hypothesized to be capable of farming small, irregularly shape fields that 

will reduce land consolidation pressure, promote hedges, wetlands and in-field trees 

(Lowenberg-DeBoer et al., 2021a). Agricultural intensification solutions are suggested 

through addressing spatial and temporal (i.e., spatio-temporal) heterogeneity with 

autonomous mixed cropping systems (Slaughter, Giles and Downey, 2008; Ward, Roe 

and Batte, 2016; Tanveer et al., 2017; van Oort et al., 2020; Ditzler and Driessen, 2022; 

Donat et al., 2022) that could reduce synthetic input use, pest and diseases infestation, 

improve soil health, ecosystem services, and soil carbon and nitrogen.  

 

Although many of the early-stage autonomous machines are powered by fossil fuels (i.e., 

typical diesel-powered combustion engines) (e.g., HFH & HFF autonomous machines), an 

increasing number of autonomous machines are powered by alternative renewable 

electricity from solar, wind, methane and hydrogen, etc. (FarmDroid, 2020; Hekkert, 2020; 
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Fuel Cells Works, 2021; Vale, 2021; Claver, 2022b; Groeneveld, 2022; Hein, 2022; 

Karsten, 2022). For example, battery-based autonomous electric machines are suggested 

to reduce greenhouse gas emissions and increase driveline efficiency. Research in the 

context of Swedish agriculture using systems analysis, economic analysis and life cycle 

assessment found that autonomous electric tractors reduced energy use, per annum 

costs, soil compaction and greenhouse gas emissions (Lagnelöv, 2023). 

 

Autonomous machines could facilitate sustainable intensification by integrating 

multifaceted goals in a common decision-making process. Integrating those goals is often 

too complex with human operated conventional machines. The diverse goals of 

individuals (i.e., increasing productivity and/or profit maximization) and society as a whole 

(i.e., environmental sustainability) could be jointly optimized with use of autonomous 

machines. For instance, autonomous machines could facilitate the net zero agricultural 

goal through facilitating agroecological and regenerative farm management. These 

cropping systems will help to achieve simultaneously food and nutrition security, and 

environmental sustainability (DEFRA, 2020; Davies, 2022; Pearson et al., 2022).  

 

As part of the agricultural intensification solution of autonomous machines, the present 

study considered labour saving potential, opportunity costs of capital investment, higher 

field work rates, and timeliness of operations. Moreover, the advantage of mixed cropping 

systems (i.e., agroecological strip cropping and regenerative agriculture) with autonomous 

machines was also considered to reconcile the production and environmental goals of 

arable open-field crop farming. Other anticipated benefits mentioned above were not 

included in the present study due to lack of data.  

1.4 The research problem  

Research on autonomous machines shows that autonomous machines could solve the 

real-world problems of arable crop farming as part of sustainable intensification solutions 

(Lowenberg-DeBoer, 2022b). The technical potential of autonomous machines are well 

accepted through worldwide prototypes and commercial on-farm demonstrations 

(Shamshiri et al., 2018; Fountas et al., 2020; Hands Free Hectare (HFH), 2021). 

Economic research has been focusing on guiding wide scale adoption through farm 

profitability assessment with autonomous farming systems. Prior to 2018, the economic 

research on autonomous operations mostly concentrated on horticultural crops 

(Lowenberg-DeBoer et al., 2020). Recently, some studies focused on the economics of 

autonomy for arable cereal farming. For instance, most recent autonomous farming 

research focused on the profitability of this precision agriculture technology on whole field 

sole cropping commodity crops production considering the context of the UK (Lowenberg-
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DeBoer et al., 2020, Lowenberg-DeBoer et al., 2021a) and the US (Shockley, Dillon and 

Shearer, 2019). Some studies also examined the implications of regulation on economics 

of autonomous farming (Shockley et al., 2021; Maritan et al., 2023). The study of 

Lowenberg-DeBoer et al. (2021a) hypothesized that autonomous machines could facilitate 

biodiversity by superseding the ‘‘get big or get out’’ rule of thumb of conventional 

mechanization through facilitating farm operations in small, irregularly shaped fields 

farmed with whole field sole cropping systems. But they were unable to assess the 

hypothesis owing to the lack of data on field times (h/ha) and field efficiency (%).  

 

Apart from whole field sole cropping, heterogeneous within field mixed cropping systems 

are also envisaged with autonomous machines (Slaughter, Giles and Downey, 2008; van 

Oort et al., 2020; Juventia et al., 2022; Ward, Roe and Batte, 2016). Research also 

hypothesized that autonomous machines would facilitate the regenerative agriculture 

practice which could help to achieve the net zero target in addition to the production goals 

of arable cereal farm (Davies, 2022; Pearson et al., 2022; Manshanden et al., 2023).  

 

Delving into the state of the knowledge it is clear that research on autonomous machines 

in whole field sole cropping system is still unable to address the implications of field size 

and shape (Lowenberg-DeBoer et al., 2021a). Understanding the economics of field size 

and shape for autonomous machines is crucial because over the last few decades, 

conventional machines with human operators have been largely motivated by the rule of 

thumb of conventional machines (i.e., ‘’get big or get out’’) to achieve labour productivity in 

arable farming. Beyond unlocking the economics of autonomous machines for whole field 

sole cropping system subject to field size and shape, this study attempted to address the 

economics of autonomous machines for mixed cropping and regenerative agriculture. 

Mixed cropping systems and regenerative agriculture are suggested with autonomous 

machines to simultaneously achieve both the production goals of productivity and 

profitability, and environmental goal of limiting environmental footprints of arable crop 

farming (Duckett et al., 2018; Daum, 2021; Pearson et al., 2022; Davies, 2022). In this 

study, strip cropping system is considered to represent mixed cropping and regenerative 

agriculture practice because strip cropping is the simplest mixed cropping system. It is 

feasible with conventional mechanization with human operators, but requires more labour 

than conventional whole field production (Ward, Roe and Batte, 2016; Exner et al., 1999; 

van Apeldoorn et al., 2020; Alarcón-Segura et al., 2022). The mixed cropping and 

regenerative strip cropping practices may be less profitable for conventional mechanized 

farms operated with human operators, while autonomous machines may the change the 

cost calculus.   This study assumed that profitability assessment will guide the 

autonomous machines adoption because farm economics is one of the prime drivers for 
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technology adoption and scaling up (Lowenberg-DeBoer et al., 2021a; Tey and Brindal, 

2022). The context of the of the UK and the US was considered to achieve the following 

objectives because of economic, agronomic, and technical data availability. The case 

study contexts are described in detail in the respective objective sections.  

 
1.5 Research objectives  

The overall objective of this study was to assess how autonomous machines could 

maximize the profitability of arable field crop production compared to farming with 

conventional machines with human operators both in whole field sole cropping and mixed 

cropping systems considering agroecological and regenerative agriculture. The specific 

objectives were to: 

(i) Assess how field size and shape impact the profitability of autonomous crop 

machines (detailed in Chapter 3);  

(ii) Estimate the profitability of strip cropping with autonomous machines (detailed in 

Chapter 4); and 

(iii) Determine the profitability of autonomous machines for regenerative agriculture 

(detailed in Chapter 5). 

 

1.6 Research hypotheses  

The following hypotheses were examined to achieve the specific objectives of the study: 

(i) Autonomous crop machines make it possible to farm small, non-rectangular fields 

profitably, thereby preserving field biodiversity and other environmental benefits; 

(ii) Autonomous machines make strip cropping profitable, thereby allowing farmers to 

gain additional agroecological benefits; and  

(iii) Autonomous machines make regenerative strip cropping profitable, thereby 

supporting the agricultural transition plan to improve soil health, biodiversity and 

achieve carbon net zero target. 

 

1.7 Theoretical grounds 

Based on microeconomic theory and opinion of farm management experts, the choice of 

cropping systems (e.g., whole field sole cropping and/or within field heterogeneous crop 

mixes such as strip cropping and/or regenerative agriculture) and farm mechanization 

levels (e.g., whole farm conventional mechanization with human operators and/or 

autonomous machines) should maximize utility (Henderson and Quandt, 1958; Boehlje 

and Eidman, 1984; Lowenberg-DeBoer, 2022b). However, utility maximization 

encompasses numerous factors such as profit, leisure time, risk, capital, resource 

constraints and transaction costs.  
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Maximizing profit is the starting point to analyse farm management decisions in the short 

run. The cropping systems and farm mechanization levels should at least cover the costs 

of production. The economic payoffs would motivate wide-scale adoption (Lowenberg-

DeBoer, 2022b). In farm mechanization levels and crop choices, economic benefits are 

considered as the prime driver (Lowenberg-DeBoer et al., 2021a; Tey and Brindal, 2022). 

Consequently, the theoretical grounds of the research would be consistent with typical 

neoclassical microeconomic farm theory (Shockley, Dillon and Shearer, 2019). The 

objective function of the research was to maximize gross margin (i.e., return over variable 

costs) subject to primary farm resource constraints. The net return to operator labour, 

management and risk-taking (ROLMRT) was examined to address the impacts of 

overhead costs in mechanized farming (Lowenberg-DeBoer et al., 2021a). 

1.8 Research approach 

Farmers and farm management specialists traditionally make less complex farm 

management decisions using budgeting (Hazell and Norton, 1986). A review study 

conducted in 2018, found that most production economics studies on automation (i.e., 

automated, and autonomous machines) to that point mostly used partial budgeting 

methods, where only some specific costs and returns associated with automation were 

changed while crop rotations, field operation timing, and other aspects of production were 

unchanged (Lowenberg-DeBoer et al., 2020). Although budgeting can account for a whole 

farming system, it is feasible only for very simple farming systems. With scenario-based 

budgeting, in complex cropping and farming systems, the analyst quickly gets lost in the 

alternatives and options for enterprise rotations, plant and harvest time, labour hiring, etc. 

Rarely budgeting could find the optimal or most profitable plan (Boehlje and Eidman, 

1984). Deterministic linear programming (LP) is computationally easier compared to 

tedious and burdensome budgeting (Hazell and Norton, 1986; Boehlje and Eidman, 

1984). The LP does not require substantial additional data but automates optimization that 

best allocate farm resources (Boehlje and Eidman, 1984). 

Apart from deterministic LP models, there are various options for whole farm planning that 

could capture more complex interactive effects such as integer mathematical 

programming, non-linear programming and/or simulation studies. Simulation can capture 

more of the biological and physical details of farming, but it was not used in this study 

because it fails to capture the key human tendency to optimize. Also, interpretation of 

simulation results can be challenging because it involves comparisons of many options 

and scenarios. 
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The choice of optimization model depends on the trade-offs between model complexity 

and the credibility of results given limited data. In an ex-ante analysis, data is usually very 

limited. Often the parameters must be estimated by extrapolating from experimental 

results and expert opinion. Constructing a complex optimization model based on this 

limited data is often not credible. In contrast, LP requires only slightly more data than 

budgeting but can provide insights at the farming system level.  

To achieve the objectives of this study, whole farm deterministic LP model was used as 

the simplest analytic tool for a farming system level analysis. The LP model utilizes a set 

of “optimizing rules” to identify the most profitable plan to quickly sort through thousands 

of potential crop rotations, technologies, and plant and harvest timing options (Hazell and 

Norton, 1986; Boehlje and Eidman, 1984). Through shadow prices LP capture important 

interactions between resource availability, constraints, and choice of activities. This study 

considered LP model to maximize gross margin subject to the binding constraints of land, 

human labour, and equipment time.  

In keeping with the concept of using the simplest model that captures farming system 

changes, the choice of machinery sets (i.e., tractor, implements, combine) was done 

manually by comparing solutions with specific machinery assumptions. Because 

machines within a machinery set must be compatible, choosing machinery sets within the 

algorithm would require integer programming. This integer programming approach was 

used by Shockley et al. (2019, 2021). In this case integer programming would add to the 

complexity of the model, without adding substantially to the insights. 

The whole farm deterministic LP model used in this study was adopted from the Hands 

Free Hectare-Linear Programming (HFH-LP) model of Lowenberg-DeBoer et al. (2021a). 

The HFH-LP model follows the ‘Steady State’ concept, which refers that the solutions 

could be repeated annually over time. This steady state HFH-LP model was originally 

based on the Purdue Crop/Livestock Linear Program (PC/LP) model for Midwestern 

farmers (Dobbins et al., 1994). The PC/LP model was later adapted for use in various 

countries of the world (Fontanilla-Díaz et al., 2021; Lowenberg-DeBoer et al., 2021a). 

The whole farm deterministic HFH-LP model used in this study can be expressed as 

follows following Boehlje and Eidman (1984): 

The objective function: 

𝑀𝑎𝑥 𝜋 = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑋𝑗                                                               … … (1) 

Subject to: 
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∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑋𝑗  ≤  𝑏𝑖 𝑓𝑜𝑟 𝑖 = 1, … … , 𝑚;                               … … (2) 

𝑋𝑗 ≥ 0 𝑓𝑜𝑟 𝑗 = 1, … … , 𝑛;                                               … … (3) 

 

where, π is the gross margin, 𝑋𝑗 is the level of jth production activities, 𝑐𝑗 is the gross 

margin per unit over fixed farm resources (𝑏𝑖) for the jth production activities, 𝑎𝑖𝑗 is the 

amount of ith resource required per unit of jth activities, 𝑏𝑖 is the amount of available ith 

resource.  

 

Following Lowenberg-DeBoer et al. (2021a) the primary constraints considered in this 

study were:   

(i) Land: This study assumed that the sum of land in productive activities is less 

than or equal to the arable crop land available. For example, if in each rotation 

the crops are q, the used land for a unit of a rotation is the fractional unit 1/q of 

each crop. Taking for example, one hectare of a wheat-oilseed rape (OSR) 

rotation is equal to half a hectare of wheat and half a hectare of OSR.  

 

(ii) Human labour: This study assumed that the sum of the labour needed in each 

month for each crop in the rotation multiplied by the fractional unit (1/q) of each 

crop in each rotation. Here in this study the sum of the human labour required 

must be less than the labour available from the operators, permanent farm 

labour and temporary farm labour on the number of good field days. 

 
(iii) Equipment time: The equipment time is that the sum of equipment time per 

crop in each month on good field days, weighted by the rotation fraction (i.e. 

1/q), must be less than or equal to the amount of equipment time available.  

 
(iv) Cashflow: Sum of the variable costs for each crop in a rotation in each month 

multiplied by the rotation fraction (1/q) must be less than or equal to the 

working capital available. This study considered that the cashflow is not 

binding. 

 
The optimization model used in this study was coded in the General Algebraic Modelling 

Systems (GAMS) software (GAMS Development Corporation, 2020). Although the R 

software has also been used for optimization modelling of PC/LP type models (Griffin et 

al., 2023), this study used the GAMS software because it is a standard mathematical 

optimization algorithm used around the world and the HFH-LP was already available in 

the form of GAMS code (Lowenberg-DeBoer et al., 2021a). 
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1.9 Outline of the thesis 

The outlines of the PhD thesis are represented in Figure 1.1. Chapter 1 explains the 

general difference between 'robots', 'field crop robot', 'automated machines', and 

’autonomous machines'. Subsequently, it provides examples of autonomous initiatives 

worldwide with the implications for agricultural intensification solutions. The knowledge 

gaps and rationale of the study are identified in 'The Research Problem' section. The 

research objectives, research hypotheses, theoretical background and research approach 

are explained briefly to give a general overview of the research.  Chapter 2 shows the 

state of the art and limitations of the existing research which is linked with research 

objectives and hypotheses. Chapter 3 represents the outcomes of first research 

hypothesis regarding how field size and shape impact the economics of autonomous 

machines for grain-oilseed farms. Chapter 4 estimates the ex-ante economic scenarios of 

the economics of strip cropping with autonomous machines. Chapter 5 analyses the 

economics of regenerative agriculture with the ex-ante scenarios. Finally, Chapter 6 

contains the general discussion and conclusions with the limitations of the study. 

Worldwide implications of the research and future research directions are also suggested.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Structure of the thesis and chapters overview. 

Chapter 1 

General introduction 

Chapter 2 

State of the art 

Chapter 3 

Economics of field size and shape for 

autonomous crop machines 

Chapter 4 

Economics of strip cropping with 

autonomous machines 

Chapter 5 

Economics of autonomous machines for 

regenerative agriculture 

Chapter 6 

General discussion and conclusions 
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Chapter 2 

State of the art 

 

" … your task is to build an argument, not a library." 

 

Rudestam  and Newton (1992): Surviving your dissertation. Fourth Edition. p. 49. 

 

2.1 Introduction  

The review of literature as presented in this chapter explored the existing state of the art 

of the economics of field crop robotics and autonomous systems (RAS) and associated 

literature. The objective is to contribute to the scientific knowledge. The review mainly 

concentrated on three research objectives regarding the economics of field size and 

shape for whole field sole cropping system, and mixed cropping (i.e., within field 

heterogeneous agroecological strip cropping systems and regenerative agriculture) with 

different levels of mechanized farms. Mechanization levels here refer conventional 

machines operated with human operators and autonomous machines (i.e., HFH retrofitted 

autonomous machines). This chapter identified the limitations of the existing production 

economics studies on autonomous machines. The chapter also proposed simulation 

methodology to compare arable open field farming with conventional mechanization and 

autonomous machines.  

 

Simulation methods other an econometric approach is suggested because the 

autonomous machines for field crops considered in this study are not yet widely marketed 

and adopted for the context of large, medium and small-scale farming. The technologies 

are in the pipelines and on the verge of commercialization processes (Shockley et al., 

2021). The HFH autonomous machines are prototypes that were demonstrated in the 

context of the UK. The ex-post scenarios evaluation using econometric analysis was not 

feasible here. To understand the economic potential of whole field sole cropping subject to 

field size and shape and autonomous farming beyond whole field sole cropping simulation 

methodology (here Linear Programming (LP)) is the right choice because it goes beyond 

the biological and physical relationships to incorporate human motivation and drive to 

seek better solutions. Consequently, LP analysis was suggested to fill the research gaps 

that usually incorporates the basic elements of human decision making and overcome the 

limitations of partial budgeting. In partial budgeting only crop and enterprise specific 
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changes in costs and revenues are considered with all other things remaining the same 

assumption.  

 

This research anticipated that the profitability analysis of autonomous machines using 

optimization LP model irrespective of field size and shape for whole field sole cropping 

and farming beyond whole field sole cropping would facilitate the game changing 

autonomous machines to achieve both production goals of productivity and profitability 

and environmental goals of agroecological and regenerative farming to limit environmental 

footprints of agriculture. The implications of this research for agri-tech economists, 

engineers, agronomists, environmentalists, agribusinesses innovators, and policy makers 

and planners are also pointed out in this chapter. 

2.2 Economics of field crop robotics and autonomous systems (RAS) 

The state of the knowledge of the economics of field crop robotics and autonomous 

systems (RAS) reveals that the RAS used in arable open-field crop operations are viewed 

in two perspectives: Firstly, automated machines (or automated crop robots) (i.e., partially 

robotized mechatronic technology that accomplish arable field operations such as 

seeding, weeding, and harvesting, but with mobility assured by a human operator). 

Secondly, autonomous machines (or autonomous crop robots) (i.e., are a subset of field 

crop robots which have autonomy in arable field operations using predetermined field 

paths and itinerary with relatively little decision-making capacity) (Lowenberg-DeBoer et 

al., 2020).  

 

The most updated review of literature as of 2018 addressed the economics of automated 

operations of one or two horticultural crops (detailed in Table 2.1). The economic studies 

on automated machines for field crops are primarily focused on the cost saving potentials 

of one or two field operations in production of horticultural crops. The production 

economics literature on automated machines to date does not cover the broader 

implications of the technology (e.g., the implications of machinery performance subject to 

field size and shape and biodiversity conservation). The existing studies mostly 

concentrated on horticultural crops, ignoring the whole farm systems analysis of 

commodity crops production (Table 2.1) (Lowenberg-DeBoer et al., 2020). However, this 

study did not delve in into the economics of automated machines because this is out of 

the scope of this study. The HFH demonstration experience at Harper Adams University in 

the UK represents autonomous machines, also known as autonomous crop robots or 

swarm robots or swarm robotics. Considering the research objectives, the review of 

literature in the subsequent sections concentrated the focus on the economics of 
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autonomous machines to identify the knowledge gaps and to contribute to the state of the 

art.  

 

Table 2.1: State of the arts of automated crop robotics. 

Authors and 
year 

Country Economic 
tools used 

Goal Arable 
operation 
considered  

Machinery 
performance 

Crops 

Tillett (1993)  UK Partial 
budget 

Labour 
cost saving 

Harvest No Tomato 
and fruit 

Arndt et al. 
(1997) 

US Partial 
budget 

Recovery 
rate of 
breakeven 
harvest  

Harvest Yes: Harvest 
rate (28% 
and 15%) 

Asparagus 

Tsuga 
(2000)  

Japan Partial 
budget 

Cost 
saving 

Transplant No Cabbages 
and 
lettuces 

Ruhm 
(2004)  

Germany Partial 
budget 

Recovery 
rate of 
breakeven 
harvest 

Harvest 
and grade 

No Asparagus 

Clary et al. 
(2007)  

US Partial 
budget 

Breakeven 
harvest 
recovery 
rate 

Harvest Yes: Harvest 
rate (70% 
and 80%) 

Asparagus 

Cembali et 
al. (2008)  

US Partial 
budget 

Breakeven 
harvest 
recovery 
rate 

Harvest Yes: Spear 
collection 
rate (85%) 

Asparagus 

Fennimore 
et al. (2014)  

US Partial 
budget 

Max. net 
return 

Weed and 
Thin 

No Leafy 
vegetables 

Mazzetto 
and 
Calcante 
(2011) 

Italy Partial 
budget 

Cost 
saving 

Transplant No Vineyard 

Pérez-Ruíz 
et al. (2014)  

US Partial 
budget 

Cost 
saving 

Weed 
control 

No Tomato 

Zhang, 
Pothula and 
Lu (2016)  

US Partial 
budget 

Max. net 
return 

Harvest Yes: 
Commented 

Apples 

Source: Lowenberg-DeBoer et al. (2020) and author’s compilation. 

 

The research on the economics of autonomous machines primarily focused on the cost 

saving potential (Gaus et al., 2017; Goense, 2005; Pedersen et al., 2006; Pedersen et al., 

2017). A very few production economics research pointed out the significance of 

machinery performance in terms of field efficiency and equipment times (Lowenberg-

DeBoer et al., 2021a; Revell, Powell and Welsh, 2020; Sørensen, Madsen and Jacobsen, 

2005). From 1990 to 2018, a total of eight studies investigated economics of autonomous 

machines in arable open-field farms (Lowenberg-DeBoer et al., 2020). In 2018 onwards, 

nine studies focused on the economics of autonomous machines (Table 2.2). The 

production economics research on autonomous machines did not cover how machinery 
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performance subject to field size and shape in the whole field sole cropping system 

impacts the economics of autonomous machines. A detailed overview of existing 

literature, limitations and contribution of the present study are provided as follows: 

 

Using partial budgeting approach, Edan, Benady and Miles (1992) assessed the 

potentiality of automation for melon harvesting, where in sensitivity analysis they 

considered autonomy. They found that if the manual harvesting operation is less than 

US$494/ha, then autonomous operation is economically viable for a 202.4 ha harvesting 

operation. They showed that breakeven investment lies within the range of US$ 50,000 to 

US$250,000. Goense (2005) investigated the economics of autonomous equipment and 

examined how autonomous implement size affects mechanization cost in row crop 

cultivation of different sized farms. The study showed that row crop cultivation with 

autonomous technology is an attractive alternative to manually operated machinery, if the 

navigation is cost effective and large areas are covered. 
 

Table 2.2: State of the art of autonomous crop robotics. 

Authors 
and year 

Country Economic 
tools used 

Goal Arable 
operation 
considered 

Machinery 
performance 

Crops 

Edan, 
Benady and 
Miles (1992) 

Israel and 
US 

Partial 
budget 

Cost 
saving 

Harvest No Melon 

Sørensen, 
Madsen and 
Jacobsen 
(2005) 

Denmark Scenario 
planning 

Cost 
saving 

Weed Yes: 
Weeding 
efficiency 
(80%) 

Whole 
farm 

Pedersen et 
al. (2006) 

Denmark Partial 
budget 

Cost 
saving 

Scout 
/Weed 

No Sugar 
beets  
and 
cereals 

Pedersen, 
Fountas and 
Blackmore 
(2008) 

Denmark 
/Greece 
/UK/US 

Partial 
budget 

Cost 
saving 

Scout 
/Weed 

No Sugar 
beet 

McCorkle et 
al. (2016) 

US Financial 
simulation 

Cost 
saving 

Prune  
and Thin 

No Vineyard 

Pedersen et 
al. (2017) 

Denmark Partial 
budget 

Max. 
gross 
margin 

Seed No Sugar 
beet 

Gaus  
et al. (2017) 

Germany Partial 
budget 

Cost 
saving 

Weed No Cereals 

Shockley and 
Dillon  
(2018) and 
Shockley, 
Dillon and 
Shearer 
(2019) 

US Linear 
Programmi
ng (LP) 
(Whole 
farm) 

Max. net 
return 

All  
production 
operations 

No Maize and  
soybean 

De Witte 
(2019) 

Germany Partial 
budgeting 

Cost 
saving 

Harvest and 
till 

No Grain 
crops 
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Table 2.2: State of the art of autonomous crop robotics (Continued). 

Lowenberg
-DeBoer et 
al. (2019) 

UK Hands 
Free 
Hectare 
(HFH)-LP 
model 
(Whole 
farm) 

Max. 
net 
return 

All  
production 
operations 

Yes:  
Field 
efficiency 
(70%) for 
all 
operations 
and 
equipment 
sets 

Wheat,  
oilseed 
rape  
and barley 

Revell, 
Powell and 
Welsh 
(2020) 

Australia Discounte
d Cash 
Flow 
(DCF) 
Analysis 

Cost 
saving 

Spray Yes: 
Considere
d field 
time 
(h/ha)  

Cotton, 
wheat  
and 
chickpea 

Lowenberg
-DeBoer, 
Pope and 
Roberts 
(2020),  

UK HFH-LP 
model 
(Whole 
farm) 

Max. 
net 
return 

Spray No details 
are 
provided 

Wheat, 
barley,  
oilseed 
rape,  
beans, 
and  
linseed 

Lowenberg
-DeBoer et 
al. (2021a) 

UK HFH-LP 
model 
(Whole 
farm) 

Max. 
net 
return 

All  
production 
operations 

Yes: Field 
efficiency 
(70%) for 
all 
operations 
machines 

Wheat,  
oilseed 
rape,  
and barley 

Lowenberg
-DeBoer et 
al. (2021b) 

Worldwide
, 
especially 
China, 
Brazil, UK, 
US, 
Australia, 
Belgium, 
Netherlan
ds, 
Canada, 
and New 
Zealand. 

Discussio
n 

Policy 
lesson 
with 
discuss
ion of 
max. 
net 
return 

All  
production 
operations 

No 
specific  
analysis, 
but 
inclusive  
of field  
efficiency 
in UK 
case 
study 

UK  
and US  
case 
studies of  
maize,  
soybean,  
wheat,  
oilseed 
rape  
and barley 

Shockley et 
al. (2021) 

US and 
UK 

Linear 
Programm
ing (LP) 
(Whole 
farm) 

Max. 
net 
return 
and 
policy 
lesson 

All  
production 
operations 

Yes: Field  
efficiency 
(70%)  
for all  
operations 
and 
equipment 
set 

Corn and  
soybeans  
for the US 
and  
Wheat,  
oil seed  
rape  
and barley  
for the UK 
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Table 2.2: State of the art of autonomous crop robotics (Continued). 

Maritan et 
al. (2022) 

UK HFH-LP 
model 
(Whole 
farm) 

Max. net 
return 

All  
production 
operations 

Yes: Field 
time (hr/ha) 
and  
Field 
efficiency 
(70%) for all 
operations 
and 
equipment 
sets 

Wheat, 
oilseed 
rape  
and barley 

Lowenberg-
DeBoer 
(2022b) 

World 
wide 

Qualitative Economics 
of adoption 

Miscellaneous Performance 
discussion 

Miscellane
ous 

Source: Adopted from Lowenberg-DeBoer et al. (2020) and authors own compilation. 

 

Pedersen et al. (2006) compared economic feasibility of autonomous robotic systems in 

three different agricultural applications. The findings revealed that agricultural robotic 

operations were economically feasible compared to the conventional operating systems. 

In robotic weeding on sugar beet, micro spraying reduces herbicide application by 90% 

and total costs of robotic and conventional weeding were per annum €260.4/ha and 

€296.6/ha. It means that autonomous weeding reveals €36.20 cost advantage than 

conventional one. Likewise, robotic crop scouting ensured per annum cost savings of 

€3.80/ha. The study pointed out several benefits such as, weed mapping, working hour’s 

advantage and improved efficiency in modern production. The robotic grass cutting had a 

cost saving advantage of more than €300/ha per annum. Pedersen, Fountas and 

Blackmore (2008) analysed economic feasibility of robotic weed scouting and robotic 

weeding for the US, UK, Greece, and Denmark. They pointed out that robotic weeding 

had a cost advantage for all of the countries studied except Greece. They found that 

autonomous operations are comparatively flexible and reduce labour expenses and had 

advantage of extended working hours. 

 

Considering early seedling and re-seedling of sugar beet, Pedersen et al. (2017) 

quantified the economic perspectives of agricultural robots. They compared gross margins 

of new seeding systems (i.e., early seeding and reseeding) and conventional cultivation 

practice. The study mentioned that robotic operations lead to minimum overlaps, and it is 

possible to ensure economies of scale in small and medium sized farms. Among the three 

scenarios (conventional practice, early seeding, and re-seeding) considered, early 

seeding was the most profitable system. Even though they assumed a yield increase of 

2.5%, the system is expected to offer cost advantage due to the use of robots that leads 

to labour savings. However, the expected increase of yield in re-seeding will be 5%, but 

the system will require conventional seeding due to its dual seeding operations. Results 

showed that in early seeding, the gross margin will increase by 7.7% and in re-seeding 
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there is a possibility to increase gross margin of 6.5%. The study of Gaus et al. 

(2017) using partial budgeting techniques investigated economics of autonomous swarm 

robots for weeding in wheat. The study commented on the future product prices 

and robot’s requirement for field operation. Results showed that swarm robots could be a 

possible alternative for crops, especially for crops with high costs intercultural operations. 

The production economics studies mentioned above used partial budgeting, whereas a 

very few studies considered methodological rigour in economic assessment to overcome 

the limitations of partial budgeting (Lowenberg-DeBoer et al., 2019, Lowenberg-DeBoer et 

al., 2020, Lowenberg-DeBoer et al., 2021b; McCorkle et al., 2016; Shockley, Dillon and 

Shearer, 2019; Shockley and Dillon, 2018; Sørensen, Madsen and Jacobsen, 2005). 

 

In Denmark, using scenario planning Sørensen, Madsen and Jacobsen (2005) 

investigated the potentiality of organic crops robotic weeding. They found that the benefits 

of robotics weeding were highly sensitive to weed intensity and initial equipment price. 

Results showed that for robotic weeding, farmers paid up to €40,000, but they are still in a 

better off position than manual weeding. The study mentioned efficiency is the critical 

prerequisite for improved profitability and assumed 80% weeding efficiency for sugar beet 

and maize. McCorkle et al. (2016) investigated the economics of robotic technology in the 

production of wine grapes using a financial simulation model. They showed how 

substituting manual labour with robotic equipment affects vineyards of different sizes. 

Shockley and Dillon (2018) examined the economic feasibility of autonomous field 

machinery compared to conventional manned machinery using the whole farm planning 

model in corn and soybean production. Results showed that net returns were greater 

when the farm was operated with autonomous machinery. With the anticipated benefits of 

10% reduction in input costs and 7% increase in yields, the net return increased 

significantly up to 19%. Findings of the sensitivity analysis showed that autonomous 

machinery had the potentiality to ensure greater profitability for different sizes of farm, 

especially for small sized farms. 

 

De Witte (2019) pointed out that small autonomous equipment will be less capital 

intensive and hypothesized that in addition to labour cost saving potential, small 

autonomous machinery will positively influence profitability with yield increase and other 

resource savings in arable farming. Shockley, Dillon and Shearer, (2019) compared the 

economic feasibility of conventional and autonomous machinery to produce grain crops in 

the United States for a given farm size of 850 hectares. Results showed that autonomous 

machinery was profitable over conventional machinery when the intelligent control 

establishment was cost effective. They also found that relatively small autonomous 

machinery was likely to have economic advantage for various farm sizes, especially for 
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small farms. Lowenberg-DeBoer et al. (2019) examined the economic impacts of 

autonomous equipment subject to farm size in the using Hands Free Hectare (HFH) 

demonstration experience. Although economic analyses of autonomous crop robotics 

throughout the world are constrained due to lack of data on economic parameters, the key 

strength of the HFH on-farm demonstration was that it provided first-hand experience with 

autonomous whole farm production operations. Using HFH demonstration experience 

they showed that crop production with swarm robots was economically feasible, where 

small and medium sized farms had cost advantage, and production costs of the United 

Kingdom were internationally competitive. Revell, Powell and Welsh (2020) examined the 

economic feasibility of autonomous tractors used in spraying operations for producing 

cotton in irrigated and dryland including cotton, wheat and chickpeas. They found that 

adoption of autonomous equipment was economically feasible.  

 

Lowenberg-DeBoer, Pope and Roberts (2020) used HFH-LP model to investigate 

economics of arable autonomous technology for biopesticide application in break crop, 

namely, oilseed rape, beans, and linseed. They found that application of low cost 

biopesticide is feasible with both conventional and autonomous technology, but 

autonomous equipment still demands more human labour in field operation compared to 

conventional herbicide treatments. Lowenberg-DeBoer et al. (2021a) identified economic 

implications of autonomous equipment. The study showed technical and economic 

feasibility of autonomous equipment and found that medium sized farms had a cost 

advantage with autonomous technology. They also commented on the economic 

potentiality of autonomous technology in irregular shaped arable fields and restoration of 

in-field biodiversity. In another study, considering the context of the United Kingdom, 

Lowenberg-DeBoer et al. (2021b) suggested that economic and social implications of 

autonomous equipment adoption will be affected by the rules of autonomous equipment 

use. Using the context of the United States, Shockley et al. (2021) pointed out that 

profitability of autonomous equipment was sensitive to the rules of automation for arable 

farming. They found that small farms gain more through using autonomous machinery in 

arable farm operation. Maritan et al. (2022) investigated economically optimum farmer 

supervision time for open-field autonomous machines. The study found that for field crop 

production economically optimum supervision time lies between 13% to 85% depending 

on the reliability of the machine and type of supervision (i.e., on-site or remote). 

Lowenberg-DeBoer (2022b) pointed out the economics of digital technology adoption 

worldwide, where autonomous machines adoption and implications for large, medium and 

small-scale economies are vividly described.   
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The state of the art of economics of autonomous machines (i.e., autonomous crop robots) 

reveals that research on autonomous machines economics highly concentrated the focus 

on costs saving potential. In economic analysis, a very few studies encompassed or 

commented on the implications of farm size (Edan, Benady and Miles, 1992; Gaus et al., 

2017; Goense, 2005; Lowenberg-DeBoer et al., 2019, Lowenberg-DeBoer et al., 2021a; 

McCorkle et al., 2016; Pedersen et al., 2017; Shockley, Dillon and Shearer, 2019; 

Shockley and Dillon, 2018). Nevertheless, apart from economic parameters, how 

machinery performance subject to field size and shape impact the farm economics of 

autonomous arable open-field farming are still unexplored. On the contrary, in 

conventional mechanized farms, farm size and shape received substantial attention to 

increase labour productivity and economies of size. Relatively larger rectangular fields are 

preferred which support the ‘get big or get out’ rule of thumb of conventional 

mechanization (Robinson and Sutherland, 2002; Lowenberg-DeBoer et al., 2021a).  

 

The economic and technical data limitations of autonomous farming are the prime reason 

for such a research gap (Lowenberg-DeBoer et al., 2020). The technological development 

and research of autonomous machines are well advanced (Shamshiri et al., 2018; 

Fountas et al., 2020). Academic, researchers and agribusiness innovators envisioned that 

autonomous machines will be able to reconcile techno-economic and environmental goals 

(Duckett et al., 2018; Daum, 2021; Pearson et al., 2022; AutoAgri, 2023). Up-to-date 

production economics research are based on autonomous whole field sole cropping cost 

economies, whilst machinery performances subject to field geometry are yet to be 

explored (Shockley, Dillon and Shearer, 2019; Lowenberg-DeBoer et al., 2021a; Shockley 

et al., 2021; Maritan et al., 2023). Similarly, open-field autonomous arable crop farming 

beyond whole field sole cropping (i.e., mixed cropping to address spatial and temporal 

heterogeneity) need investigation to guide win-wing farming synergies. The multifaceted 

benefits to reconcile both production goals (i.e., productivity and/or profitability) and the 

goals of the society as a whole (i.e., limiting environmental footprint of agriculture) are yet 

to be answered.  

 

To address the production economics research gaps on autonomous machines and to 

navigate the game changing technology innovation and adoption, the present study 

examined the economics of field size and shape for autonomous machines in the whole 

field sole cropping system (Objective 1). In addition, the study extended the research 

focus beyond autonomous whole field sole cropping economics to reconcile production 

goals and environmental goals through evaluating the economics of autonomous 

agroecological strip cropping systems (Objective 2) and the economics of autonomous 

regenerative agriculture (Objective 3). The following sections dealt with objective specific 
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state of the knowledge, limitations and the contribution of the present study to scientific 

knowledge:  

2.3 Field size and shape (AND/OR) autonomous machines: Whole field sole 

cropping (Objective 1) 

Field size and shape received substantial attention in the field of geography (Davis, 1926; 

Miller, 1953; Boyce and Clark, 1964; White and Renner, 1957) and more importantly in 

the last decades in agricultural sciences (Batte and Ehsani, 2006; Griffel et al., 2018; 

Janulevičius et al., 2019; Larson et al., 2016; Zandonadi et al., 2013). Research in 

agricultural sciences, considered field size and/or shape to examine machinery 

performances (Amiama, Bueno and Álvarez, 2008; Gónzalez, Marey and Álvarez, 2007; 

Oksanen, 2013; Spekken and Bruin, 2013), input application overlap (Luck, Zandonadi 

and Shearer, 2011; Jernigan, 2012; Zandonadi et al., 2013), and agricultural production 

economics literature to investigate profitability of precision agriculture technology, 

especially on Global Navigation Satellite Systems (GNSS) guidance and related 

technologies such as boom control (Batte and Ehsani, 2006; Larson et al., 2016; Shockley 

et al., 2012). 

 

In arable field operations, field size and shape received significant attention. Studies 

showed that conventional agricultural mechanization always favoured large sized 

rectangular fields and most of the land consolidation studies around the world in the last 

decades have been motivated by the desire for larger fields (Kienzle, Ashburner and 

Sims, 2013; Lindsay et al., 2013; Robinson and Sutherland, 2002; Van den Berg et al., 

2007). Likewise, machinery performances are always sensitive to field sizes and shapes 

(Keicher and Seufert, 2000; Spekken and de Bruin, 2013; Janulevičius et al., 2019). 

Majority of the research on machinery performance subject to field size and shape mainly 

concentrated on two domains of field operations: (i) Numerous studies focused on the 

path planning to minimize non-productive time in agricultural field operations (Oksanen, 

2013; Spekken and de Bruin, 2013), and (ii) research generally highlighted machinery 

performance, especially time efficiency during agricultural operations (Anigacz, 2015; 

Ebadian et al., 2018; Fedrizzi et al., 2019; Griffel et al., 2018; Janulevičius et al., 2019).  

 

In southern Finland, Oksanen (2013) aimed to find a computationally faster method of 

examining the relationship between field shape and operational efficiency. They compared 

their findings of a path planning algorithm with a set of real plots. Likewise, considering 

field shape, Oksanen and Visala (2007) developed a coverage path planning algorithm 

which is applicable to any kind of agricultural equipment. Spekken and de Bruin (2013) 

focused on route optimization with a reference to different field sizes to reduce non-
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productive time in field operations. Janulevičius et al. (2019) provided a method for 

estimating time efficiency of farm tractors during tillage operation in fields of different 

sizes. In Bangladesh, Islam, Kabir and Hossain (2017) investigated existing plot size and 

shape to understand the effects on operational efficiency of mechanical walk behind type 

rice transplanter. Gonzalez, Alvarez and Crecente (2004) considered plot size and shape 

to evaluate land distribution in Spain and presented an index considering plot size and 

shape factor. Similarly, Gónzalez, Marey and Álvarez (2007) examined effects of plot 

shape and size on effective field capacity of machinery operation in potato farming. In 

Spain, Amiama, Bueno and Álvarez (2008) considered field shape and proposed two new 

shape indices to investigate the effects of field shapes on the effective field capacity of 

self-propelled forage harvester. The study of Koniuszy et al. (2017) investigated power 

performance of farm tractors in tillage operation subject to different field sizes.  

 

Agricultural scientists considered field size and/or shape to minimize input application 

overlap in PA literature. For instance, Jernigan (2012) considered field shape to examine 

the relationship between diversified fields and planter overlap in Tennessee, US.  Luck, 

Zandonadi and Shearer (2011) in Kentucky, US, examined the effects of field size and 

shape on overlap errors of automatic section control and manual application. In Central 

Kentucky, US, Luck et al. (2010a) investigated pesticide and nutrient savings based on 

three different irregularly shaped grain fields. In another study, Luck et al. (2010b) 

compared effectiveness of automatic section control with manual section control to 

investigate pesticide application overlap in fields of different shapes and sizes in 

Kentucky, US. Zandonadi et al. (2011) developed a computational method based on field 

shape to calculate overlap errors of machinery and concluded that off-target spray 

application area varied depending on shape and size of field boundary. Likewise, 

Zandonadi et al. (2013) evaluated field shape descriptors to calculate off-target application 

area.  

 

However, most of the existing research on the effects of field size and/or shape on arable 

field operations are mainly concentrated on technical aspects of machinery management. 

A very few production economics studies addressed field size and shape issues in 

economic feasibility assessment of PA technology. In Tennessee, US, Larson et al. (2016) 

examined effects of field size and shape on profitability of chemical application with PA 

equipment. They concluded that field size and shape significantly affect profitability of 

precision spraying using automatic section control. Batte and Ehsani (2006) compared 

economic benefits of farmer-owned precision sprayers with a traditional non-precision 

system in three differentiated field shapes (i.e., a rectangle, parallelogram, and trapezoid). 

They analyzed a set of hypothetical farm fields each of which was 40.47 ha sized with and 
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without the inclusion of grass waterways through the fields at 450 and 600 angles. In 

Kentucky, US, Shockley et al. (2012) investigated impacts of field size and shape on 

automatic section control profitability. The study was conducted for planting and 

spraying operations in four fields and within the fields there were a spectrum of shape, 

size, and obstacles. Smith et al. (2013) considered on-farm field parameters (i.e., field 

size and shape) to evaluate the profitability of precision spraying technologies in 

Colorado, Kansas, and Nebraska, US. They found profitability was sensitive to size and 

shape of the irregular fields. Although the existing studies investigated profitability of PA 

technologies considering field size and shape, most of the studies were based on partial 

budgeting methods and concentrated on one or two crop operations (i.e., weeding and/or 

harvesting). The review of the existing literature reveals that the economics of PA 

technologies with a reference to field sizes and shapes focused on the input savings 

potentials in economic assessment. Nevertheless, the economic implications of machinery 

performance subject to field sizes and shapes considering whole farm operations from 

planting to harvesting (i.e., systems analysis) were unexplored. 

 

Autonomous machines have the potential to revolutionise PA (Lowenberg-DeBoer et al., 

2020, Lowenberg-DeBoer et al., 2021a). Even the studies on the economics of automated 

machines considered different sized farms (Tsuga, 2000; Ruhm, 2004; Mazzetto and 

Calcante, 2011) and commented on the operational efficiency in field operations (Clary et 

al., 2007; Cembali et al., 2008). Nonetheless, the economic implications of field sizes and 

shapes with the lens of machinery performance are still unexplored. For example, in 

Japan, Tsuga (2000) showed that automated transplanters can economically compete 

with human labour with a minimum area covered over 8.2 ha. Ruhm (2004) evaluated 

economics of harvesting, grading and cultivation of asparagus in Germany. The study 

showed that automated asparagus grading technology would be cost-effective if the area 

is more than 13 ha and the optimum size of the field for automated technology is 29 ha. 

They pointed out that future effort should concentrate on efficient production with 

minimum costs. In Italy, Mazzetto and Calcante (2011) developed an innovative system 

for completely automated transplant operation of vine cutting. They considered farm size 

and tested the developed method in various field topographic conditions. They found that 

the automated system reduced the requirements of labour and increased the transplanting 

rate by 15% compared to the conventional system. The cost curve estimation revealed 

that automated transplanter had lowest cost potentiality with annual area transplanted 

over 23 ha. Zhang, Pothula and Lu (2016) conducted an economic assessment of a self-

propelled harvesting and automated in-field sorting machine systems in the US apple 

industry. The study mentioned that farm size played an important role in cost savings and 

automated machines increased harvest efficiency. Cembali et al. (2008) determined the 
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efficiency level for profitable automation asparagus harvesting and compared it with 

manual harvesting methods. The study assumed the spear collection and collateral 

damage efficiency as the primary trial was unable to demonstrate exact efficiency. They 

concluded that the efficiency of the spear collection rate should be 85% with 5% collateral 

damage for profitable selective mechanical harvesting compared to manual methods. 

These studies focused on farm size but did not analyse the impact of the field size within 

the farm.  

 

Similarly, the economic feasibility assessment of autonomous machines incorporated farm 

size in arable field crops and fruit production. For example, Edan, Benady and Miles 

(1992) found that if manual harvesting operation was less than US$494/ha, then 

autonomous operation was economically viable for 202.4 ha harvesting operation. In the 

US, McCorkle et al. (2016) showed how substituting manual labour with robotic equipment 

affects different sized vineyards. Pedersen et al. (2017) mentioned that robotic operations 

lead to minimum overlaps, and it was possible to ensure economies of scale in small and 

medium sized fields. Goense (2005) showed that row crop cultivation with autonomous 

technology was an attractive alternative to manually operated machinery, if large areas 

were covered. The above production economics studies were unable to disclose the 

economic implications of field sizes and shapes, in addition, these studies lacked systems 

analysis.  

 

To date, only very few studies focused on systems analysis in their economic assessment 

and mentioned the significance of farm sizes. However, economic implications of field 

sizes and shapes subject to the performance of machineries’ were overlooked 

(Lowenberg-DeBoer et al., 2019, Lowenberg-DeBoer et al., 2021a; Shockley, Dillon and 

Shearer, 2019; Shockley and Dillon, 2018). Shockley and Dillon (2018) examined the 

economic feasibility of autonomous field machinery to produce corn and soybean in the 

US. They concluded that farm size should be considered into market size determination. 

Likewise, Shockley, Dillon and Shearer, (2019) found that relatively small autonomous 

machines are likely to have economic advantages for medium and small-scale farms. 

Shockley et al. (2021) examined how regulation will impact the commercial viability of the 

use of autonomous equipment in the US. They mentioned that smaller farms had the 

advantage to gain more from farming with autonomous equipment. Lowenberg-DeBoer et 

al. (2019) went beyond the study of Shockley, Dillon and Shearer (2019), they assessed 

the economic feasibility of swarm robots incorporating seeding to harvesting operations 

based on field data. They found small and medium sized farms with swarm robotic 

operations had cost advantage. Similarly, using systems analysis, Lowenberg-DeBoer et 

al. (2021a) identified economic implications of autonomous equipment for grain-oil-seed 
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farms in the UK. They found that medium sized farms had a cost advantage with 

autonomous technology. They also commented on the economic potentiality of 

autonomous technology in irregular shaped arable fields. In their analysis, they assumed 

all farms had 70% field efficiency for all operations and equipment sets, but did not reflect 

the economic implications of field efficiency differences subject to field sizes and shapes. 

Sørensen, Madsen and Jacobsen (2005) mentioned efficiency is a critical prerequisite for 

improved profitability and assumed 80% robotic weeding efficiency. However, these 

studies assumed constant field efficiency for different farm sizes and operations. They 

overlooked the crucial question about economic implications of field sizes and shapes on 

the use of autonomous crop robotics.  

 

On the contrary, the ecological management studies, especially studies conducted in the 

US, UK, Canada, and European Union considered field sizes with utmost importance to 

promote environmental schemes (Clough, Kirchweger and Kantelhardt, 2020; Europe, 

2008; Fahrig et al., 2015; González-Estébanez et al., 2011; Stanners and Bourdeau, 

1995). For instance, Fahrig et al. (2015) considering Canadian context, found that field 

size had a strong relationship with biodiversity. Results showed that higher biodiversity 

exists in small arable crop fields. They suggested for ensuring biodiversity conservation, 

field size reduction should be considered. Likewise, in the context of eastern Ontario, 

Canada, Flick, Feagan and Fahrig (2012) examined effects of the structure of landscape 

on the diversity of butterfly species. The results showed there was a positive relationship 

between declining patch size and richness of butterfly species. Lindsay et al. (2013) 

investigated the relationship between structure of farmland and bird species composition, 

diversity and richness in six watersheds in the Midwest, US. They found avian richness 

decreased with the increase of field size. In the context of Great Britain, Robinson and 

Sutherland (2002) found increased use of machinery promoted the expansion of field size 

that resulted in 50% removal of the stock of hedgerows. In northwest Spain, González-

Estébanez et al. (2011) found that butterfly diversity is higher in smaller fields. They 

mentioned landscape attributes are important for biodiversity conservation. Gaba et al. 

(2010) examined the richness and diversity of weed species in France. The study found 

increased richness and diversity of weed in small fields. They suggested that fields having 

more crop edges could shelter numerous species of weed. Clough, Kirchweger and 

Kantelhardt (2020) pointed out that in European landscapes, biodiversity declined with the 

increase in field size. They suggested that ecological and economic trade-offs should be 

addressed in policy and research, where field size could be the mediator to mitigate the 

trade-offs.  
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The state of the art reveals that small fields are advantageous for environmental 

management. On the contrary, the performance of conventional agricultural 

mechanization has an inverse relationship with small fields. Nonetheless, it has yet to be 

demonstrated how and to what extent autonomous machines performance is sensitive to 

field sizes and shapes, and what would be the economic implications of field 

size and shape on autonomous machines. Although the most up to date study conducted 

by Lowenberg-DeBoer et al. (2021a) estimated wheat costs of production subject to farm 

sizes (Figure. 2.1). They hypothesized that autonomous swarm robots will minimize the 

pressure to "get big or get out", indicating that small farms are economical with 

autonomous machines. However, they did not address the implications of field size and 

shape. Consequently, the economic implications of field sizes and shapes remain in 

question. 

 

 

Figure 2.1: Costs of production of wheat for conventional (triangles) and autonomous 

equipment (circles) subject to farm sizes. Source: Lowenberg-DeBoer et al. (2021a). 

 

To shed light on the research gap, the present study hypothesized that autonomous crop 

machines would make it possible to farm small, non-rectangular fields profitably, thereby 

preserving field biodiversity and other environmental benefits. The study took advantage 

of systems analysis considering autonomous arable farm operations from drilling to 

harvesting. Using HFH demonstration experience at Harper Adams University in the UK, 

the study investigated the economics of field size and shape on autonomous grain-oilseed 

production (Objective 1). The findings of the study have implications for the development 

and improvement of autonomous machines and facilitate the decision-making process of 
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the farmers and agribusiness adopters, environmentalists, and policy makers and 

planners. 

2.4 Automating mixed cropping  

Apart from the cost economies (i.e., economies of size) of autonomous machines for 

whole field sole cropping system (Shockley, Dillon and Shearer, 2019; Lowenberg-DeBoer 

et al., 2021a), the mixed cropping farm management potentials of autonomous machines 

are in planning (Daum, 2021; Davies, 2022; Pearson et al., 2022) and demonstration 

stage (Ditzler and Driessen, 2022; Harper Adams University (HAU), 2023). Autonomous 

machines are expected to reconcile the multifaceted goals of arable farming such as 

production goals of productivity and profitability and environmental goals of sustainability 

(Gackstetter et al., 2023).  

 

Research suggests several mixed cropping systems with the advent of autonomous 

machines, such as strip cropping (Ward, Roe and Batte 2016), pixel cropping (Ditzler and 

Driessen, 2022) and patch cropping (Grahmann et al., 2021; Donat et al., 2022). 

However, technical challenges of farm management constraints more complex mixed 

cropping due to different plant heights and growth patterns (Ditzler and Driessen, 2022). 

Strip cropping (refers to a farming practice of simultaneously growing two or more crops in 

adjacent strips, where the strips are wide enough for independent cultivation, whilst 

narrow enough for facilitating crop interaction)  is considered as the simplest and most 

technically feasible mixed cropping systems even with conventional mechanization (Exner 

et al., 1999; van Apeldoorn et al., 2020; Alarcón-Segura et al., 2022).  

 

2.5 Strip cropping (AND/OR) autonomous machines: Objective 2  

Strip cropping is considered as part of sustainable intensification solution because strip 

cropping has the potential to address within field spatial and temporal (i.e., spatio-

temporal) heterogeneity, while increasing production and reducing synthetic inputs use 

(Cruse and Gilley, 2008; Du et al., 2019; Juventia et al., 2022). Agroecology (FAO, 2019) 

has been suggested to bring a new paradigm in arable crop farming through redesigning 

spatio-temporal heterogeneity. The agroecological farming systems has the potential to 

reconcile production and environmental sustainability while substituting external inputs 

use through optimizing the ecological processes (Lacombe, Couix and Hazard, 2018; 

Boeraeve et al., 2020). Under the umbrella of agroecological farming, strip cropping is 

advocated with existing machinery to increase productivity and resource-use-efficiency 

(Munz et al., 2014a; Song, 2020; Juventia et al., 2022; Bejo, 2023; Chongtham, 2023). 

The agronomic (West and Griffith, 1992; Agyare et al., 2006; Munz et al., 2014a) and 
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ecological (Alarcón‐Segura et al., 2022) benefits of strip cropping are well documented in 

research throughout the world. 

 

Research in the large-scale farming context showed the agronomic benefits of strip 

cropping. For instance, Borghi et al. (2012) using field experiments in Brazil, investigated 

the effects of different row spacing on maize and forage intercropping. The study found 

that narrow-row spacing maize yields were higher compared to wide-row spacing at the 

same plant density. Field experiments in Argentina by Verdelli, Acciaresi and 

Leguizam´on (2012) found that strip cropping corn yield in three seasons increased 13 

to16% in the border rows, whilst soybean yield decreased 2 to11% compared to whole 

field sole cropping (i.e., monocultures). The study found no significant difference in centre 

rows yield in strip cropping. The study pointed out that yield increase of corn in border 

rows was highly associated with the radiation interception and crop growth rates 

advantage of taller corn plants and the opposite happened for subordinate soybean that 

leads to yield penalty. West and Griffith (1992) conducted maize and soybean strip 

cropping trials from 1986 to 1990 in the Corn Belt of Indiana, US. The study found that the 

strip cropping system increased outside corn rows yield on average by 25.8% and 

decreased outside soybean yield by 26.6% compared to unstripped cropping system. The 

review study conducted by Francis et al. (1986) pointed out that in the Eastern and 

Midwest US, narrower strips corn had yield advantage of 10 to 40% and soybean yield 

reduction was 10% to 30% over sole cropping systems owing to the light water and 

nutrient competition between taller corn and smaller soybean plants. The study also 

mentioned that in wider strips the corn yield increase and soybean yield decrease were 

less than sole cropping. Ghaffarzadeh, Préchac and Cruse (1994) evaluated the yield 

response of corn-soybean-oat-legume strip intercropping in two experiments conducted in 

1989 and 1990 in Iowa, US. Results showed that outside corn rows produced significantly 

higher yield, but competition of water caused yield loss. Rainfall and water adequacy 

affected soybean yield. The study suggested strip intercropping as a suitable alternative to 

current monocropping practices. Cruse and Gilley (2008) in Iowa, US found that corn yield 

was 10% to 30% higher in the edge rows whilst soybean yield decreased 5% to 10% 

compared to the strip in centres. 

 

Experiments of medium scale farming context in Germany and small scale context in 

China by Munz, Claupein and Graeff-Hönninger (2014b) showed that strip widths have 

significant impact on crop yield. The study found that on average maize yield increase in 

border rows for 18 to four rows by 3% to 12% in Germany and 5% to 24% in China. Yang 

et al. (2014) used the experience of maize and soybean relay strip intercropping 

experiments in China and found that planting geometrics had yield effects. The study 
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pointed out that spatial pattern differences have implications for soybean owing to the light 

environment. Results showed that total yield in strip intercropping systems was higher 

than that of sole cropping systems. Yang et al. (2015) found that maize yield increased 

with bandwidth reduction and plant spacing had significant impacts on yield. The yield of 

relay strip intercropping was higher compared to sole cropping maize and soybean 

farming. The optimum bandwidth and narrow-row spacing of maize were 200 and 40 cm. 

The study suggested appropriate reduction of narrow rows maize plant spacing and 

increased distance of maize-soybean rows for higher yield. Research in China by Iqbal et 

al. (2019) suggested appropriate planting geometry for yield increase, nutrition acquisition, 

and mechanical operations in maize-soybean strip intercropping systems. They suggested 

increasing distance between soybean and maize rows and decreasing distance of maize 

rows. Qin et al. (2013) using experimental trails in arid land of China found that maize 

based intercropping systems such as maize-pea and maize-wheat had significant yield 

advantages compared to sole cropping systems. The study also found land equivalent 

ratios of 1.2 to 1.5 (the benefit greater than 1 indicates intercropping benefits). The study 

also advocated that intercropping systems incorporating a legume such as pea has the 

capacity to increase crop productivity, reduce soil respiration and decrease carbon 

emission. Jun bo et al. (2018) in China found that increase of plant density resulted in 

higher maize and soybean yield and the land equivalent ratios as of 2.0. The study 

mentioned that the outer rows of maize and soybean were expanded enough to facilitate 

light use and equipment work efficiency. The simulation study of van Oort et al. (2020) 

using Chinese case study of wheat and maize relay strip intercropping found that wider 

strip decreased intercropping benefits. The study suggested optimum strip width less than 

1 m. Liu et al. (2022) using three years maize and soybean experiments in southwest 

China found that soybean strip width had substantial effects on leaf photosynthetically 

active radiation (PAR) compared to maize strip width. 

 

Agronomic studies also found the effects of strip orientation in strip cropping systems. The 

maize-soybean-oat strip cropping study of Jurik and Van (2004) on four farms of Iowa, 

US, found that outside edge rows of corn in north-south direction received 2% to 38% 

higher daily photosynthetic photon flux density (PPFD) (i.e., the number of photons per 

unit time on a unit surface) compared to inner rows in strip systems and the outside 

soybean row far away from corn received 36% to 140% greater PPFD. Cruse and Gilley 

(2008) found that in east-west oriented strip cropping systems, south border rows corn 

yield increased substantially compared to north borders. They also found that strips 

oriented in the north-south favoured corn yield on both side edges. Liu et al. (2022) based 

on three years of maize and soybean strip cropping experiments on North-south and 

West-east strip orientation in southwest China found more photosynthetically active 
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radiation (PAR) (i.e., solar radiation that photosynthetic organisms capable to use in 

photosynthesis where the solar radiation lies between 400 to 700 nanometres) 

interception by soybean plants compared to maize plants while strip orientation angled 

increase from 00 to 900. Iragavarapu and Randall (1995) based on the experiment in 

southern Minnesota, US found that yield of corn increased by 3% when the corn and 

soybean strip cropping was oriented in East-west rows and 13% in North-south rows. On 

the contrary, soybean yield decreased by 10% for East-west rows and 7% for North-south 

rows. Iragavarapu and Randall (1996) showed that strip orientation has substantial effects 

on yield based on the experimental trials of southern Minnesota, US. The layout followed 

south side soybean, northside wheat and east-west side-oriented corn to maximize light 

interception and minimize shading. The four-year (1991 to 1994) average yield found that 

outside rows corn yield was 12% higher in east-west rows and 25% higher in north-south 

rows compared to non-border rows. In the case of soybean, the study found 13% yield 

penalty for east-west and 12% for north-south rows.  

 

The study of Cruse and Gilley (2008) considering the North American context of Iowa 

pointed out that total application of pesticide and fertilizer was less in strip cropping 

systems compared to whole field sole cropping. The review synthesizes of Iqbal et al. 

(2019) found that intercropping helps in higher resource capture due to the advantage of 

capturing spatial and temporal dimensions. The inclusion of legumes in intercropping 

systems served as a strategy to save nitrogen owing to the biological nitrogen fixation 

process. They also pointed out that cereal-legume intercropping systems improve water 

use efficiency and soil fertility.  The findings of meta-analysis showed that intercropping 

reduced anthropogenic inputs (i.e., less fertilizer N is required) compared to the sole 

cropping system (Xu et al., 2020). Based on the southwestern Chinese context, the study 

of Du et al. (2019) found that legume-nonlegume intercropping such as maize and 

soybean intercropping systems reduce N input through biological N fixation. The study of 

Głowacka et al. (2018) using a field experiment in south Poland from 2008 to 2010 found 

that strip cropping is an effective strategy to improve maize biofortification (i.e., the 

process of improving food nutritional quality). The study found that strip cropping 

significantly increased Magnesium (Mg) and Calcium (Ca) accumulation in maize biomass 

(i.e., renewable organic matter) and grain.  

 

Strip cropping systems also have the potential to maximize temporal variability and reduce 

the negative border effects. Small grains same in height such as oat and wheat could be 

considered to take the advantage of edge effects. Small grains typically sown a few 

months before the typical taller plant maize and subordinate plant soybean. This cropping 

system competes less for light. When the small grains (e.g., oat and wheat) reach maturity 
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the taller plant (maize) ensures wind shelter that reduces grain lodging (Iragavarapu and 

Randall, 1996; Cruse and Gilley, 2008).  The findings of meta analysis by Xu et al. (2020) 

showed that intercropping increased temporal variability by sowing or harvesting one crop 

earlier than others. 

 

Apart from agronomic benefits, research shows ecological benefits of strip intercropping 

(Qin et al., 2013; Tajmiri et al., 2017b). For instance, based on a field experiment in China 

Ju et al. (2019) pointed out that strip intercropping increases crop biodiversity and could 

be used for successful conservation and biological control tools. The study of Alarcón‐

Segura et al. (2022) found that strip intercropping systems increased biodiversity and 

biological pest control in conventionally mechanized farms with larger 27-36m strips in 

German farms. Cong et al. (2015) conducted wheat, maize and faba bean strip cropping 

experiments from 2008 to 2011 in Northwest China. The study found that root biomass in 

intercrops was 23% higher compared to whole field sole cropping. Results also found soil 

carbon (C) sequestration, Nitrogen (N) fixation. The study pointed out that strip 

intercropping systems have aboveground productivity owing to species complementary 

and belowground productivity due to C sequestration and biological N fixation. The review 

study by Kremen and Miles (2012) pointed out that strip intercropping has less disease 

spread due to the spacing and enterprise diversity. The crop roots interaction in strip 

intercropping is less than other types of row intercropping. The review of Hiddink 

Termorshuizen and van Bruggen (2010) found that strip cropping and other mixed 

cropping systems reduced diseases in 74.5% of cases compared to whole field sole 

cropping. The study of Raseduzzaman and Jensen (2017) based on the metal analysis 

pointed out that cereals and grain legumes intercropping has the potential to promote 

biodiversity and sustainable intensification with higher yield stability. Using field 

experiments in south China, Liang et al. (2016) found that intercropping substantially 

lower disease infestation. The net rate of photosynthesis and leaf chlorophyll content were 

increased for rice in the edge rows of water spinach. Ning et al. (2017) found that in south 

China, rice and water spinach intercropping reduced diseases and pest infestation in rice. 

Chen et al. (2017) in their experiments in China found that maize and soybean relay strip 

intercropping increased land productivity and reduced environmental pollution. 

 

The study of Cruse and Gilley (2008) considering the North American Corn Belt context of 

Iowa pointed out that due to the advantages of easily defined planting positions, no-till or 

ridge tillage and contour planting strip cropping system limit soil erosion. Moreover, 

inclusion of small grain/forage strips in the strip cropping system act as an efficient 

vegetation filter for sediment removal during water runoff. Strip cropping is a management 

system to control soil drift and improve water storage (Bravo and Silenzi, 2002). 
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Mohammadi et al. (2021) considered Iranian context and found that strip intercropping is 

an effective strategy to encourage pest predators. Study by Iqbal et al. (2019) in China 

showed that cereal-legume intercropping systems reduce weed infestation, soil erosion 

and improve water use efficiency and soil fertility. The study of Brennan (2013) in 

California, US, showed that lettuce and alyssum strip cropping is an effective strategy for 

biological aphids control. Using 2014 and 2015 cropping seasons of Iran, Tajmiri et al. 

(2017a) found that canola and alfalfa strip cropping increased pest predator species 

diversity. Another study of Tajmiri et al. (2017b) in Iran pointed out that potato and alfalfa 

strip intercropping could be an effective strategy to reduce pest density. Based on 

experimental outcomes from 2009 to 2011 in China, Qin et al. (2013) pointed out that 

adoption of strip intercropping is an effective strategy to reduce soil respiration and lower 

carbon emission.  

 

The state of the knowledge of strip cropping shows agronomic and ecological 

(agroecological) benefits. Strip cropping has been practiced based on agronomic and/or 

environmental considerations in human intensive farming and/or conventional mechanized 

systems (Cruse and Gilley, 2008; Qin et al., 2013; Brooker et al., 2015; van Oort et al., 

2020; Rahman et al., 2021). Mixed cropping is often evident in manual agriculture as 

compared to whole field sole cropping (Francis et al., 1986; Brooker et al., 2015). In 

conventional mechanized systems operated with human operators strip cropping is 

envisaged and practiced to maximize productivity and ecological benefits (Munz et al., 

2014c; Wang et al., 2015; Alarcón‐Segura et al., 2022). However, questions about 

economics of strip cropping are yet to be answered as strip cropping economics is 

constrained by the substantial added labour requirements. Research in the large-scale 

farming context of the Midwest, US found that higher labour requirements and associated 

fixed costs in conventional mechanized systems offset the profitability of maize and 

soybean strip cropping (Ward, Roe and Batte, 2016; West and Griffith, 1992). The 

economics of strip cropping is even constrained for smallholder’s context in China by 

labour scarcity (Feike et al., 2012; Munz et al., 2014c). 

 
Researchers have hypothesized that economically feasible agricultural intensification with 

the strip cropping system could be possible with technological innovation. For example, 

Exner et al. (1999) in their strip intercropping study based on Iowa, US farms pointed out 

that precision management is demanded for strip cropping. The study of Lesoing and 

Francis (1999) in their study of corn-soybean and grain sorghum-soybean strip cropping in 

eastern Nebraska, US mentioned that new planting equipment could be more effective for 

cereal-legume strip intercropping. van Oort et al. (2020) pointed out that future machinery 

and crop growth models will enable farmers to achieve the benefits of intercropping. The 

study also suggested that intercropping and autonomous swarm robotics co-evolution will 



 

40 State of the art 

help to achieve maximum benefits of intercropping and labour productivity. The maize and 

soybean strip cropping study by Ward, Roe and Batte (2016) in the Corn Belt of the US 

found that strip cropping profitability is constrained by higher labour requirements and 

associated fixed costs related to conventional machines. Their study hypothesized that 

innovative technology such as small supervised autonomous machines (i.e., robots) could 

change the cost calculus of strip cropping. 

 
The economic benefits of strip cropping as found in literature was measured using partial 

indicators such as Land Equivalent Ratio (LER), Gross Margin Ratio (GMR), Monetary 

Equivalent Ratio (MER) and/or harvested yields (Francis et al., 1986; Smith and Carter, 

1998; Lesoing and Francis, 1999; Yu et al., 2015; van Oort et al., 2020; Rahman et al., 

2021). A very few studies used partial budgeting (West and Griffith, 1992; Exner et al., 

1999; Ward, Roe and Batte, 2016; Kermah et al., 2017). The most up-to-date economic 

analysis of strip cropping using partial budgeting was conducted by Ward, Roe and Batte 

(2016) considering the context of the Corn Belt of the US. However, the study was unable 

to test their robot hypothesis due to a lack of autonomous whole farm operations 

experience and data.   

 
The existing strip cropping economics studies to date concentrated on partial assessment 

of economic scenarios instead of whole farm systems analysis capturing planting to 

harvesting operations. To help close this research gap, the study assessed the profitability 

of maize and soybean strip cropping with autonomous machines on a central Indiana, US 

farm. Maize and soybean farm of the Corn Belt of the US was considered because the 

study evaluated the hypothesis of Ward, Roe and Batte  (2016), where agronomic benefits 

of yield increase for corn and penalty for soybean related to edge effects are available.   

2.6 Regenerative agriculture (AND/OR) autonomous machines: Objective 3 

The scientific definition of regenerative agriculture is not yet clear (Schreefel et al., 2020). 

The existing definitions are based on processes (i.e., incorporating cover crops, livestock 

and tillage reduction or elimination), outcomes (i.e., improvement of soil health, carbon 

sequestration and biodiversity enhancement) and/or  combination of both (Newton et al., 

2020; Manshanden et al., 2023). In this study, regenerative agriculture is considered with 

strip cropping practices that diversify crop production within the same field in strips to 

minimize soil disturbance, improve resource use efficiency of the farm through reducing 

synthetic chemical input use, and boost soil health, biodiversity, and farm productivity.  

 

The combination of processes and outcomes based definition assumed in this study 

considered five soil health principles because soil health is the entry point to achieve the 

multiple objectives of arable farming, such as production and nature conservation 
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(LaCanne and Lundgren, 2018; Schreefel et al., 2020; Schreefel et al., 2022b). The soil 

health principles include minimising soil disturbance, maximizing crop diversity, keeping 

soil covered, maintaining living roots year round and including livestock components 

(Jaworski, Dicks and Leake, 2023; Manshanden et al., 2023) as shown in Figure 2.2. 

 

 

Figure 2.2: Five principles of regenerative agriculture.  

 
Source: Lower Blackwood Catchment. Adopted from: Cool Farm Tool. Available at: 
https://coolfarmtool.org/2020/12/regenerative-agriculture-and-climate-change/ (Accessed: 21 December 
2022). 
 

Strip cropping systems are the simplest regenerative mixed cropping system. It is 

technically feasible even on conventional mechanized farms (Exner et al., 1999; van 

Apeldoorn et al., 2020; Alarcón-Segura et al., 2022). This cropping system could also be 

considered as agroecological farming because strip cropping is an innovative 

agroecological practice to produce more (i.e., owing to edge effects) (Ward, Roe and 

Batte, 2016) with less external resources (FAO, 2019). Although the definitions of 

agroecology and regenerative agriculture differ, field biodiversity is a common element 

(FAO, 2019; Tittonell et al., 2022). One of the key differences between agroecology and 

regenerative agriculture is that ‘agroecology’ refers 10 elements (FAO, 2019), which 

include 'political' or 'activist' elements as well as production aspects, whereas regenerative 

agriculture is increasingly supported by commercial and large-scale farming (Tittonell et 

al., 2022; Manshanden et al., 2023). At recent times, regenerative agriculture has been 

promoted by civil society, NGOs, media and multinational food companies considering 

agronomic and ecological grounds (Gosnell, Gill and Voyer, 2019; Giller et al., 2021; 

Umantseva, 2022).  

 

https://coolfarmtool.org/2020/12/regenerative-agriculture-and-climate-change/
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However, the production economics of regenerative agriculture shows mixed results 

(WBCSD, 2023; Schreefel et al., 2022a; Constantin et al., 2022). Profitability of 

regenerative practices are constrained by higher labour requirements and farm 

management challenges which limit the adoption and scaling up (Pearson 2007; 

Keshavarz and Sharafi, 2023). In this context, regenerative agriculture is envisaged with 

autonomous machines to reduce labour needs and enable intensive management 

(Davies, 2022; The Pack News, 2022). Research hypothesized that robotics and 

autonomous systems (RAS) could provide emerging opportunities that will help to achieve 

net zero agriculture targets with regenerative agriculture (Pearson et al., 2022).  

 

The state of the knowledge of regenerative practices reveal that regenerative agriculture 

is a prominent alternative which could transform food production and ecosystem 

restoration degraded by industrial monocultures (Gordon, Davila and Riedy, 2023). For 

instance, considering the US farming systems, the study of Day and Cramer (2022) 

pointed out the significance of regenerative agricultural transformation through linking 

policy, process and education. Gosnell, Gill and Voyer (2019) mentioned that regenerative 

agriculture is a climate smart mitigation and adaptation measure supported by 

technological innovation, policy, education, and outreach. The study of Gremmen (2022) 

suggested scientific and technology driven as well as nature-based regenerative 

agriculture solutions to meet the demand for food of the increasing population. In the US, 

LaCanne and Lundgren (2018) found that corn pest abundance was more than 10-fold 

lower in regenerative multispecies cover crop systems compared to conventional systems. 

Regenerative agriculture directly conserves and restores soil health, increases biodiversity 

and ecosystem services, and sequesters atmospheric carbon (CO2). Similarly, part of the 

co-benefits of regenerative agriculture is that it helps in producing healthy and nutritious 

food (White, 2020).  

 

Using an Australian case study, Bartley et al. (2023) found that regenerative grazing (i.e., 

rotational grazing with rest included strategically) improved vegetation, and soil and land 

condition, but it took longer, a period of at least three to five years and a maximum fifteen 

to twenty years, to capture the benefits. The study found that regenerative grazing 

increased total nitrogen and soil organic carbon compared to control sites that did not 

follow regenerative grazing. Eckberg and Rosenzweig (2020) pointed out that 

regenerative agriculture is a farmer-led movement that adopts nature-based principles to 

restore soil health, biodiversity, and farm economics because cereal grain intensive food 

systems degrade natural resources. The study of Rehberger, West and Spillane, (2023) 

pointed out that regenerative agriculture increases soil organic carbon, soil health and 

biodiversity.  
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Using participatory monitoring and evaluation, the study of Soto, de Vente and Cuéllar 

(2021) in Spain, found that regenerative agriculture is a promising approach to restore 

degraded agroecosystems. Rhodes (2017) mentioned that regenerative agriculture not 

only increases soil organic carbon but also builds new soil that helps to improve soil 

health and structure, increase soil fertility and crop yield, facilitate water retention and 

aquifer recharge. McLennon et al. (2021) mentioned that regenerative agriculture helps to 

reduce external inputs dependency and restore and maintain natural systems. Hellwinckel 

and Ugarte (2011) argued that a regenerative agricultural transition is necessary to avoid 

locking into a system that depletes the soil and fossil fuels.  

 

Although the food production and nature conservation potentials of regenerative 

agriculture is well known, the economics of regenerative agriculture has mixed literature 

depending on the specific regenerative practices considered (Bennett, 2021; Boston 

Consulting Group, 2023). A review study on the economics of regenerative agriculture in 

Western Australia conducted by  Bennett (2021), found that the profitability of 

regenerative agriculture is lower compared to conventional agriculture. However, the 

regenerative agriculture production economics is sensitive to enterprise type. The study 

also pointed out that a loss of income is a significant barrier to scaling up regenerative 

practices’ adoption. The study of Ogilvy et al. (2018) using financial data from sixteen 

regenerative agriculture grazing farms found that before interest and tax, the earnings 

from regenerative agriculture were more profitable compared to conventional grazing 

systems. However, this study was contested by Francis (2019) who found that using the 

same data, conventional systems grazing sheep achieved a return on assets of 4.22%, 

while regenerative agriculture practitioners’ return on assets was only 1.66%. The 

difference was mainly because the study of Ogilvy et al. (2018) only considered enterprise 

or animal level analysis, not whole farm analysis considering all the factor costs and 

assets invested as used in the study of Francis (2019). 

 

A survey study based on North American context found that in the short run for the first 

three to five years, farmers have to face loss of profitability, but in the long run the profit 

increased with regenerative practices (WBCSD, 2023). The study of LaCanne and 

Lundgren (2018) in the US, examined the profitability of regenerative corn and 

conventional corn production. The study found that regenerative corn yield was 29% lower 

compared to conventional corn production. However, profit was 78% higher for 

regenerative practice which was due to the reduced inputs costs and higher output price 

as there was positive association between organic matter and profit, not corn yield. The 

survey study of Taylor and Dobbs (1988) in South Dakota, US found that regenerative 
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agriculture was more profitable compared to conventional farming due to the lower input 

costs for regenerative practice and improved prices for the regenerative agriculture 

products.  

 

In the Dutch dairy case, the study of Schreefel et al. (2022a) using an ex-ante modelling 

approach found improved soil function at the expense of farm profitability. Another study 

of Schreefel et al. (2022b) considered arable, dairy and mixed farming system in the 

Netherlands. The study found that regenerative practices improve environmental 

performances at the expense of farm profitability on an average by 50% across all case 

study farms. Constantin et al. (2022) did a review of literature of comparative 

environmentally friendly farming systems and found that regenerative agriculture is not an 

economically feasible farming system, while suggesting large-scale practice to achieve 

farm profitability.  

 

The study of Pearson (2007) pointed out that regenerative systems required higher 

labour. The study suggested technological innovations to solve the problem. In the Iranian 

context, the study of Keshavarz and Sharafi (2023) found that climate smart regenerative 

agriculture is a plausible solution to restore agroecosystems, but scaling up was a 

significant challenge. Along with other socio-economic and institutional attributes, the 

study suggested technological changes to help wide scale adoption. Precision 

technologies are suggested to facilitate regenerative agriculture (Green Biz, 2020; Listen 

Field, 2021; Futures Centre, 2023; Manshanden et al., 2023). For instance, the study of 

Pearson et al. (2022) hypothesized that autonomous systems could help regenerative 

agriculture. McLennon et al. (2021) suggested digital agriculture and sustainable 

agricultural management using agricultural technologies with artificial intelligence (AI) for 

regenerative agriculture. ‘Robot one’ a cutting-edge agricultural robot is expected to help 

regenerative farming practices (Pixel Farming Robotics, 2023). The Kibb autonomous 

initiative in Sweden is designed to promote regenerative farming (The Pack News, 2022). 

However, the economics of regenerative agriculture with precision agriculture technology 

is yet to be explored. In this study, autonomous machines are considered as precision 

agriculture technology because they have the potential to cost effectively increase the 

precision of input applications and to collect very detailed data on agricultural production. 

This economic analysis will guide the regenerative agriculture practices, development of 

autonomous prototypes and commercialization of autonomous technology and 

regenerative farming.  

 

The context of the UK was considered because Great Britain is one of the most nature 

depleted countries which need ecosystem services regeneration. Moreover, the  HFH & 
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HFF was the first whole farm commercial operation conducted at Harper Adams 

University in the UK (Hands Free Hectare (HFH), 2021). Another underlying reason is 

associated with the government vision of net zero agriculture. The British government has 

set an ambitious plan to achieve a net zero target by 2050 (Bank of Scotland, 2021; 

RASE, 2021). The study of Davies (2022) hypothesized that autonomous machines could 

facilitate regenerative agriculture that will help decarbonize cereal production in the UK. In 

British agriculture and policy, regenerative agriculture has received growing attention as 

part of a soil management strategy (Jaworski, Dicks and Leake, 2023).  

 

Recent research and on-farm regenerative practices experience motivate regenerative 

farming in Great Britain. Using simulation methods, Jordon et al. (2022a) estimated that 

arable farming in Great Britain could mitigate 16-27% of agricultural emissions without 

losing crop yield through the adoption of regenerative agriculture. The analysis found that 

cover cropping, reduced intensity of tillage and incorporation of grass-based ley rotations 

are effective regenerative practices that increase soil organic carbon. The study 

mentioned that even though Great Britain farming systems have adoption constraints in 

the existing farming systems, the adoption of regenerative agriculture could contribute to 

the net zero target. The Bayesian meta-analysis of Jordon et al. (2022b) considering no or 

reduced tillage, cover crops and ley-arable rotations in Great Britain found that 

regenerative practices increased soil organic carbon compared to conventional practice. 

However, these typical regenerative rotations have to yield increasing benefit, while the 

study suggested future work could think of win-win farming with regenerative practice. 

Considering the context of the UK, Ken Hill Farms and Estate at Snettisham, Norfolk, 

found that farming using regenerative agriculture principles has the potential to save fixed 

costs (Abram, 2020). They also pointed out that regenerative agriculture is an effective 

strategy when farming practices include intercropping in the farms to reduce substantial 

amounts of fertilizer and chemical inputs. Based on farmer’s  experience it is hypothesized 

that technology is the key to regenerative farming transition (Abram, 2021). With these 

backdrops, delving into the profitability of regenerative strip cropping practices under both 

conventional mechanized farming with human operators and autonomous system will help 

Great Britain to link with the transitional vision related to productivity and environmental 

sustainability that is “public money for public goods” subsidization policy.  
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Chapter 3 

Economics of field size and shape for 

autonomous crop machines 
 

“Arable crop production with autonomous equipment is technically and economically 

feasible, allowing medium size farms to approach minimum per unit production cost 

levels. The ability to achieve minimum production costs at relatively modest farm size 

means that the pressure to “get big or get out” will diminish. … The ability of autonomous 

equipment to achieve minimum production costs even on small, irregularly shaped fields 

will improve environmental performance of crop agriculture by reducing pressure to 

remove hedges, fell infield trees and enlarge fields.”  

 

Lowenberg-DeBoer et al. (2021a): ‘Precision Agriculture, 22, pp. 1992–2006. 
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3.1 Introduction 

Field size and shape have substantial consequences for environmental management 

(Bacaro et al., 2015; Clough, Kirchweger and Kantelhardt, 2020; Konvicka, Benes and 

Polakova, 2016; Marja et al., 2019), technical (Fedrizzi et al., 2019; Griffel et al., 2018; 

Griffel et al., 2020; Islam, Kabir and Hossain, 2017; Janulevičius et al., 2019; Luck, 

Zandonadi and Shearer, 2011) and economic feasibility (Batte and Ehsani, 2006; 

Carslaw, 1930; Larson et al., 2016; Miller, Rodewald and McElroy, 1981; Sturrock, Cathie 

and Payne, 1977). To facilitate conventional agricultural mechanization, comparatively 

large rectangular fields are needed and most of the land consolidation around the world in 

the last decades have been motivated by the desire for larger fields (Kienzle, Ashburner 

and Sims, 2013; Van den Berg et al., 2007). Field size and shape has been a key factor in 

determining international crop competitiveness. Since the advent of motorized 

mechanization countries with relatively large, roughly rectangular fields have had a major 

economic advantage (e.g., US, Canada, Australia, Brazil, Argentina). In the UK, field size 

has increased through removing hedgerows and in field trees to allow use of larger 

machinery and ensure economies of size (MacDonald and Johnson, 2000; Pollard, 

Hooper and Moore, 1968; Robinson and Sutherland, 2002). On the contrary, small fields 

are often neglected and considered as non-economic. For instance, in the US many small 

irregular-shaped fields were abandoned in the 20th Century. The European Union and 

Switzerland retained small fields in production with subsidies (Lowenberg-DeBoer et al., 

2021a; OECD, 2017). 

 

Nevertheless, under the umbrella of landscape management, small fields are promoted by 

researchers. Research in Canada and the US found higher biodiversity in smaller fields 

(Fahrig et al., 2015; Flick, Feagan and Fahrig, 2012; Lindsay et al., 2013). Likewise, 

studies in the UK and the European Union also showed that small fields and more 

fragmented landscapes have higher biodiversity (Firbank et al., 2008; Gaba et al., 2010; 

González-Estébanez et al., 2011). Using the context of the agricultural low lands of 

England, Firbank et al. (2008) pointed out that the pressure on biodiversity may be 

reduced through minimizing habitat loss in agricultural fields. The German case study 

found that East Germany's large-scale agriculture reduced biodiversity while small-scale 

agriculture of West Germany had higher biodiversity (Batáry et al., 2017). As the 

environmental benefits of small fields are well documented in research, it would be 

interesting to explore the economics of small fields to better identify the win-win scenarios 

for small fields. Consequently, this study hypothesized that autonomous crop machines 

would make it possible to farm small, non-rectangular fields profitably, thereby preserving 

field biodiversity and other environmental benefits.  
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Autonomous crop machines in this study refer to the mechatronic devices which have 

autonomy in operation usually through a predetermined field path. More specifically, the 

autonomous machines are mobile, having decision making capability, and accomplish 

arable farm operations (i.e., drilling, seeding, spraying fertilizer, fungicide and herbicide, 

and harvesting) under the supervision of humans, but without the involvement of direct 

human labour and operator (Lowenberg-DeBoer et al., 2020). Autonomous machines are 

precision agriculture technology because they have the potential to cost effectively 

increase the precision of input applications and to collect very detailed data on agricultural 

production. The autonomous machines, demonstrated by the HFH project used swarm 

robotics concepts in which multiple smaller robots are used to accomplish farm work 

usually done by larger conventional machines with human operators. The autonomous 

swarm robotics of the HFH project are developed by retrofitting conventional diesel 

operated machines (Hands Free Hectare (HFH), 2021).  

 

Autonomous machines are considered as a game changing technology that could 

revolutionize precision agriculture (PA) and facilitate the 'fourth agricultural revolution' 

often labelled ‘Agriculture 4.0’ (Daum, 2021; Klerkx and Rose, 2020; Lowenberg-DeBoer 

et al., 2021a). Owing to population and economic growth, agricultural labour scarcity, 

technological advancement, increasing requirements of operational efficiency and 

productivity, and mitigating environmental footprint, autonomous machines are suggested 

as a sustainable intensification solution (Duckett et al., 2018; Guevara, Michałek and 

Cheein, 2020; Santos and Kienzle, 2020). Robotic systems for intensive livestock and for 

protected environments have been commercialized more rapidly than for arable cropping. 

Research on autonomous arable crop machines has mostly concentrated on the technical 

feasibility, not economics (Fountas et al., 2020; Shamshiri et al., 2018). Understanding the 

economic implications of autonomous machines is key to their long-term 

adoption. Economic feasibility plays a crucial role in attracting investment, guiding 

adoption decisions, and further understanding of environmental and social benefits 

(Grieve et al., 2019; Lowenberg-DeBoer et al., 2020).  

 

Most production economic studies on autonomous machines prior to 2019 focused on 

horticultural crops and rarely on cereals using prototype testing and experimental data 

(Edan, Benady and Miles, 1992; Gaus et al., 2017; McCorkle et al., 2016; Pedersen et al., 

2017, Pedersen, Fountas and Blackmore, 2008, Pedersen et al., 2006; Sørensen, 

Madsen and Jacobsen, 2005). Lack of information on economic parameters and 

machinery specifications has been a bottleneck in economic feasibility assessment 

because autonomous machines are at an early stage of the development and 

commercialization processes (Lowenberg-DeBoer et al., 2021a; Shockley et al., 2021). 
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Most of the earlier economic studies used partial budgeting where only the changes in 

cost and revenue linked to automation of a single field operation were analysed omitting 

the economic consequences of farming systems changes (Lowenberg-DeBoer et al., 

2020). To date, four studies have considered systems analysis of autonomous machines 

(Al-Amin et al., 2021; Lowenberg-DeBoer et al., 2021a; Shockley, Dillon and Shearer, 

2019; Sørensen, Madsen and Jacobsen, 2005).  

 

Using a Linear Programming (LP) model with data from prototypes at the University of 

Kentucky, US, Shockley, Dillon and Shearer, (2019) showed that relatively small 

autonomous machines are likely to have economic advantages for medium and small 

farms. The most comprehensive study so far was reported by Lowenberg-DeBoer et al. 

(2021a). They assessed the economic feasibility of autonomous machines from seeding 

to harvesting operations using on-farm demonstration data and estimated equipment 

times based on methodology from the agricultural engineering textbook of Witney (1988). 

The study assumed 70% field efficiency from drilling to harvesting operations for both 

autonomous machines and conventional equipment sets with human operators. They 

showed that autonomous machines are technically and economically feasible for medium 

and small sized farms. The study concluded that autonomous machines diminished the 

pressure of “get big or get out”. The study hypothesized that in the context of the UK, 

autonomous machines would be economically feasible in small fields. Nonetheless, the 

study was unable to test the hypothesis because of field efficiency estimates by field size 

and shape were not available.  

 

To help fill this knowledge gap, the objective of the study is to assess the economics of 

field size and shape for autonomous machines. Using the experience of the HFH 

demonstration project, the study developed algorithms to estimate equipment times (h/ha) 

and field efficiency (%) for different sized rectangular and non-rectangular fields. 

Historically, in the UK rectangular fields were considered as the most efficient, whereas 

non-rectangular fields were substantially less efficient to farm (Carslaw, 1930; Sturrock, 

Cathie and Payne, 1977). Triangular fields were among the least efficient field shape 

because of the numerous short rounds. To analyse the economic scenarios, the study 

adopted and re-estimated the Hands Free Hectare-Linear Programming (HFH-LP) model 

(Lowenberg-DeBoer et al., 2021a) by incorporating equipment times and field efficiency 

parameters estimated with field size and shape algorithms. The HFH-LP model replicates 

farm management and machinery selection decisions. It helps researchers understand 

choices that farmers would make if they had the alternative of using autonomous 

machine.  
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3.2 Methods 

3.2.1 Field time and efficiency estimation subject to field size and shape 

To date the production economics studies on autonomous machines did not consider field 

size and shape because of lack of data (Lowenberg-DeBoer et al., 2021a; Shockley, 

Dillon and Shearer, 2019; Sørensen, Madsen and Jacobsen, 2005). Over time, the 

performance of arable field machinery has received growing attention for farm 

management and the ability to model field times has accelerated through the development 

of the technology and modelling approaches (Bochtis et al., 2010; Sørensen, 2003; 

Sørensen and Nielsen, 2005). Nonetheless, existing studies on arable crop machinery 

performance lack information of equipment times (h/ha) and field efficiency (%) subject to 

field size and shape.  

 
Even though logistics software is well developed in trucking and other transportation 

sectors (Software Advice, 2021), there is no readily available commercial software in the 

UK to estimate equipment times and field efficiency encompassing field and machine 

heterogeneity. In the farm equipment path planning research literature, field times were 

sometimes generated as a by-product (Hameed, 2014; Jensen et al., 2012; Oksanen and 

Visala, 2007; Spekken and de Bruin, 2013). The agri-tech economic studies often rely on 

the general estimates of agricultural engineering textbooks like Hunt (2001) and Witney 

(1988). In conventional mechanization and PA literature, few studies estimated field 

efficiency, but prior studies treated the headlands of the field as non-productive areas, 

excluded overlap percentage, amalgamated productive field times (i.e., field passes, 

headlands turning, and headlands passes) and non-productive field times (i.e., replenish 

inputs, refuelling, and blockages), and ignored the headland turning patterns.  

 
Studies suggested that future research should separately calculate the headlands turning 

time, and stoppages time because productive times and non-productive times play a 

significant role in field efficiency estimation. Keeping these points in consideration, the 

study developed field time approximation algorithms by field size and shape for 28 kW, 

112 kW and 221 kW conventional equipment sets with human operators, and for the HFH 

sized 28 kW autonomous equipment set. The combine harvesters were assumed to have 

head widths of 2 m, 4.5 m and 7.5 m respectively. Using the experience of the HFH 

demonstration project, the algorithms addressed the research gaps identified from the 

prior studies. The study estimated field efficiency as the ratio of theoretical field time 

based on machine design specifications like the estimates of theoretical field time to its 

actual field productivity as follows: 

 
𝐸𝑓 =  [𝑇𝑇 / (𝑇𝑜𝑏𝑠 +  Th  +  Tsf)]  ∗  100  …  … (1) 
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where, 𝐸𝑓 is the field efficiency, TT is the theoretical field time, 𝑇𝑜𝑏𝑠 is the total observed 

time in the interior field and passes, 𝑇ℎ is the total headland round time, and 𝑇𝑠𝑓 total 

stoppage time “within” in the field.  

 
Based on user input of equipment and field measurements, the first step was to calculate 

field area, number of headlands rounds and other values that were used repeatedly 

throughout the algorithm. Secondly, headland area and field times were calculated. 

Afterwards, observed times in the interior field and passes were estimated. Fourthly, the 

algorithms estimated non-productive times. Fifthly, total field operation times were 

calculated. The theoretical field times were estimated based on the machine design 

specifications. For details of the estimation processes of the algorithms see the technical 

note in Appendix A (i): Supplementary Text (i.e.., STEXTT Supplementary Text, which 

includes Main Text of the Technical Note).  

 
The algorithms were calibrated for 1 ha, 10 ha, 20 ha, 50 ha, 75 ha, and 100 ha 

rectangular fields considering the typical farm field sizes of the UK that were assumed to 

follow the field path of Figure 3.1. To illustrate the impact of field size on technical 

efficiency, estimates were made for rectangular fields with the length ten times the width 

of the field, up to one kilometre length. Rectangular field algorithms are detailed in the 

algorithm’s spreadsheet in Appendix A (ii): Algorithms Spreadsheets (i.e., SM1 

Rectangular Field Algorithms). 

 

 

 

 

Figure 3.1: Typical field path for rectangular fields considered in the study based on the 

HFH demonstration project experience.  

Interior Field 

Headland 
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Similarly, non-rectangular fields algorithms were tested for 1 ha, 10 ha, 20 ha, and 25 ha 

sized right-angled triangular fields assuming the height equalling twice the base up to a 

height of one kilometre. The equipment sets were assumed to follow the typical field path 

given in Figure 3.2. The non-rectangular fields algorithms were estimated with the same 

equipment sets (for details of the right-angled triangular field algorithms see spreadsheet 

in Appendix A (ii): Algorithms Spreadsheets (i.e., SM2 Non-Rectangular Field Algorithms 

(i.e., Right-Angled Triangular Field)).  

 

 

 

 

Figure 3.2: Typical field path for non-rectangular (i.e., right-angled triangular) fields 

considered in the study based on the HFH demonstration project experience. 

 

The study assumed that the equipment enters the field from the lower left corner and 

completes the headlands first for all field operations (i.e., drilling, spraying, and 

harvesting). Afterwards, the machine makes a “flat turn” to start the interior passes. 

Subsequently, follows the “flat turn” to complete the interior headland turns. Finally, the 

study assumed that the equipment ends on the entry side of the fields as shown in Figure. 

3.1 and Figure. 3.2. 

 

 

 

 

Interior Field 

Headland 
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3.2.2 Modelling the economics of field size and shape 

To understand the whole farm effects of field size and shape with different types of farm 

equipment, the study adopted and re-estimated the Hands Free Hectare - Linear 

Programming (HFH-LP) model. The HFH-LP model is a decision-making tool which 

assesses the economics of autonomous machines compared to conventional equipment 

sets with human operators. Consistent with typical neoclassical microeconomic farm 

theory, the objective function of the HFH-LP model was to maximize gross margin (i.e., 

return over variable costs) subject to primary farm resource constraints in the short-run. In 

the subsequent stages, using the outcome of the HFH-LP model, the study examined net 

return to operator labour, management and risk taking (ROLMRT) and evaluated the 

wheat cost of production to explore the cost economies (i.e., economies of size) (Debertin, 

2012; Duffy, 2009; Hallam, 2017; Miller, Rodewald and McElroy, 1981). The HFH-LP 

model is a one-year “steady state” model for arable grain-oil-seed farm, where the model 

assumed a monthly time step from January to December. It is steady state in the sense 

that it is assumed that solutions would be repeated annually long term. The concept of 

“steady state” was carried over from the Orinoquia model (Fontanilla-Díaz et al., 2021) 

which used the same software. Following Boehlje and Eidman (1984), the HFH-LP 

deterministic economic model can be expressed as:  

 

The objective function: 

𝑀𝑎𝑥 𝜋 = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑋𝑗                                                               … … (2) 

Subject to: 

∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑋𝑗  ≤  𝑏𝑖 𝑓𝑜𝑟 𝑖 = 1, … … , 𝑚;                               … … (3) 

𝑋𝑗 ≥ 0 𝑓𝑜𝑟 𝑗 = 1, … … , 𝑛;                                               … … (4) 

 

where, π is the gross margin, 𝑋𝑗 is the level of jth production activities, 𝑐𝑗 is the gross 

margin per unit over fix farm resources (𝑏𝑖) for the jth production activities, 𝑎𝑖𝑗 is the 

amount of ith resource required per unit of jth activities, 𝑏𝑖 is the amount of available ith 

resource.  

 

The HFH-LP model encompassed limiting constraints i.e., land, human labour, equipment 

times (i.e., tractor use time for drilling and spraying, and combine use time for harvesting), 

working capital and cashflow. The equipment scenarios encompassed four farm sizes: 66 

ha, 159 ha, 284 ha and 500 ha farms, but did not model field size or shape. This study re-

estimated the labour use, tractor use and combine use times for larger fields (10 ha) or 
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smaller fields (1 ha), that were either rectangular or non-rectangular (i.e., right-angled 

triangular). The assumptions regarding variable costs, crop yields, and land use were 

same as Lowenberg-DeBoer et al. (2021a). The crop variable costs were the same across 

scenarios, but machinery costs differed. Details of the linear programming (LP) 

coefficients including machinery investment and operating costs are available from the 

supplementary materials of Lowenberg-DeBoer et al. (2021a).  The 10 ha field size was 

selected for the large fields, because the field efficiency algorithm estimates showed that 

over 10 ha, field efficiency does not vary much by field size. A 1 ha field size was selected 

to represent small fields, because relatively few fields in the UK are smaller than 1 ha. The 

rectangular shape was selected as the shape usually considered most efficient for 

mechanized farming, and the triangular as the field shape that is among the least efficient 

(Carslaw, 1930).  

 

The time window is crucial because agricultural operations are sensitive to weather 

conditions and crop activities. In literature the probability of good field days is considered 

as primary mechanism to model risk-aversion. The PC/LP model used good field days 

available in the 17th worst year out of 20 (McCarl et al., 1977) that is 85% of the time. 

Following Agro Business Consultants (2018) the study assumed that number of good field 

days available was in 4 years out of 5 years that is 80% of times. Similar to the original 

HFH-LP model, the conventional machines assumed that field operations of drilling, 

spraying and harvesting were conducted during daytime that is on an average 10 h/day. 

The autonomous machines assumed that tractor for drilling and spraying was operated for 

22 h/day (2 h for repair, maintenance, and refuelling) while autonomous combine operated 

for 10 h/day limited for night dew. The LP models of the study were coded using the 

General Algebraic Modelling System (GAMS) (https://www.gams.com/). Details of other 

associated assumptions and the programming code is available at Appendix C (GAMS 

code used) or at the supplementary materials of Lowenberg-DeBoer et al. (2021a). 

 

3.2.3 Case study and data sources 

Because the Hands Free Hectare (HFH) was a demonstration project, it was difficult to 

separate on-field stops and down time while the engineers tinkered from those stoppages 

that would have occurred in normal field operations. Consequently, the model parameters 

were based on published machine specifications and farm budget information, and guided 

by the qualitative experience of the HFH project demonstrated at Harper Adams 

University, Newport, Shropshire, UK (Hands Free Hectare (HFH), 2021). The Lowenberg-

DeBoer et al. (2021a) HFH-LP model represented the arable grain-oil-seed farm in the 

West Midlands of the UK, this study re-estimated field times to reflect the range of field 

sizes and shapes often found in Britain. To calibrate the HFH-LP model, the study used 

https://www.gams.com/
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parameters from different sources. The information about commodity produced and the 

costs estimates were from the Agricultural Budgeting and Costing Book (Agro Business 

Consultants, 2018) and the Nix Pocketbook (Redman, 2018). To facilitate comparability 

with the Lowenberg-DeBoer et al. (2021a) results, 2018 input and output price levels were 

retained. Prices were converted following daily average exchange rate of 2018 from Great 

British Pounds (GBP) to Euro (€) of €1.1305 (Bank of England, 2018). Details of the 

machine inventory, costs of machines, hardware and software, crop rotations and key 

baseline assumptions are available at Lowenberg-DeBoer et al. (2021a). Field operation 

timing was adopted from Finch, Samuel and Lane (2014) and Outsider’s Guide (1999).  

 

Equipment timeliness (i.e., HFH 28 kW conventional equipment set with human operator 

and autonomous machine, 112 kW and 221 kW conventional equipment sets with human 

operators) were estimated through the developed algorithms, where the equipment and 

field specifications were collected from HFH demonstration experience 

(https://www.handsfree.farm/) (Hands Free Hectare (HFH), 2021), conventional machine 

specifications from John Deere (https://www.deere.co.uk/en/index.html) (John Deere, 

2022), Arslan et al. (2014) and Lowenberg-DeBoer et al. (2021a). For more details of the 

technical parameters used and data sources see Appendix A (ii): Algorithms 

Spreadsheets (i.e., SM1 Rectangular Field Algorithms and SM2 Non-Rectangular Field 

Algorithms (i.e., Right-Angled Triangular Field)). 

 

3.3 Results 

3.3.1 Field efficiency and times: rectangular fields 

The study evaluated the technical feasibility of the HFH 28 kW conventional equipment 

with human operator and autonomous machines, and 112 kW and 221 kW conventional 

equipment sets with human operators for all field operations including direct drilling, five 

spray applications and harvesting operation. The spray application included pre-drill burn 

down, two nitrogen top dressing and fungicide applications, late season fungicide and pre-

harvest desiccant. The human and equipment times were re-estimated subject to field 

size and shape scenarios. Results show that average whole farm field efficiency for 112 

kW and 221 kW equipment sets differed substantially between 1 ha and 10 ha rectangular 

fields, whereas for rectangular fields a given equipment set the field efficiency was almost 

the same for 10 ha to 100 ha fields (Figure 3.3). The whole farm field efficiency of HFH 

equipment sets was relatively high irrespective of different sized rectangular fields, but 

efficiency for 112 kW and 221 kW conventional equipment sets with human operators 

dropped for small 1 ha fields. Beyond 10 ha, the field efficiency for a given equipment set 

was similar for all rectangular field sizes (i.e., 20 ha, 50 ha, 75 ha, and 100 ha). 

 

https://www.handsfree.farm/
https://www.deere.co.uk/en/index.html
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Figure 3.3: Estimated (weighted average) whole farm field efficiency of HFH equipment 

(i.e., 28 kW conventional equipment with human operator and autonomous machine), 

large conventional and small conventional machines with human operators in different 

sized rectangular fields.  

 

Operation specific equipment times (h/ha) and field efficiency (%) results of the 

rectangular fields show that equipment times for drilling and harvesting operations were 

longer for small 1 ha fields operated with equipment of all sizes and types, but field sizes 

had least impact for the HFH equipment sets (Table 3.1). The higher time for small 1 ha 

fields was largely due to the fact that the full width of the larger equipment could not be 

used effectively in the smaller fields. 
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Table 3.1: Equipment times of the machinery sets for rectangular fields of 1 ha and 10 
ha. 

Equipment Width of the 
Implement (m)** 

Overlap 
Percentage ** 

Field 
Speed 

(km/h)** 

Field 
Efficiency 

(%)*** 

Field 
Times 
(h/ha) 

1 ha Rectangular Field 
    

HFH equipment set (28 kW)*: 
   

Drill 1.5 10% 3.25 81% 2.81 

Sprayer 7 10% 5 71% 0.45 

Combine 2 10% 3.25 78% 2.19 

Larger conventional set (221 kW): 
   

Drill 6 10% 5 46% 0.81 

Sprayer 36 10% 10 34% 0.09 

Combine 7.5 10% 3 44% 1.12 

Small conventional set (112 kW): 
   

Drill 3 10% 5 69% 1.07 

Sprayer 24 10% 10 56% 0.08 

Combine 4.5 10% 3 59% 1.39 

10 ha Rectangular Field 
    

HFH equipment set (28 kW)*: 
   

Drill 1.5 10% 3.25 89% 2.56 

Sprayer 7 10% 5 69% 0.46 

Combine 2 10% 3.25 91% 1.88 

Larger conventional set (221 kW): 
   

Drill 6 10% 5 87% 0.43 

Sprayer 36 10% 10 65% 0.05 

Combine 7.5 10% 3 87% 0.57 

Small conventional set (112 kW): 
   

Drill 3 10% 5 94% 0.79 

Sprayer 24 10% 10 70% 0.07 

Combine 4.5 10% 3 83% 0.99 
Note: * HFH equipment sets are 28 kW conventional machine with human operator and 28 kW 
autonomous machine. **The machine specifications and overlap assumptions were collected from the HFH 
experience and Lowenberg-DeBoer et al. (2021a). *** The authors developed algorithms to estimate the 
field efficiency of rectangular fields (for details of the estimation procedures and algorithms see the 
technical note and excel spreadsheet in Appendix A (i): Supplementary Text (i.e.., STEXTT Supplementary 
Text, which includes Main Text of the Technical Note) and Appendix A (ii): Algorithms Spreadsheets (i.e., 
SM1 Rectangular Field Algorithms). 

 

3.3.2 Field efficiency and times: non-rectangular fields 

The average whole farm field efficiency for non-rectangular (i.e., right-angled triangular) 

fields differed substantially between 1 ha and 10 ha fields, but for a given equipment set 

the average whole farm field efficiency was almost the same for 20 ha and 25 ha fields 

(Figure 3.4). The technical feasibility (i.e., field times and field efficiency) results show that 

HFH 28 kW equipment sets were more efficient than larger equipment for all sized non-

rectangular fields even in small 1 ha fields.  
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Figure 3.4: Estimated (weighted average) whole farm field efficiency of HFH equipment 

(i.e., 28 kW conventional equipment with human operator and autonomous machine), 

large conventional and small conventional machines with human operators in different 

sized non-rectangular fields.  

 

The equipment times were longer for all operations in small 1 ha non-rectangular fields 

equipped with equipment of all sizes and types, but field sizes had least impact for the 

HFH equipment sets (Table 3.2). The higher time for small 1 ha fields was largely due to 

the fact that the full width of the larger equipment could not be used effectively in the 

smaller fields. Drilling operations required the highest equipment times and subsequently 

followed by harvesting and spraying in case of HFH 28 kW equipment sets, whereas for 

conventional equipment sets with human operators (i.e., 221 kW and 112 kW) irrespective 

of field sizes, harvesting consumed more time, followed by drilling and spraying. The non-

rectangular 1 ha and 10 ha fields had comparatively lower field efficiency and required 

longer equipment times than rectangular fields with the same area. Small 1 ha non-

rectangular fields required more time for field operations than the rectangular fields due to 

the varying interior length of the passes and higher interior headlands turning time for a 
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given field area. The comparatively lower times for spraying compared to drilling and 

harvesting operations was associated to the field and equipment specifications of the 

sprayer because the sprayers were the widest implement. This is also resulted in the 

lower field efficiency for spraying small fields (detailed estimation of field times for non-

rectangular fields are available in Appendix A (ii): Algorithms Spreadsheets (i.e., SM2 

Non-Rectangular Field Algorithms (i.e., Right-Angled Triangular Field)). 
 

Table 3.2: Equipment times of the machinery sets for non-rectangular fields of 1 ha and 
10 ha. 

Equipment Width of the 
implement (m)** 

Overlap 
percentage ** 

Field speed 
(km/h)** 

Field 
Efficiency 

(%)*** 

Field 
Times 
(h/ha) 

1 ha Non-rectangular Field 
   

HFH equipment set (28 kW)*: 
   

Drill 1.5 10% 3.25 47% 4.85 

Sprayer 7 10% 5 44% 0.72 

Combine 2 10% 3.25 45% 3.80 

Larger conventional set (221 kW): 
  

Drill 6 10% 5 20% 1.85 

Sprayer 36 10% 10 16% 0.19 

Combine 7.5 10% 3 19% 2.60 

Small conventional set (112 kW): 
   

Drill 3 10% 5 27% 2.74 

Sprayer 24 10% 10 22% 0.21 

Combine 4.5 10% 3 24% 3.43 

10 ha Non-rectangular Field 
   

HFH equipment set (28 kW)*: 
   

Drill 1.5 10% 3.25 70% 3.26 

Sprayer 7 10% 5 66% 0.48 

Combine 2 10% 3.25 71% 2.41 

Larger conventional set (221 kW): 
  

Drill 6 10% 5 43% 0.86 

Sprayer 36 10% 10 36% 0.09 

Combine 7.5 10% 3 41% 1.20 

Small conventional set (112 kW): 
   

Drill 3 10% 5 54% 1.37 

Sprayer 24 10% 10 46% 0.10 

Combine 4.5 10% 3 48% 1.71 

Note: * HFH equipment sets are 28 kW conventional machine with human operator and 28 kW 
autonomous machine. **The machine specifications and overlap assumptions were collected from the HFH 
experience and Lowenberg-DeBoer et al. (2021a). *** The authors developed algorithms to estimate the 
field efficiency of a right-angled triangular fields (for details of the estimation procedures and algorithms see 
the technical note and excel spreadsheet in Appendix A (i): Supplementary Text (i.e.., STEXTT 
Supplementary Text, which includes Main Text of the Technical Note) and Appendix A (ii): Algorithms 
Spreadsheets (i.e., SM2 Non-Rectangular Field Algorithms (i.e., Right-Angled Triangular Field)). 
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3.3.3 Economics of rectangular fields 

The HFH-LP solutions for the farm size, field size and equipment set scenarios for 

rectangular fields are presented in Table 3.3. For a given farm size gross margins differed 

only slightly by equipment set and field size. The small differences by field size are due to 

small changes in cropping plan and the need to hire more labour with smaller fields. Only 

variable costs are deducted in calculating gross margin, so the costs of different 

equipment sets are not reflected in that measure of profit.  The identical gross margin for 

66 ha farms with 1 ha and 10 ha sized rectangular fields is because the smallest farms 

operated with four equipment scenarios did not face any operator and labour time 

constraints even with 1 ha fields and consequently planted, maintained and harvested the 

wheat-oilseed rape (OSR) rotation at optimal times regardless of field size.  

 

For a given farm size, the net return to operator labour, management and risk taking vary 

more by equipment set, than by field size because of the differences in equipment costs. 

Except for the smallest farm, the net returns at a given farm size are highest for the 

autonomous machine scenarios. Net return for the smallest farm was higher when using a 

28 kW conventional equipment set with human operator than with autonomous machines 

mainly because of the cost of retrofitting the equipment set for autonomy, but it is 

important to note that the conventional scenario required over 3 times more operator time 

than the autonomous machines. The higher return to operator labour, management and 

risk taking for the 66 ha farm using conventional equipment is because that measure of 

profit is a residual after cash costs, but does not deduct for operator compensation. The 

conventional solution maximizes net return for the smallest farm only if operator labour 

has a very low opportunity cost.  
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Table 3.3: HFH-LP outcomes on the economics of technology choice subject to different 
sized rectangular fields. 

Scenario* Arable 
area 
(ha)** 

Field 
size 
(ha) 

Labour 
hired in 
the 
farm 
(person
-days 
per 
annum) 

Operator 
time 
required 
in the 
farm 
(person-
days per 
annum) 

Whole 
farm 
gross 
margin (€ 
per 
annum) 

Return to 
operator 
labour, 
manage
ment and 
risk 
taking (€ 
per 
annum) 

Wheat 
cost of 
production 
with 
allocated 
operator 
labour (€ 
per ton) 

Conv. 28 kW 59.4 10 0 66 53188 17916 181 

Conv. 28 kW 59.4 1 0 72 53188 17916 185 

Conv. 28 kW2 143.1 10 39 119 124670 43937 167 

Conv. 28 kW2 143.1 1 55 118 123314 42580 168 

Conv. 28 kW3 255.6 10 138 145 216729 78453 156 

Conv. 28 kW3 255.6 1 165 144 214348 76072 157 

Conv. 28 kW4 450.0 10 326 172 374197 144028 147 

Conv. 28 kW4 450.0 1 371 172 369151 138983 148 

Autonomous 28 
kW 

59.4 10 0 19 53188 13906 154 

Autonomous 28 
kW 

59.4 1 0 22 53188 13906 156 

Autonomous 28 
kW 

143.1 10 0 46 128134 53747 138 

Autonomous 28 
kW 

143.1 1 0 53 1281352 53747 140 

Autonomous 28 
kW2 

255.6 10 22 60 226922 90983 137 

Autonomous 28 
kW2 

255.6 1 33 61 225961 90022 137 

Autonomous 28 
kW3 

450.0 10 72 73 396560 164718 132 

Autonomous 28 
kW3 

450.0 1 92 74 394869 163026 132 

Conv. 112 kW 59.4 10 0 23 53188 -29394 236 

Conv. 112 kW 59.4 1 0 32 53188 -29394 243 

Conv. 112 kW 143.1 10 0 56 128134 10448 174 

Conv. 112 kW 143.1 1 6 71 127629 9943 180 

Conv. 112 kW 255.6 10 19 82 227171 62300 153 

Conv. 112 kW 255.6 1 45 92 224916 60045 155 

Conv. 112 kW2 450.0 10 78 100 396082 92008 153 

Conv. 112 kW2 450.0 1 139 102 390675 86602 154 

Conv. 221 kW 59.4 10 0 14 53188 -80235 323 

Conv. 221 kW 59.4 1 0 26 53188 -80235 333 

Conv. 221 kW 143.1 10 0 33 128134 -40394 206 

Conv. 221 kW 143.1 1 0 63 128134 -40394 216 

Conv. 221 kW 255.6 10 0 59 228869 13157 170 

Conv. 221 kW 255.6 1 28 86 226438 10725 175 

Conv. 221 kW 450.0 10 20 84 401162 103917 148 

Conv. 221 kW2 450.0 1 95 105 394593 -11163 179 
Note: *The superscript with equipment specification under scenario indicates the number of equipment 
sets. **Based on the experience of HFH demonstration project, the study assumed that the arable crop farm 
was 90% tillable, where remaining 10% were occupied for ecologically focused area such as, lanes, 
hedgerows, drainage ditches, farmstead, etc. 
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The debate about economies of size (i.e., whether increasing economies of size, 

decreasing economies of size known as diseconomies of size, or constant economies of 

size) has been carried on largely in terms of cost curves in agricultural production 

economics (Debertin, 2012; Duffy, 2009, Hallam, 2017). Building on this literature, the 

study estimated the wheat production cost of mechanized farms with different sized and 

shaped fields equipped with autonomous machines and conventional equipment sets with 

human operators. The wheat production cost curves were estimated based on the most 

profitable farm plans that cultivated all available land with minimum unit production cost 

for their size. The study hypothesized that irrespective of field size and shape, 

autonomous machines would have lower wheat production cost and reduced economies 

of size compared to conventional equipment sets with human operators. The wheat cost 

of production curves for rectangular fields were similar to those estimated without 

considering field size, with conventional equipment showing higher production cost. The 

cost curves for autonomous machines with both field sizes lie below the curves for 

conventional equipment sets with human operators (Figure 3.5). Autonomous machine 

wheat production cost scenarios indicating that irrespective of field sizes autonomous 

systems had lower cost of production and reduced economies of size compared to farms 

operated with conventional equipment sets. The autonomous machines cost advantage 

was mainly due to lower labour and machine costs. The reduced economies of size for 

autonomous machines’ cost curves (i.e., 1 ha curve represented by smaller circular 

marker curve and 10 ha curve with bigger circular marker) can be seen in costs levelling 

off with a relatively flat bottom at smaller scale compared to the cost curves with 

conventional equipment sets with human operators. As farm size increases, cost curves 

for autonomous machines showed similar cost of production irrespective of field sizes. 

The additional cost curve (i.e., triangular marker curve) above 1 ha and 10 ha rectangular 

fields represents the wheat production cost curve for autonomous machines without field 

size consideration estimated by Lowenberg-DeBoer et al. (2021a) taken as base category 

for comparison. 
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Figure 3.5: Wheat unit cost of production in euro per ton for farms with rectangular fields 

of different sized farms. The labels on the data points for 1 ha and 10 ha fields are the 

size of the tractor used and the number of equipment sets. The curves without labels are 

the baseline analysis which was done without field size and shape modelling.   

 

The wheat cost scenarios by equipment set shows that compared to conventional 

equipment sets, the autonomous machines reduced wheat cost of production by €15/ton 

to €29/ton for 1 ha rectangular fields. The wheat cost of production curves with 

conventional equipment sets (28 kW, 112 kW, and 221 kW) reveal that farms with 1 ha 

and 10 ha rectangular fields had substantial effect on per unit wheat cost of production. 

The minimal cost difference between 1 ha and 10 ha sized fields wheat cost of production 

curves was associated with the lower differences of field times and field efficiency for 

rectangular fields. 

  

3.3.4 Sensitivity tests: rectangular fields 

Because agricultural labour is scarce and difficult to hire in the UK, some of the HFH LP 

conventional farm solutions may be difficult to implement and consequently the cost 

curves may not be realistic. For example, for the 500 ha farm the cost curves for 
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conventional machines in both field size scenarios reveal that minimum wheat cost of 

production was achieved with four 28 kW equipment sets. For that 500 ha conventional 

farm the 10 ha solution required 326 days of hired labour and the 1 ha solution required 

371 days, compared to 72 days and 92 days respectively for the autonomous farm. To 

test the sensitivity of solutions to the cost of labour, the model was rerun with the wage 

rate doubled (i.e., €11.02*2*8 = €176/day). With the higher wage rate, the minimum cost 

for the 500 ha farm with 10 ha fields was achieved at €148/ton with a 221 kW equipment 

set, but for 1 ha fields minimum cost at €156/ton was still achieved with four units of 28 

kW equipment set as earlier. Additional sensitivity tests with triple wage rate (i.e., 

€11.02*3*8 = €264/day) show that for 500 ha farm with 10 ha fields minimum costs (i.e., 

€149/ton) achieved as earlier with a 221 kW equipment set, whilst for 500 ha farm with 1 

ha fields minimum costs (i.e., €160/ton) achieved with two units of 112 kW equipment set. 

With higher wage rates the shape of the cost curves for the conventional farms indicated 

less cost advantage for larger farms irrespective of field sizes (for details see Figure A.1 

and Figure A.2 in Appendix A (iii): Supplementary Figures (i.e., SFs Sensitivity Tests 

Figure, which includes Figures of the Sensitivity Tests). 

 

Further sensitivity scenarios considered hired labour constrained at 50 person days per 

month with baseline wage rate (€11.02*8 = €88/day), where the optimum solution with 

minimum cost (€156/ton) for larger 500 ha farm with 1 ha fields, were achieved with two 

units of 112 kW equipment set and for 10 ha fields minimum costs at (€148/ton)  with a 

221 kW equipment set (for details see Figure A.3 in Appendix A (iii): Supplementary 

Figures (i.e., SFs Sensitivity Tests Figure, which includes Figures of the Sensitivity 

Tests)). Consequently, the use of multiple conventional 28 kW equipment sets with human 

operators were not feasible solutions with higher wage rates and less labour availability. 

Moreover, the sensitivity tests with increasing wage rates and reduced labour availability 

scenarios show a more distinct gap between cost curves for farms with 1 ha and 10 ha 

fields, because 1 ha fields required substantially more labour. 

 

3.3.5 Economics of non-rectangular fields 

For non-rectangular fields, the machinery and field size scenarios show that gross margin 

and net return to operator labour, management and risk-taking patterns were similar to 

those of the rectangular fields (Table 3.4). Net returns differed more by equipment set 

than field size, but the field size effect was more pronounced than for rectangular fields. 

The identical gross margin for 66 ha farms with 10 ha sized non-rectangular fields is 

because the smallest farms did not face any operator and labour time constraints, 

therefore they planted, maintained, and harvested the wheat-OSR rotation at optimal 

times. On the contrary, gross margins for 66 ha farm with 1 ha non-rectangular fields were 



 

65 Economics of field size and shape for autonomous machines 

higher for autonomous machines and larger conventional equipment compared to 28 kW 

and 112 kW conventional equipment sets because these two conventional sets faced 

operator time constraints and required more hired labour for farm operations.  

 

Economic scenarios of non-rectangular fields incorporating fixed costs show that net 

returns to operator labour, management, and risk taking were higher for autonomous 

machines irrespective of field sizes, except for the smallest 66 ha farm equipped with 28 

kW conventional machine with human operator. As with non-rectangular fields, this is 

because the autonomous machines required extra cost for retrofitting equipment for 

autonomy. The higher net return to operator labour, management and risk taking for the 

conventional 66 ha farm may be an illusion because of the higher labour requirement. For 

the 66 ha farm with 10 ha fields, no labour was hired in either conventional or autonomous 

scenarios, but the conventional farm required 3 times more operator labour time than the 

autonomous farm. For the 66 ha farm with 1 ha fields, the conventional farm required 3 

times more operator labour, plus 16 days more hired labour. As discussed above in 

regard to the rectangular case, a small conventional 28 kW equipment set is not the 

sustainable solution given the growing labour scarcity in arable farming in the UK.  

 

Table 3.4: HFH-LP outcomes on the economics of technology choice subject to different 
sized non-rectangular fields. 

Scenario* Arable 
area 
(ha)** 

Field 
size 
(ha) 

Labour 
hired in 
the farm 
(person-
days 
per 
annum) 

Operator 
time 
required 
in the 
farm 
(person-
days per 
annum) 

Whole 
farm 
gross 
margin (€ 
per 
annum) 

Return to 
operator 
labour, 
manage
ment and 
risk 
taking (€ 
per 
annum) 

Wheat cost 
of 
production 
with 
allocated 
operator 
labour (€ 
per ton) 

Conv. 28 kW 59.4 10 0 80 53188 17916 191 

Conv. 28 kW 59.4 1 16 106 51796 16525 213 

Conv. 28 kW2 143.1 10 71 121 121863 41129 171 

Conv. 28 kW2 143.1 1 144 149 111684 30950 190 

Conv. 28 kW3 255.6 10 195 147 211630 73354 158 

Conv. 28 kW4 255.6 1 355 169 197539 48904 173 

Conv. 28 kW4 450.0 10 415 188 341261 111092 159 

Conv. 28 kW7*** 450.0 1 743 180 337415 76172 164 

Autonomous 28 
kW 

59.4 10 0 24 53188 13906 157 

Autonomous 28 
kW 

59.4 1 0 38 53188 13906 167 

Autonomous 
28 kW 

143.1 10 3 55 127832 53446 141 

Autonomous 
28 kW2 

143.1 1 31 60 125421 36666 155 
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Table 3.4: HFH-LP outcomes on the economics of technology choice subject to different 
sized non-rectangular fields (Continued). 

Autonomous 28 
kW2 

255.6 10 41 63 225279 89340 138 

Autonomous 28 
kW3 

255.6 1 90 72 220972 70664 147 

Autonomous 28 
kW3 

450.0 10 105 77 393668 161827 133 

Autonomous 28 
kW4 

450.0 1 191 94 386084 139875 140 

Conv. 112 kW 59.4 10 0 40 53188 -29394 249 

Conv. 112 kW 59.4 1 3 76 52612 -29970 278 

Conv. 112 kW 143.1 10 17 78 126621 8934 182 

Conv. 112 kW2 143.1 1 93 99 119892 -55463 239 

Conv. 112 kW 255.6 10 74 96 222323 57452 157 

Conv. 112 kW2 255.6 1 231 112 208461 -14078 190 

Conv. 112 kW2 450.0 10 193 107 385913 81840 156 

Conv. 112 kW4*** 450.0 1 470 135 361510 -57900 192 

Conv. 221 kW 59.4 10 0 28 53188 -80235 335 

Conv. 221 kW 59.4 1 0 60 53188 -80235 358 

Conv. 221 kW 143.1 10 0 67 128134 -40394 217 

Conv. 221 kW 143.1 1 49 96 123812 -44716 228 

Conv. 221 kW 255.6 10 33 87 225987 10275 175 

Conv. 221 kW2 255.6 1 149 109 215702 -108520 231 

Conv. 221 kW2 450.0 10 106 105 393552 -12205 179 

Conv. 221 kW3*** 450.0 1 325 130 374258 -140009 213 
Note: *The superscript with equipment specification under scenario indicates the number of equipment 
sets. **Based on the experience of HFH demonstration project, the study assumed that the arable crop farm 
was 90% tillable, where remaining 10% were occupied for ecologically focused area such as, lanes, 
hedgerows, drainage ditches, farmstead, etc. ***The study baseline scenarios assumed a maximum of 100 
person-days/month of temporary labour available, but in the sensitivity testing that was raised to 200 
person-days/month. 

 

 

The wheat cost of production curves with non-rectangular fields shows that irrespective of 

field sizes, farms with autonomous machines had cost advantages (i.e., lower cost of 

production) and reduced economies of size compared to farms with conventional 

equipment sets with human operators (Figure 3.6), but the field size effect is more evident 

than rectangular fields. 
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Figure 3.6: Wheat unit cost of production in euro per ton for farms with non-rectangular 

fields of different sized farms. The labels on the data points for 1 ha and 10 ha fields are 

the size of the tractor used and the number of equipment sets. The curves without labels 

are the baseline analysis which was done without field size and shape modelling.   

 

More specifically, the autonomous cost curves scenarios reveal that small 1 ha non-

rectangular fields entailed higher wheat cost of production compared to 10 ha fields, which 

was associated with comparatively higher hired labour, operator time and equipment 

scenarios (i.e., number of equipment required). The equipment scenarios show that small 

non-rectangular fields required more autonomous equipment sets to optimally operate the 

same farm, except for the smallest farm. Likewise, for conventional equipment sets, small 

1 ha fields had substantially higher wheat production costs compared to 10 ha fields. For 

larger 500 ha farms equipped with conventional sets, the minimum unit cost of production 

was achieved with seven-units of 28 kW equipment set for 1 ha fields, whereas 10 ha 

fields had minimum unit cost scenarios with two units of 112 kW equipment sets. The 

wheat cost scenarios by equipment set shows that autonomous machines reduced wheat 

cost of production by €24/ton to €46/ton in 1 ha non-rectangular fields, indicating that 

autonomous equipment has cost advantage (i.e., lower cost of production) and reduce 

economies of size compared to conventional equipment sets with human operators.  
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3.3.6 Sensitivity tests: non-rectangular fields 

The sensitivity tests with wage rate double and triple for mechanized non-rectangular 

fields reveal that all farms irrespective of field sizes were able to operate profitably with 

minimum wheat cost of production using the same equipment scenarios as with the 

baseline wage rate (i.e., €11.02*8 = €88/ton) equipment scenarios. However, with the 

increasing wage rates, the profitable farms had to incur more per unit production cost for 

all conventional and autonomous equipment sets. Small 1 ha fields operated with 

conventional equipment sets with human operators had to take more cost burden. For 

instance, 500 ha farms with small 1 ha fields had to incur €16/ton and €32/ton more costs 

with double and triple wage rates scenarios.  Interestingly, even with double and triple 

wage rates, the autonomous machines had the lower cost of production and reduced 

economies of size compared to the conventional mechanized farms (for details see Figure 

A.4 and Figure A.5 in Appendix A (iii): Supplementary Figures (i.e., SFs Sensitivity Tests 

Figure, which includes Figures of the Sensitivity Tests). 

 

Further sensitivity test with reduced labour availability at 50 person days per months 

reveal that multiple conventional equipment scenarios with human operators were not an 

economically feasible solution (Figure A.6). For example, with the base wage rate 

scenario, 500 ha farms with 10 ha fields achieved minimum costs at €156/ton operated 

with two units of 112 kW equipment sets with human operators, whilst in case of reduced 

labour availability, the minimum cost was achieved at €167/ton with the same equipment 

scenarios, indicating diseconomies of size. Moreover, the reduced labour availability 

made larger conventional mechanized farms plans (i.e., 284 ha and 500 ha) with small 1 

ha fields non-economical and unrealistic because the existing conventional equipment 

sets with human operators (i.e., 28 kW, 112 kW and 221 kW) were unable to cultivate the 

optimum land with the available resources of the farms. The 500 ha farm with small 1 

fields equipped with four units of autonomous machines were unable to operate the 

optimum land, that was 53 (450 - 397.41 = 52.59 ha), 1 ha fields were left unutilized with 

the available resources of the farms.  

 

3.4 Discussion  

The economic implications of field size and shape, contributes to the cost economies 

literature as prior production economies studies did not include the economics of field size 

and shape for autonomous machinery. The present study filled the research gap with the 

findings that irrespective of field size and shape, autonomous machines had lower wheat 

production cost and reduced economies of size compared to conventional equipment sets 

with human operators.  
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Throughout the world agricultural labour is difficult to hire and wage rate is increasing. In 

addition, the Covid-19 pandemic sparked the labour scarcity. These real-world crises 

spurred the study to further investigate the sensitivity scenarios with increasing wage 

rates and reduced labour availability. Considering the context of the UK, the sensitivity 

scenarios of double and triple wage rates and reduced labour availability reveal that 

irrespective of field size and shape, multiple conventional equipment sets with human 

operators were not a good solution for small fields. Autonomous machines (i.e., 

autonomous swarm robotics) were an economically feasible alternative in the face of 

rising wage rates ensuring the lower cost of production and more competitiveness for 

medium and small farms. Under the reduced labour availability scenario, autonomous 

machines allowed available labour to farm more land with lower cost of wheat production 

than the conventional equipment scenario, but with small, non-rectangular fields even the 

autonomous machines faced binding labour constraints. This is primarily due to the 

continued need for some human supervision and for human operators on public roads 

(i.e., assumption of 10% human supervision time during field operations and 100% human 

operators driving in the public road for hauling grain from the field to farmstead or market 

during harvest based on the study of Lowenberg-DeBoer et al. (2021a)).  

 

The results support the hypothesis of the study that autonomous machines offer the 

possibility of farming small fields profitably, implying the potentials of biodiversity 

enhancement and environmental performance of such small fields as a side effect (Fahrig 

et al., 2015; Firbank et al., 2008; Konvicka, Benes and Polakova, 2016). The autonomous 

arable crop farms could support the UK’s agricultural transition plan for sustainable 

farming. The economic feasibility of small autonomous farms facilitates implementation of 

the UK government Environmental Land Management (ELM) Scheme  focused on 

encouraging agriculture to provide environmental public goods including improved soil  

health, greater field biodiversity and carbon sequestration (DEFRA, 2020; DEFRA, 2021). 

Likewise, the study supports agri-environment schemes (AES) to encourage small fields 

for biodiversity in the European Union and elsewhere (Geppert et al., 2020).  

 

The findings of the study also provide information to guide decision making by farmers, 

agribusinesses, technology developers, and policymakers. More specifically, the study 

guides “farm size and shape policy” generally associated with “agricultural mechanization 

policy” and “biodiversity conservation policy” of large (i.e., Brazil, Argentina, US, Australia, 

and Mexico) and medium (i.e., UK and Europe) scale farming to develop policies 

considering environmental performance in arable farming. The profitability of autonomous 

farms with small fields irrespective of field size and shape, indicate that the rule of thumb 
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of conventional mechanized agriculture (i.e., “get big, or get out” and promoting “structural 

change of arable landscapes”) will be superseded with autonomous machines.  

However, this study has some limitations in the development of algorithms and existing 

economic modelling scenarios. Because of data deficiencies, the algorithms assumed 

zero down time due to machine problems (e.g., seed tines blocked with crop residue, 

plugged sprayer nozzles, damp straw wrapping a combine harvester drum). Hands Free 

Hectare (HFH) was a demonstration project, so it was difficult to separate stops for 

research purposes and those that would have occurred on any farm. Future research 

could reinvestigate this assumption based on farm experience. In terms of technical and 

economic modelling scenarios, the study only considered four equipment sets (28 kW, 

112 kW and 221 kW conventional equipment set with human operators and 28 kW 

autonomous machines retrofitted for autonomy); there may be other equipment sizes that 

may better fit the given circumstances, especially for small 1 ha rectangular and non-

rectangular fields. The study assumed same field times and efficiency for 28kW machines 

whether autonomous or human operated. In the future autonomous machines may be 

equipped with improved technology that reduce field times and increase efficiency beyond 

even the best human operator, but the conservative assumption for this study was that 

they were the same for the 28kW machines whether conventional or autonomous. In 

addition to the large and medium scale farming, future research should consider the 

context of small-scale farming (i.e., most of Asia and Africa), with field sizes tiny, 

fragmented fields of less than 1 ha.  Some observers have hypothesized that autonomous 

machines would be technically and economically feasible solution for labour scarcity 

problems on small farms, especially in peak production seasons (Al-Amin and Lowenberg-

DeBoer, 2021; HLPE, 2013; Lowder, Skoet and Raney, 2016).  

 

The economic implications of field size and shape considered here different sized 

rectangular fields and right angled triangular fields, with the latter being least efficient to 

operate under whole farm mechanized cropping systems (Carslaw, 1930). However, the 

developed algorithms associated with field specifications (i.e., base area, headland area, 

and interior field area calculation) need modifications to apply to other field shapes (e .g., 

circular, trapezium, square, parallelogram, etc). The equipment specifications, other 

assumptions and estimation processes will be same as used for rectangular and right-

angled triangular fields, while modification of right field shape geometry will be needed for 

other field shapes.  

 

This study focused tightly on the implications of field size and shape for the economics of 

autonomous machines in the UK. Because high and medium income countries and even 

in many cases the low income countries throughout the world face labour scarcity in 
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agriculture (Lowenberg-Deboer, 2022b; World Bank, 2021a, 2021b), the methodology 

could be adapted to estimate the economic implications of autonomous equipment in 

other cropping systems with different challenges. Future economic research could 

address other associated benefits of autonomous machines such as reduced fuel use or 

alternative renewable fuel use, potentials of mixed cropping like pixel, patch, strip, relay 

cropping and regenerative agriculture (Davies, 2022; Ditzler and Driessen, 2022; Hein, 

2022; Ward, Roe and Batte, 2016). Even though, the technical and economic feasibility of 

autonomous machines in small, non-rectangular fields show potential for improving 

environmental management, future research should incorporate field inclusions, such as 

in field trees and wetlands. These inclusions may address field topography issues like 

grass waterways of Batte and Ehsani (2006) and/or encourage aboveground 

environmental diversification with intercropping and non-crop habitat such as flower strips, 

hedgerows and seminatural habitats within the field or around the field (Bellon-Maurel and 

Huyghe, 2017; Boeraeve et al., 2020; Tamburini et al., 2020). Similarly, the economic 

implications of soil compaction with low weight autonomous machines random trafficking 

fields could be compared to larger/heavier machines conventional or autonomous 

machines working in a controlled traffic setting (Berli et al., 2004; Keller et al., 2019; Keller 

and Or, 2022; Shockley et al., 2021).  

 

3.5 Conclusions 

The study contributed to the cost economies literature with the findings that irrespective of 

field size and shape, autonomous machines had lower wheat production cost and reduced 

economies of size compared to conventional equipment sets with human operators. This 

study hypothesized that autonomous crop machines would make it possible to farm small, 

non-rectangular fields profitably, thereby preserving field biodiversity and other 

environmental benefits. To test the hypothesis, the study developed algorithms to 

estimate field efficiency (%) and equipment times (h/ha) for different sized rectangular and 

non-rectangular (i.e., right angled triangular) fields. Algorithm results show that the 

smallest equipment considered (i.e., HFH 28 kW conventional equipment set with human 

operator and retrofitted autonomous machines) required more time per hectare, but had 

higher field efficiency irrespective of field size and shape, compared to the conventional 

equipment sets with human operators (i.e., 221 kW and 112 kW). This was true for both 

rectangular and non-rectangular fields. Economic scenarios (i.e., return over variable 

costs and net return to operator labour, management, and risk taking) examined with 

mathematical programming (i.e., HFH-LP models) show that autonomous machines were 

a profitable solution for arable farms with small fields. The wheat production cost curves 

comparison reveal that autonomous machines reduced cost of production by €15/ton to 

€29/ton for farms with small 1 ha rectangular fields. For farms with 1 ha non-rectangular 
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fields per unit wheat production cost was reduced by €24/ton to €46/ton. The ability of 

autonomous crop machines to profitably farm small, irregularly shaped fields, even with 

increasing wage rates (i.e., double and triple) and reduced labour availability (i.e., 50 

person days per month), make them potentially useful in achieving the goals of the 

Environmental Land Management (ELM) Scheme in the UK and agri-environment 

schemes (AES) in the European Union and elsewhere.
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Chapter 4 

Economics of strip cropping with 

autonomous machines 
 
 
“The advent of radical new technologies, for instance, small supervised autonomous 

(robotic) equipment, might greatly alter the cost calculus for farming small strips, allowing 

capture of yield advantages of very narrow strips without the much higher machine and 

labour costs …” 

 

Ward, Roe and Batte (2016): Journal of American Society of Farm Managers and Rural 

Appraisers (ASFMRA), pp. 149-166. 
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4.1 Introduction 

Autonomous machines are expected to be a game changer for open-field arable crop 

farming (Klerkx and Rose, 2020; Gackstetter et al., 2023) which would facilitate more 

diverse, agroecological and ecosystem services restoring farming practices (Daum, 2021; 

Pearson et al., 2022). Research suggests that within field heterogeneous, small-scale and 

spatio-temporal mixed cropping systems such as strip cropping  (Ghaffarzadeh, Préchac 

and Cruse, 1994; Smith and Carter, 1998; Verdelli, Acciaresi and Leguizam´on, 2012), 

pixel cropping (Ditzler and Driessen, 2022), patch cropping (Grahmann et al., 2021; Donat 

et al., 2022), and relay cropping (Tanveer et al., 2017; Patel, 2020) enable more diverse 

cropping practices. However, more complex mixed cropping practices constrain 

autonomous farm management due to the technical difficulty of automating management 

with different plant heights and growth patterns (Ditzler and Driessen, 2022). Among 

different mixed cropping systems, strip cropping is the simplest and most technically 

feasible with conventional mechanization (Exner et al., 1999; van Apeldoorn et al., 2020; 

Alarcón-Segura et al., 2022). 

 

Strip cropping refers to a farming practice of simultaneously growing two or more crops in 

adjacent strips, where the strips are wide enough for independent cultivation, whilst 

narrow enough for facilitating crop interaction (Vandermeer, 1989; Brooker et al., 2015; 

Hernández-Ochoa, Gaiser and Kersebaum, 2022). Strip cropping is considered as a 

means of sustainable intensification because this cropping system can improve utilization 

of on-farm resources through managing spatio-temporal heterogeneity, increasing land 

productivity, and enabling multifunctionality of agricultural landscapes (Gao et al., 2009; Li 

et al., 2011; Raseduzzaman and Jensen, 2017; Juventia et al., 2022). Here spatial 

heterogeneity refers to portions of the field cultivated with different crops and site-specific 

management using mechanized systems. Temporal heterogeneity is reflected in different 

planting and harvesting time frames (i.e., early and/or late), yearly crop rotations, and field 

operations at different stages of plant growth.  

 

Agronomic research on strip cropping with varying height plants has demonstrated the 

edge effects that increase yields of the taller species and often lead to a yield penalty for 

shorter crop plants (Jurik and Van, 2004). These studies were conducted in large scale 

farming in the US (West and Griffith, 1992; Ward, Roe and Batte, 2016) and Argentina 

(Bravo and Silenzi, 2002; Verdelli, Acciaresi and Leguizam´on, 2012), medium scale 

farming in Germany (Munz et al., 2014a), and small-scale farming of China (Munz et al., 

2014c; DU et al., 2018; Liu et al., 2022), as well as in Africa (Rahman et al., 2021; Kermah 

et al., 2017). Research on corn (Zea mays L.), grain sorghum [Sorghum bicolor (L.) 

Moench], and soybean [Glycine max (L.) Merr.]  in the Corn Belt of eastern Nebraska, US 
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(Lesoing and Francis, 1999), and corn and bush bean (Phaseolus vulgaris L. var. nana) 

research in China and Germany (Munz et al., 2014a), showed that outside border rows of 

the taller corn plant had increased yield due to the extra sunlight advantage, whilst smaller 

subordinate plant yields decreased in border rows because of competition for solar 

radiation, soil water and nutrients. Agronomic studies also showed that strip width and 

orientation have yield impacts (Tan et al., 2020; van Oort et al., 2020; Liu et al., 2022; 

West and Griffith, 1992). The review of corn and soybean strip cropping experiments 

based in Eastern and Midwest US showed that narrow corn strips increased the yield 

advantage over wider strips (Francis et al., 1986). Studies in Africa also showed that with 

increasing strip width the yield advantage of the taller crop decreased (Agyare et al., 

2006; Konlan, 2013). The potential economic benefits of strips arise when the value of 

yield decreases from the shorter crop are less than the value of yield gains from the larger 

crop. 

 

The ecological benefits of strip cropping include biodiversity enhancement as each small 

strip is considered as a small field (Alignier et al., 2019; van Apeldoorn, 2020). Recent 

research using similar height plants in the context of medium scale farming in Germany, 

showed that wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) strip 

cropping enhanced biodiversity, ecosystem services and reduced pest densities (Alarcón-

Segura et al., 2022). Research in China by Cong et al. (2015) showed that wheat-corn, 

wheat-faba bean (Vicia faba L.) and corn-faba bean strip cropping had agroecosystem 

benefits such as carbon sequestration and improvement of soil health. A wheat-alfalfa 

(Medicago sativa L.) strip cropping study in China found biological pest control 

advantages over sole cropping (Ma et al., 2007). Corn and peanut (Arachis hypogaea L.) 

strip cropping research in China showed that it suppressed pests, indicating the practice is 

an effective conservation and biological control measure (Ju et al., 2019). Similarly, in the 

Chinese context, corn-pea (Pisum sativum L.) and corn-wheat strip cropping showed 

reduced soil respiration and lower emission of carbon (Qin et al., 2013). Although 

agronomic and ecological (i.e., agroecological) synergies of strip cropping are relatively 

well-understood, capturing the economic benefits of strip cropping are constrained by 

higher labor requirements in conventional mechanized systems (Ward, Roe and Batte, 

2016).   

 

Mixed cropping is often evident in manual agriculture because it is overall more productive 

compared to whole field sole cropping (Francis et al., 1986), but the practice usually 

disappears with conventional mechanization (Qian et al., 2018). Research in the Midwest 

US found that higher labor requirements and associated fixed costs of conventional strip 

cropping systems offset the economic benefits (Ward, Roe and Batte, 2016; West and 
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Griffith, 1992). Even in the smallholders’ context of China labor shortages, increasing 

wage rate and off-farm employment preferences constrained the labor intensive strip 

cropping practices (Feike et al., 2012). Over the last few decades, strip cropping 

researchers have hypothesized that economically feasible agricultural intensification 

would be possible with new planting equipment (Lesoing and Francis, 1999), precision 

management (Exner et al., 1999) and autonomous small swarm robotic field operations 

(Slaughter, Giles and Downey, 2008; Ward, Roe and Batte, 2016; van Oort et al., 2020). 

Unfortunately, production economics research on precision agriculture has concentrated 

on whole field sole cropping economics (Shockley, Dillon and Shearer, 2019; Lowenberg-

DeBoer et al., 2021; Al-Amin et al., 2023).  

 

Existing strip cropping literature has lacked systems analysis by not considering the whole 

farm economics of operations from planting to harvesting. Strip cropping research has 

often measured economic payoffs by using partial indicators such as Land Equivalent 

Ratio (LER), Gross Margin Ratio (GMR), Monetary Equivalent Ratio (MER) and/or 

harvested yields (Francis et al., 1986; Smith and Carter, 1998; Lesoing and Francis, 1999; 

Yu et al., 2015; van Oort et al., 2020; Rahman et al., 2021) and/or partial budgeting (West 

and Griffith, 1992; Exner et al., 1999; Ward, Roe and Batte, 2016). The most up-to-date 

economic analysis of strip cropping was conducted by Ward, Roe and Batte (2016), but 

they were unable to test the hypothesis of strip cropping profitability with autonomous 

machines due to a lack of autonomous whole farm operations experience and data.   

 

Noting this research gap, the overall objective of this study was to determine if the use of 

autonomous machines could enable corn and soybean strip cropping to be more 

profitable than whole field sole cropping. It is hypothesized that autonomous machines 

(i.e., crop robots) make strip cropping profitable, thereby allowing farmers to gain 

additional agroecological benefits. The economic potential of strip cropping with 

autonomous machines would open the door for further research to optimize strip cropping 

systems (i.e., strip width, hybrid and variety choice, pest management, machine size and 

soil fertility).  

 

4.2 Materials and methods 

4.2.1 Approach and data 

The ex-ante study used a whole farm economic linear programming (LP) approach to 

examine the economics of strip cropping with autonomous machines for corn and 

soybean farming in central Indiana of the Corn Belt of the US. Indiana is one of the higher 

corn and soybean yielding states in the Midwest (Egli, 2008; Mishra and Cherkauer, 2010; 

USDA, 2023), with both crops being of major importance and widely cultivated (Suyker 
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and Verma, 2012; Green et al., 2018; Capehart and Proper, 2021). Yearly rotations of 

corn and soybean were considered for the economic modelling of whole field sole 

cropping, conventional strip cropping and autonomous strip cropping practices. An 

additional reason for analyzing corn and soybean strip cropping was the availability of 

agronomic data on edge effects (i.e., yield benefits of corn and penalty of soybean) 

(Francis et al., 1986; Verdelli, Acciaresi and Leguizamón, 2012; Feng et al., 2022). 

Soybean, a C3 legume, and corn, a C4 cereal, have different plant heights, utilize inputs 

at different times, acquire nutrients from different sources or in different forms (e.g., 

soybean uses soil and atmospheric N2 and corn uses reduced soil nitrogen), and both 

have high photosynthetic and carbon gain activities (Echarte et al., 2011; Omoto, 

Taniguchi and Miyake, 2012; Yang et al., 2015).  

 

The modelling of the whole field sole cropping and strip cropping practices relied on the 

basic assumptions of Ward, Roe and Batte (2016). Following their farm size, the present 

study modelled a 2156.97 ha non-irrigated corn and soybean farm. The agronomic 

practices, yields and prices used in this study were based on the 2022 Purdue Crop Cost 

and Return Guide for rotational corn and soybean in high productivity soil (Langemeier et 

al., 2022), and converted to a per ha basis. The corn seed cost assumed a genetically 

modified hybrid having multiple traits and the soybean seed cost assumed Round-Up 

Ready® varieties. The application rates of fertilizers such as phosphate, potash and lime 

were based on the Tri-State Fertilizer Recommendations (Langemeier et al., 2022). The 

study assumed N, P2O5, K2O and lime application rates stated in the 2022 Purdue Crop 

Cost and Return Guide for rotational corn and soybean. The study assumed that the soil 

tests for potassium, phosphorus and pH were in the maintenance and recommended 

range. In whole field sole crop farming, following the 2022 Purdue Crop Cost and Return 

Guide and Ward, Roe and Batte (2016), the study considered anhydrous ammonia (NH3) 

application with custom hire service instead of owner operated machine application, 

because custom hire service was common for NH3 applications in central Indiana. The 

custom application fee was based on prices cited in Arnall (2017). The study assumed 

that genetically modified rootworm resistant hybrid corn is an adequate corn rootworm 

management strategy. The pesticide costs encompassed insecticides and herbicides. The 

study did not consider a fungicide application for corn (Langemeier et al., 2022).  

 

The corn and soybean yield for high productivity soil was 20% higher than the yield on 

average soils. The yields assumed average farm management and weather conditions 

and timely planting and harvesting dates. The yields were based on long-run trends 

reported by National Agricultural Statistics Services (Langemeier et al., 2022). The yield 

adjustments for planting and harvest dates were estimated based on the Purdue 
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Crop/Livestock Linear Program (PC/LP) Farm Plan B-21 Crop Input Form (Doster et al., 

2006, P. 43-44). To be consistent with the HFH-LP model (Lowenberg-DeBoer et al., 

2021a) the time periods were combined in monthly time periods as: April: April 22-May 2; 

May: May 3-May 30; June: May 31-June 13; Sept.: Sept. 20-26; Oct.: Sept. 27-Oct. 31, 

Nov.: Nov. 1-Dec. 5 (Doster et al., 2006, P. 43-44). In strip cropping yield scenarios, in 

addition to the yield adjustment from the PC/LP Farm Plan, the study incorporated the 

edge effects following the field trials under normal conditions in Illinois (Ward, Roe and 

Batte, 2016). The corn yield percentage change using 6 row strips was 115% and the 

soybean yield percentage change in 6 row strips was 92% (for details see Appendix B (ii) 

Supplementary Text). The headlands (representing 5% of the field) yield for continuous 

soybean was considered 80% of estimated yield due to the penalty of continuous soybean 

production. Soybeans must be used for headlands year after year to facilitate in-season 

access to corn rows for field operations.   

 

The corn and soybean harvest prices were based on opening prices from 21 March 2022 

CME Group futures prices, assuming a $0.25 basis adjustment for corn and $0.35 for 

soybean (Langemeier et al., 2022). To check the sensitivity of results to soybean/corn 

(i.e., s/c) price ratios, the historical corn and soybean marketing year prices were based 

on the USDA NASS Quick Stats data set from 1973 to 2021 (USDA NASS, 2023). The 

period from 1973 to 2021 was selected to capture the two most recent crop price periods 

(i.e., 1973 to 2006; 2007 to present) (Irwin and Good, 2011) with higher average s/c price 

ratios of 2.49 and minimum s/c price ratios of 1.99.  

 

Dryer fuel costs for corn, interest and insurance costs for corn and soybean were based 

on the 2022 Purdue Crop Cost and Return Guide (Langemeier et al., 2022). The guide did 

not consider temporary hired labor costs, so the study used the hourly wage rate of the 

US Corn Belt from the USDA 2021 database for economic class of farm regions and 

states (USDA NASS, 2021).  

 

The machinery specifications for whole field sole cropping and strip cropping practices 

followed the assumptions made by Ward, Roe and Batte (2016). The whole field sole 

cropping was assumed to be operated with larger conventional equipment sets 

represented by 228 kW tractors. Strip cropping with smaller conventional equipment sets 

were represented by 37.4 kW tractors with human operators, and autonomous strip 

cropping represented by 37.4 kW tractors retrofitted for autonomy. The modelling of 

autonomous machines (i.e., crop robots or swarm robots) was based on the experience of 

the Hands Free Hectare (HFH) demonstration project at Harper Adams University in the 

UK (Hands Free Hectare (HFH), 2021). The initial investment costs of larger and smaller 
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conventional machines were priced from different equipment manufacturers sites having 

available list prices for the US. If new equipment list prices were not available, prices for 

recent used equipment were considered. The retrofit costs were converted using the 

exchange rate of Great British Pound (GBP) to United States Dollar (USD) (Board of 

Governors of the Federal Reserve System (U.S.)., 2022) and inflation adjustment (FRED, 

2022).  

 

However, small combines needed for strip cropping (i.e., 6 row corn head 4.57 m wide) 

are no longer manufactured in the US and are not newly marketed there. Prices that are 

available in the US for the used combines of that size are mostly very old and near the 

end of their useful life span. Therefore, a price estimate was needed to approximate the 

cost of a new combine of that size in the Corn Belt region of Indiana. Small combines are 

manufactured in Asia, but the reliability, maintenance cost and salvage value of those 

machines under the US conditions is unknown. Thus, prices were sought for the CLAAS 

AVERO (151 kW) which is sold and used in Europe and the UK under conditions that are 

similar to those in the US. The study hypothesized that if strip cropping were shown to be 

profitable and it became common in the US, some manufacturer would either resume 

making combines that size in North America or arrange to import them from a subsidiary 

or partner in Europe or Asia. The price of the AVERO 240 model was estimated based on 

the price quote for a new machine provided by a CLAAS representative in the UK. The 

price of used AVERO 240 model combines was checked in Agriaffaires 

(https://www.agriaffaires.co.uk/). With some allowance for depreciation the price of the 

used AVERO 240 combines was consistent with the list price. Further details of the 

equipment and prices are available in Appendix B (ii) Supplementary Text.  

 

Field operations and field efficiency (%) were based on Ward, Roe and Batte (2016) and 

2022 Purdue Crop Cost and Return Guide (Langemeier et al., 2022). The study used 

working days (i.e., good field days) data for Indiana from the Ag Manager 

(https://www.agmanager.info/) developed by the Agricultural Economics Department of 

Kansas State University (AgManager.info., 2022).  

 

The strip crop scenarios assumed that urea or other granulated N would be used for 

nitrogen because regulatory approval of autonomous NH3 application may be problematic. 

The list price of a fertilizer applicator (Urea and other granulated N) was obtained from 1st 

products.com (https://1stproducts.com/) by requesting a quote. Further details of the 

fertilizer applicator and price are available in Appendix B (ii) Supplementary Text. As 

overhead costs were not included in the 2022 Purdue Crop Cost and Return Guide, the 

study used fixed costs from ‘Crop Budgets, Illinois, 2022’ for systematic corn and soybean 

https://www.agriaffaires.co.uk/
https://www.agmanager.info/
https://1stproducts.com/
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rotations on high productivity farmland developed by the Department of Agricultural and 

Consumer Economics of the University of Illinois (Schnitkey and Swanson, 2022). The 

fixed costs, such as opportunity cost of capital, fuel and lubricant, and land rent, were 

taken from Langemeier et al. (2022), Agro Business Consultants (2018) and Kuethe 

(2021). Details of the fixed costs assumed in this study are available in Appendix B (ii) 

Supplementary Text.  

 

4.2.2 Base economic model 

The economic analysis undertaken here goes beyond Ward, Roe and Batte (2016) 

because they did not consider systems analysis. Instead, they used partial budgeting 

where only the change in costs and revenues were considered with all other things 

remaining the same assumption.  

 

The study adopted the Hands Free Hectare - Linear Programming (HFH-LP) ‘steady-state’ 

profit maximization models (Lowenberg-DeBoer et al., 2021a). The concept of ‘steady-

state’ was adopted from the Orinoquia model and assumed that solutions would be 

repeated annually over time (Fontanilla-Díaz et al., 2021). The HFH-LP was developed 

based on the Purdue Crop/Livestock Linear Program (PC/LP) model (Dobbins et al., 

1994).  

 

The HFH-LP optimization model for corn and soybean farms of central Indiana estimated 

the gross margin measure of profitability for human operated larger conventional 

mechanized whole field sole cropping, human operated smaller conventional mechanized 

strip cropping, and autonomous strip cropping system. The maximization model was 

estimated subject to the binding constraints of land, operator time, tractor time for field 

preparation, planting and spraying, combine time for harvesting, good field days, and 

working capital and cash flow.  

 

The study estimated return to operator labor, management and risk-taking by subtracting 

fixed costs from farm gross margin. The fixed costs included annual machine cost, rent of 

land, repair of farm property and buildings, professional fees and subscriptions, fixed 

utilities, depreciation of buildings and other miscellaneous fixed expenses.  

 

Using standard notation of Boehlje and Eidman (1984), the economic model can be 

mathematically expressed with an objective function as: 

𝑀𝑎𝑥 ∏ = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑋𝑗                                                              … … (1)  
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Subject to: 

∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑋𝑗  ≤  𝑏𝑖 𝑓𝑜𝑟 𝑖 = 1, … … , 𝑚;                                … … (2) 

𝑋𝑗 ≥ 0 𝑓𝑜𝑟 𝑗 = 1, … … , 𝑛;                                                  … … (3) 

Where: 

∏ = gross margin,  

𝑋𝑗 = the level of jth production activities, 

𝑐𝑗 = the gross margin per unit over fixed farm resources (𝑏𝑖) for the jth production 

activities, 

𝑎𝑖𝑗  = the amount of ith resource required per unit of jth activities, and 

 𝑏𝑖 = the amount of available ith resource.  

 

The study modelled 2156.97 ha of non-irrigated land in roughly rectangular fields with 

length assumed longer than the width. The conventional whole field sole cropping practice 

was assumed to plant half in corn and half in soybean following an annual corn and 

soybean rotation.  

 

The strip cropping practices (i.e., conventional, and autonomous strip cropping scenarios) 

assumed headlands on the two ends cultivated with continuous soybean to allow 

equipment access to the interior field strips (i.e., interior field refers to the field except the 

headlands) as repeated access would be needed for farm operations. Following Ward, 

Roe and Batte (2016), the headlands were assumed to be 18.29 m wide because the 

sprayer width required enough space to turn the sprayer. The interior strips were assumed 

to be 4.57 m width (Figure 4.1). The corn and soybean strips were assumed to be rotated 

annually. Consequently 47.50% of each interior field was cultivated with corn, 47.50% with 

soybean and 5% in headlands with continuous soybean. 
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Figure 4.1: Corn-soybean strip cropping field layout planted in six, 0.76 m row strips 

based on Ward, Roe and Batte (2016).   

 

The study assumed available labor included a full-time farm operator and temporary hired 

labor for 800 h per month per farm. The operator time, tractor time and combine time were 

estimated for the three equipment sets. The study considered field transition times 

following the assumption of Ward, Roe and Batte (2016) that all fields were 2.01 km apart 

for transport with road speed between fields 19.96 km/h except for the combine at 14.97 

km/h. Because the field time parameters in the model were given on a per hectare basis, 

the travel time was proportional over the area of the field operation at each visit: 53.82 ha 

for the whole field sole crop farming and 26.95 ha for the strip cropping scenarios. The 

incorporation of field-to-field logistics time goes beyond the original HFH-LP analysis by 

Lowenberg-DeBoer et al. (2021a). 

 

The cash needed for field operations covers the direct costs of seed, fertilizer, pesticide, 

dryer fuel, interest and insurance for rotational corn and soybean production. Costs of 

machinery fuel, machinery repairs and hauling were included in annual machinery cost 

estimation as fixed costs following Lowenberg-DeBoer et al. (2021a).  
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As the field work time window is an important source of risk for the farmers, the study 

used good field days estimate of Indiana, US for 80th (more) percentile following the 

AgManager (https://www.agmanager.info/) ‘Days Suitable for Fieldwork' estimates 

(AgManager.info., 2022). The PC/LP model assumed 17th worst year out of 20 (McCarl et 

al., 1977). The HFH-LP assumed 4 years out of five (i.e., 80%) based on the Agro 

Business Consultants (2018). Following Lowenberg-DeBoer et al. (2021a), the study 

considered 22 h operation time on good field days for autonomous tractors (2 h for repair 

and refuelling/refilling) and 10 h operation time for a combine. The conventional larger and 

smaller equipment sets assumed 10 h operation time daily, similar to the HFH-LP model 

assumptions.  

 

Further details of the constraints and associated scalar and parameter assumptions 

considered in modelling this study are available in Appendix B (ii) Supplementary Text 

and Excel spreadsheets of coefficients estimation in Appendix B (iii) Coefficients 

Estimation Spreadsheets (i.e., Estimating Coefficients_AJ_VFF.xlsx).   

 

The linear programming model was coded using the General Algebraic Modelling System 

(GAMS) (https://www.gams.com/) (GAMS Development Corporation, 2020). The 

programming code used in this study is available at Appendix C (GAMS code used) or at 

the supplementary materials of Lowenberg-DeBoer et al. (2021a).  

 

4.2.3 Modelling sensitivity scenarios 

The sensitivity scenarios examined the impacts of different output prices and human 

supervision on gross margin and return to operator labor, management and risk-taking. 

The first sensitivity testing used soybean/corn price ratios. The second sensitivity testing 

addressed the economic impacts of different human supervision levels as suggested in 

the study of Lowenberg-DeBoer et al. (2021b). 

 

The first sensitivity scenario considered the historical marketing year (i.e., begins at 

current year harvest time and continues until the following year harvest time) prices of 

soybean and corn from 1973 to 2021 to estimate soybean/corn price ratios (Leibold, 

Hofstrand and Wisner, 2022; USDA NASS, 2023). The marketing year soybean/corn price 

ratio was estimated by dividing each marketing year soybean price with respective 

marketing year corn price.  

 

The base price considered in this study was the rotational corn and soybean price in the 

2022 Purdue Crop Cost and Return Guide (Langemeier et al., 2022). The 2022 

soybean/corn price ratio is 2.14, only slightly lower than the historical average of 2.49, and 

https://www.agmanager.info/
https://www.gams.com/
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thus modestly favorable for corn production. Because strip cropping benefits corn yields 

more than soybean yields, the hypothesis is that strip cropping will be most profitable 

when the soybean/corn price ratio is low (i.e., when corn price is comparatively high) and 

least profitable when the price ratio is high (i.e., when soybean price is comparatively 

high). Consequently, the price sensitivity test looked at the maximum, average and 

minimum soybean/corn prices ratios. To anchor this comparison in reality, corn prices 

were estimated using the 2022 soybean price at the historical maximum, average and 

minimum price ratios, and soybean prices were estimated using the 2022 corn price at the 

historical maximum, average and minimum price ratios. Overall, six-price corn and 

soybean price combinations were tested.  

 

The second sensitivity scenario investigated the economics of different levels of human 

supervision as autonomous machines required by law or because the technology is 

troublesome. The study by Lowenberg-DeBoer et al. (2021b) suggested 10%, 50% and 

100% supervision time. Maritan et al. (2023)  found economically optimal supervision 

between 13% to 85% of machine field times depending on the frequency of human 

intervention required and the supervisor location (i.e., remote, on-site). Using whole field 

sole cropping context of the US, Shockley et al. (2021) found that field speed restriction 

and on-site supervision regulation reduces the profitability of arable crop farming. The 

economic implications of human supervision in arable farming with alternative crop 

geometries are not clear. The present study examined the economic implications of 

different human supervision scenarios for autonomous strip cropping following 10%, 50% 

and 100% supervision assumptions. The base autonomous strip cropping model 

considered 10% of machine field times following the production economics study of 

Lowenberg-DeBoer et al. (2021a).  

 

4.3 Results 

4.3.1 Baseline results  

The baseline optimal economic solutions show that the autonomous corn and soybean 

strip cropping system had higher economic benefits compared to the whole field sole 

cropping and conventional strip cropping systems (Table 4.1). The whole field sole 

cropping and autonomous strip cropping was feasible with the baseline assumptions of 

labor available for full-time farm operator and temporary hired labor for 800 h per month 

per farm. However, the conventional strip cropping practice was infeasible with this 

assumption as the system needed temporary hired labor of 1200 h per month to operate 

the whole farm. 
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Table 4.1: Comparative labor requirements and profitability of whole field sole cropping 

and strip cropping practices under conventional and autonomous machine (crop robot) 

scenarios in the Corn Belt of central Indiana, US. 

Equipment scenario* Hired labor 

time (h 

/ha/yr) 

Operator 

time (h 

/ha/yr) 

Gross margin 

($/ha/yr) 

Return to 

operator labor, 

management 

and risk-taking 

($/ha/yr) 

Whole field sole cropping: 

Conventional 228 kW2 

0.65 0.57 1503.63 185.27 

Strip cropping: 

Conventional 37.4 kW5** 

2.06 0.66 1694.70 590.88 

Strip cropping:  

Crop Robot 37.4 kW3 

0.49 0.53 1769.50 753.46 

Note: *The superscript indicates the number of equipment sets needed for timely operation of the 2156.974 
ha farm. ** In the baseline modelling, the study assumed 800 h per month temporary hired labor for the 
whole farm, whereas the conventional strip cropping scenario required 1200 h per month temporary hired 
labor to optimally operate the whole farm.  

 
 
The optimization model of autonomous strip cropping reveals that three sets of 

autonomous machines (also known as swarm robots) were required to operate the whole 

farm (i.e., 2156.97 ha) in a timely way. The autonomous machine scenario finds that per 

annum 0.49 h/ha of hired temporary labor time and 0.53 h/ha of operator time were 

needed for optimal operations, whilst conventional whole field sole cropping required 0.65 

h/ha and 0.57 h/ha temporary labor time and operator time. In comparison, conventional 

strip cropping required 2.06 h/ha hired temporary labor and 0.66 h/ha operator time. The 

conventional strip cropping would not be an economically attractive farming solution in 

Indiana where farm labor can be scarce. The study shows that conventional strip cropping 

practice required five sets of smaller conventional machines. The conventional strip 

cropping system faced severe labor constraints. The farm had binding operator time 

constraints in April to July, October, and November. In addition, tractor time was binding in 

April.  

 

The findings show that at the 2022 grain prices and input costs the gross margin was 

$265.87/ha (i.e., $1769.50-$1503.63) higher for autonomous strip cropping compared to 

whole field sole cropping (Table 4.1). Conventional strip cropping with human equipment 

operators shows a slightly lower gross margin ($74.80/ha) than the autonomous scenario 

mainly because of the additional hired labor. The higher gross margin for strip cropping 

occurs because the value of additional corn from the edge effects in the strips more than 

offsets the reductions in soybean yields. 
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Similarly, return to operator labor, management and risk-taking was $568.19/ha (i.e., 

$753.46-$185.27) higher for autonomous strip cropping than whole field sole cropping. 

The main factors in this difference are higher value of grain production with strip cropping, 

lower machinery costs with swarm robots and slightly less labor hired. Return to operator 

labor, management and risk-taking is somewhat lower (i.e., $753.46-$590.88=$162.58/ha) 

for conventional strip cropping than for autonomous strip cropping because of the higher 

labor and machine costs in the conventional scenario.  

 

The profitability of conventional strip cropping is not strictly comparable to whole field sole 

cropping and autonomous strip cropping because conventional strip cropping could not 

farm 2156.97 ha with the initial assumption of 800 h per month of temporary hired labor 

for the whole farm. With 800 h per month of temporary hired labor, the most profitable 

solutions for the conventional strip cropping scenario were to leave 45.4 ha farmland 

uncultivated because labor was a binding constraint in peak production months of April, 

May, October and November. Moreover, operator time was binding in April to June and 

September to November. The optimal solutions for conventional strip cropping finds that 

1200 h per month of temporary hired labor was required to optimally operate the whole 

farm. As previous research has suggested conventional strip cropping is only possible 

with ample labor availability (Ward, Roe and Batte, 2016). However, worldwide agricultural 

labor is in short supply. The COVID 19 pandemic, travel restrictions and the political 

impasse over immigration reform have made the situation even more critical in the US 

(Charlton and Castillo, 2021; Hamilton et al., 2022).  

 

4.3.2 Equipment investment costs  

The whole field sole cropping equipment inventory and investment costs show that timely 

field operations required at least two units of the larger conventional equipment set with 

an initial equipment investment cost of $4,806,278.00 and an annual cost of $988,963.02 

(Table 4.2). The optimal equipment needed to operate the whole farm was selected based 

on the linear programming gross margin maximization model. The larger conventional 

equipment inventory included two sets of: 228 kW tractors, 12.19 m planters, 36.57 m 

self-propelled sprayers, 292 kW combines with 6.09 m corn heads and 10.67 m grain 

heads, and 27.94 t grain carts. Grain carts were included in whole field sole cropping 

because harvest unloaded on-the-go was assumed. Usually corn and soybean growers 

have many options for machinery selection. In this study, the equipment choice was 

based on Ward, Roe and Batte (2016) to represent the typical farming scenarios of the 

Midwest US. Farmers may choose to use their own equipment and/or use a custom hire 

service. This study used mixed systems for whole field sole cropping, where the corn and 
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soybean production assumed a mostly farmer owned equipment set, except for use of 

custom hire for NH3 application which is common on central Indiana farms. 

 

The depreciation costs of machinery are associated with equipment age. Consequently, 

the study used straight line depreciation assuming 7 years for combine and planter, and 

10 years for other equipment sets based on Langemeier et al. (2022) and Lowenberg-

DeBoer et al. (2021a). Further details of the assumptions together with the costs of 

insurance as percentage of investment, repair and maintenance as percentage of initial 

investment, fuel and lubricant assumptions are available in Appendix B (ii) Supplementary 

Text.  
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In strip cropping, the LP solutions show that five sets of human operated smaller 

conventional machines were able to optimally operate the whole farm (Table 4.3). The 

initial investment costs were $2,456,236.00 for five units of smaller conventional 

equipment sets, which included 37.4 kW tractors, 18.29 m trailed sprayers, 4.57 m 

fertilizer applicators, and planters, 151 kW combines with 4.57 m corn heads and grain 

heads. The strip cropping systems machinery inventory did not include a grain cart 
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because the strips were not wide enough to run a combine and grain cart side-by-side. 

Considering harvesting efficiency, the study assumed that the combine unloads directly 

into the grain semi at the end of the field. The annual cost of the conventional equipment 

was estimated as $526,208.48.  
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The modelling of autonomous machine scenario shows that three autonomous equipment 

sets were able to farm 2156.97 ha in a timely way. The autonomous strip cropping system 

used the same smaller conventional machinery but retrofitted for autonomy for field 

operations. Apart from conventional equipment inventory, the autonomous machines 

inventory required additional hardware and software to retrofit for autonomy that needed 

initial investment costs of $40,871 (Table 4.4). The initial investment needed to equip the 

autonomous strip cropping farm was $859,882 (i.e., $2,456,236-(($491,247+$40,871)*3)) 

less than for the conventional strip cropping.  

 

Table 4.4: Hardware and software needed to retrofit for autonomous system. 

Equipment Type Item HFH Equipment 
Cost* 
(GBP 2016) 

US ($) 2022** 

 Tractor and combine 

Safety equipment Laser 3282 5767  
Remote Emergency Stop 75 132  
Stop Buttons - system 63 111 

Control System GPS Systems 2300 4042  
Autopilot 112 197 

Control Adaptations Steering Motor 768 1350  
Driver Control 860 1511  
Linkage Control 430 756 

Camera Feedback CCTC cams 340 597 

Communications WiFi 100 176  
RC System 413 726 

Consumables Boxes/connectors etc. 600 1054 

 Total for Tractor and 
combine 

9343 16418 

     
Combine only 

Safety Equipment Extra laser 3282 5767  
Three actuators 1290 2267 

 Total for Combine only 13915 24453 

Total for Equipment 
Set 

 23258 40871 

Note: *Adopted from Lowenberg-DeBoer et al. (2021a). **Exchange rate - GBP to USD - (Board of 
Governors of the Federal Reserve System (U.S.)., 2020) with inflation adjustment - (FRED, 2022). 

 

 

4.3.3 Allocation of farm expenses 

Comparison of the returns and expenses of whole field sole cropping and strip cropping 

practices shows that total revenue was higher (i.e., $3025-$2800 = $225/ha) for 

autonomous strip cropping compared to whole field sole cropping (Figure 4.2), as the total 

value of grain produced was higher. Similarly, return to operator labor, management and 

risk-taking was also substantially higher (i.e., $568/ha) for strip cropping with crop robots 

because of higher grain value, lower machinery costs and less hired labor. Annual 

machinery costs and total costs were $302/ha (i.e., $458 - $156) and $343/ha (i.e., $2615 
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- $2272) lower for the autonomous scenario compared to whole field sole cropping 

operated with human drivers because of differences in the number of equipment units 

required. The whole field sole cropping required two units of 228 kW larger equipment 

sets and the autonomous strip cropping required three units of 37.4 kW retrofitted 

autonomous equipment sets. On the contrary, the conventional strip cropping scenarios 

required five units of 37.4 kW conventional equipment sets operated with human drivers 

making conventional strip cropping non-economical in labor scarce scenarios as 

compared to autonomous strip cropping. This is because the conventional strip cropping 

optimal solution was only feasible if hired labor availability raised to 1200 h per month per 

farm, where the base assumptions was 800 h per month per farm. The costing of the HFH 

based machineries were used here because of the lack of market price information for 

autonomy retrofits. The electronic components market structure is a relatively open 

market, consequently, the prices are broadly similar for those retrofit kits between the UK 

and the US. Moreover, prior research also considered the HFH retrofit kits cost for the US 

case study (Shockley et al., 2021). Therefore, the machinery costing is applicable for 

commercial owner operated farm operations. The initial investment costs, retrofitting 

costs, and per annum machinery costs were based on the commercial machinery 

estimation processes following the pricing available at Agro Business Consultants (2018) 

and HFH retrofitting costs of open source software (Hands Free Hectare (HFH), 2021). 

Further details of the annual machinery costs estimation processes are available in the 

supplementary material of Lowenberg-DeBoer et al. (2021a): Supplementary file6 (DOCX 

52 kb) at: https://link.springer.com/article/10.1007/s11119-021-09822-

x#:~:text=By%20using%20smaller%20equipment%20more,equipment%20on%20the%20

smallest%20farm. 

 

Figure 4.2: Comparative returns and expenses of whole field sole cropping and strip 

cropping practices. 
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The breakdown of costs as a percentage of total costs for the three cropping systems 

indicate that machine costs encompassed 18.00% of the total costs for whole field sole 

cropping practice operated by humans with larger conventional machines, whilst the share 

was significantly lower for autonomous strip cropping (i.e., only 7.00%) (Figure 4.3). The 

conventional strip cropping practice required more hired temporary labor (1.47% of total 

costs) that made conventional strip cropping infeasible for labor scarce arable crop 

sectors. The autonomous strip cropping had the advantage of reducing labor costs. In 

total cost percentage shares, the variable costs (seed, fertilizer and pesticide) occupied 

the majority. Subsequently, fixed costs other than machinery costs (i.e., rent for farm; 

property and building repair; professional fees and subscriptions; water, electricity, etc., 

building depreciation and miscellaneous fixed costs) encompassed the second highest 

share as a percentage of total costs.    

 

 

Figure 4.3: Cost elements as percentage of total costs. 
 
 
4.3.4 Impacts of soybean/corn price ratios and increasing demand for human 

supervision   

Sensitivity testing over historical maximum and minimum soybean/corn price ratios 

showed that autonomous strip cropping had a higher return to operator labor, 

management and risk-taking than conventional whole field sole cropping in each scenario. 
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The strip cropping advantage was reduced when the price ratio was high (i.e., favored 

soybean production), but economics favored autonomous strip cropping in all scenarios. 

Detailed price sensitivity test results are given in Appendix B (i) Supplementary Tables 

(i.e., Supplementary Table B.1).  

 

The study finds that increasing supervision requirements during field operation (i.e., 50% 

and 100% of machine time) reduced the economic gains of strip cropping as gross margin 

and return to operator labor, management and risk-taking was lower compared to the 

baseline at 10% of machine time (Appendix B (i) Supplementary Tables: Supplementary 

Table B.2). However, even with supervision at 50% and 100%, the gross margin was 

higher than for the whole field sole cropping. Similarly, return to operator labor 

management and risk-taking was $552.97/ha (i.e., $738.24-$185.27) higher at 50% 

supervision and $516.24/ha higher (i.e., $701.51-$185.27) at 100% supervision.  

Sensitivity tests of increasing field-to-field transition distance (i.e., 4.02 km, whereas the 

baseline was 2.01 km) found that autonomous strip cropping was more profitable than 

whole field sole cropping and conventional strip cropping (Appendix B (i) Supplementary 

Tables: Supplementary Table B.3) even though economic gains (i.e., gross margin and 

return to operator labor, management and risk-taking) were reduced. The findings show 

that with double field-to-field transition distance strip cropping required another additional 

equipment set, that is the conventional strip cropping required 6 units of smaller 

conventional machines and the autonomous strip cropping required 4 units of crop robots 

to optimally operate the whole farm.  

 

4.4 Discussion 
 
The results of this study indicate an opportunity for research to optimize strip cropping 

with autonomous machines and enable commercialization of the practice. Widespread 

use of strip cropping techniques in commercial agriculture has been constrained by the 

high labor requirements. The results of this study support the hypothesis stated by Ward, 

Roe and Batte (2016) that corn and soybean strip cropping could be profitable with 

autonomous crop machines. Sensitivity testing suggested that autonomous strip cropping 

was more profitable than whole field sole cropping over a wide range of soybean/corn 

price ratios, and even when 100% human supervision is required (e.g., as crop robots 

required by law or because the technology is troublesome). Autonomous strip cropping 

also remained more profitable than whole field sole cropping with field-to-field distances 

over the baseline 2.01 km. 

 

The results indicate that at the historically high 2022 grain prices, conventional strip 

cropping with human drivers on small equipment would be less profitable than 
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autonomous strip cropping, but more profitable than whole field sole cropping if temporary 

hired labor is reliably available. This differed from the Ward, Roe and Batte (2016) results 

which showed that strip cropping with conventional equipment was unprofitable at 2015-

2016 prices.  

 

This study showed that strip cropping was more profitable than whole field sole farming 

even when using agronomic practices that are optimized for whole field production. It is 

quite possible that the optimal choice of hybrids and varieties, pest management, soil 

fertility management and other agronomic practices might be somewhat different for strip 

cropping.  

 

Field layout might also be optimized for strip cropping. Depending on the cost of the 

autonomous tractor and trailed sprayer (or autonomous sprayer unit), the time window for 

spray applications and other factors, it might be more profitable to use a narrow spray 

boom (to match strip width) and reduce headland width. Given the added machine traffic 

on the strip cropping headlands, grass headlands would be worth consideration.  

 

The cost-effective choice of small, retrofitted machines would help farmers, engineers and 

agribusinesses move towards autonomous agroecological strip cropping. Small crop 

robots may invigorate smaller equipment manufacturers of the US and/or open the import 

opportunities and/or promote an autonomy retrofit kit market (Karsten, 2019a; Koerhuis, 

2021b).  

 

One of the major uncertainties in this study is the cost of retrofitting conventional 

equipment for autonomy. None of the companies that now offer autonomy retrofit kits for 

conventional equipment published price lists. The HFH economics study (Lowenberg-

DeBoer et al., 2021a) only provided estimates of the parts and software needed for 

retrofitting, but did not estimate a value for the labor and expertise required. In addition, 

HFH adapted open-source drone software to guide its equipment. That was an 

inexpensive solution, but not a perfect one. The HFH tramlines were a bit “wobbly.” 

Wavey tram lines were not a major problem for the broadacre crops grown on HFH, but 

might be more of a problem for row crops. For Hands Free Farm (HFF), the 35 ha follow-

on project from HFH that tests autonomy on a farm scale, autonomous machines drive 

straight lines with the help of commercial auto-guidance. Consequently, the retrofitting 

cost might be substantially more than listed in this study. However, the gain with 

autonomous strip cropping seems to be enough to cover the cost several multiples of the 

HFH estimate. The autonomous strip cropping scenario requires three crop robot units. 

With a useful life of 10 years, each robot unit adds $4,087.10 in depreciation to whole 
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farm costs or $1.89/ha. If three units are needed that is $5.68/ha. Doubling that would be 

$11.37/ha. Quadrupling the baseline estimate would be $22.74/ha. With a margin of 

$568.19/ha gain with autonomous strip cropping, the autonomous option would remain the 

most profitable scenario even with higher retrofit costs.  

 

Apart from the strip cropping yield advantage, the agroecological mixed farming system 

has the potential of  reducing input use (Chen et al., 2017; Tian et al., 2022), lower pest 

densities and less disease infestation (Trenbath, 1993), and increasing soil carbon and 

nitrogen (Cong et al., 2015). The opportunity costs of reduced fertilizer and pesticide use 

would increase the autonomous strip cropping payoffs. Optimizing spatio-temporal 

heterogeneity with strip cropping (Juventia et al., 2022) and site-specific localized input 

application, a potential of autonomous machines (Lowenberg-DeBoer, 2022b) may reduce 

the variable costs of farming. These advantages were out of the scope of the study due to 

a lack of data. Further research to optimize autonomous strip cropping should consider 

input use, pest management and soil health impacts.  

 

Some critics have viewed autonomous machines as a blueprint of replacing human labor. 

But the study found that autonomous strip cropping did not substantially reduce operator 

labor. The whole field sole cropping required 0.57 h/ha operator time, whilst autonomous 

strip cropping needed 0.53 h/ha. Interestingly, autonomous machines reduced the 

problem of temporary hired labor scarcity by only requiring 0.49 h/ha temporary hired 

labor. Contrary to this, whole field farming needed 0.65 h/ha and conventional strip 

cropping needed 2.06 h/ha temporary hired labor.  

 

Autonomous strip cropping was even profitable with the human supervision regulations 

that are imposed in the European Union and the US state of California. Sensitivity tests 

found that with 50% and 100% supervision the economic returns were higher for 

autonomous strip cropping than whole field farming and conventional strip cropping. The 

findings suggest favorable legislation would increase economic payoffs, whereas rigid 

regulation provides a barrier to the viability of autonomous farming (Groeneveld, 2023; 

Maritan et al., 2023; Shockley et al., 2021). 

 

The economic benefits of autonomous machines over whole field sole cropping and 

conventional strip cropping signal an opportunity for the broader adoption of autonomous 

mixed farming. This study makes a contribution to the state of the art of strip cropping and 

precision agriculture, although there are some limitations to the economic modelling. The 

study only considered edge effects in strip cropping owing to empirical data availability. 

The input saving potentials and biodiversity benefits were also not modelled due to lack of 
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data. Future on-field autonomous strip cropping trials may evaluate the economics of strip 

cropping incorporating agronomic and environmental (i.e., agroecological) benefits. The 

study modelled 4.57 m width strip (i.e., 6 rows strip of corn or soybean), whereas 

economics of varying row widths with autonomous machines is not examined. Future 

economic research could address the sensitivity of outcomes to different row widths. The 

yield penalty of continuous soybean in the headlands could be better defined with on-field 

trials. The study calculated field times based on the assumptions of Ward, Roe and Batte  

(2016) following the estimation processes of Lowenberg-DeBoer et al. (2021a). However,  

use of algorithms to calculate field time as followed in Al-Amin et al. (2023) or by using on-

field farm operations time may provide more real economic scenarios in systems analysis. 

The study only considered corn and soybean row crops and could be expanded to include 

a broader diversity of available land use options. Inclusion of “Beetle Banks” (e.g., prairie 

strips) in the North American context may increase biodiversity and provide a yield 

advantages, which would add to the concept of precision conservation (Swinton, 2022) 

and agricultural regeneration (i.e., regenerative agriculture).  

 

4.5 Conclusions 

Corn and soybean strip cropping are well known to have yield and agroecological 

advantages, but implementation of the practice has been limited by cost disadvantages 

resulting from higher labor requirements in conventional human-driven mechanized 

systems. Noting the economic and agroecological trade-offs, this study hypothesized that 

autonomous machines (i.e., crop robots) might make strip cropping profitable, thereby 

allowing farmers to gain additional agroecological benefits. The HFH-LP optimization 

model adapted to the Corn Belt of central Indiana, US, showed that corn and soybean 

strip cropping practice was more profitable with autonomous crop machines than whole 

field sole cropping and strip cropping systems using conventional machines. Sensitivity 

tests found that autonomous strip cropping remained more profitable over a wide range of 

soybean/corn price ratios, human supervision requirements, and increased field-to-field 

transition distance. The profitability of autonomous strip cropping reveals that autonomous 

machines could be a game changer with win-win farming potential, reconciling economic, 

agronomic, and environmental goals of arable crop farming.  
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Chapter 5 

Economics of autonomous machines 

for regenerative agriculture 
 

“Agri-robotic systems provide multiple emerging opportunities that facilitate the transition 

towards net zero agriculture. ... Robotics could impact sustainable food production 

systems to ... deliver regenerative agriculture.” 

 

Pearson et al. (2022): Current Robotics Reports, 3, pp. 57–64. 

 

 

A summary of this chapter was published as a chapter in the following book as: 

 

Al-Amin, A.K.M. Abdullah, Dickin, E., Monaghan, J.M., Franklin, K. and 

Lowenberg‐DeBoer, J. (2023) 'Economics of autonomous machines for regenerative 

agriculture', Proceedings at the 14th European Conference on Precision Agriculture, 2-6 

July 2023. Bologna, Italy. Precision Agriculture’ 23. Wageningen Academic Publishers. 

pp. 749-755. Available at: https://www.wageningenacademic.com/doi/10.3920/978-90-

8686-947-3_94?fbclid=IwAR19C5uYtaNb96lWo5mdXwz6dx96kBAf2_YD9sdwcc8u7S1-

Tjx_EiAzOBA (Accessed: 18 July 2023) 

 

 

 

 

 

 

 

 

 

  

https://www.wageningenacademic.com/doi/10.3920/978-90-8686-947-3_94?fbclid=IwAR19C5uYtaNb96lWo5mdXwz6dx96kBAf2_YD9sdwcc8u7S1-Tjx_EiAzOBA
https://www.wageningenacademic.com/doi/10.3920/978-90-8686-947-3_94?fbclid=IwAR19C5uYtaNb96lWo5mdXwz6dx96kBAf2_YD9sdwcc8u7S1-Tjx_EiAzOBA
https://www.wageningenacademic.com/doi/10.3920/978-90-8686-947-3_94?fbclid=IwAR19C5uYtaNb96lWo5mdXwz6dx96kBAf2_YD9sdwcc8u7S1-Tjx_EiAzOBA
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5.1 Introduction 

Robotics and autonomous systems (RAS) are expected to facilitate regenerative practices 

(Pearson et al., 2022). Regenerative agriculture is a sustainable alternative to transform 

food production and agroecosystems that has been degraded with whole field sole 

cropping systems (Gordon, Davila and Riedy, 2023; Soto, de Vente and Cuéllar, 2021). 

Worldwide, different scales of farming (Lowder, Skoet and Raney, 2016) initiated 

regenerative practices. For instance, large scale farming in North America (LaCanne and 

Lundgren, 2018), Australia (Gosnell, Gill and Voyer, 2019) and New Zealand (Grelet et al., 

2021); medium scale farming of the UK (Jaworski, Dicks and Leake, 2023) and Europe 

(Dougherty, 2019; Schreefel et al., 2020; Schreefel et al., 2022b); and small scale farming 

of Asia and Africa (Bunch, 2022; Jat et al., 2022) have applied regenerative farming 

practices. Apart from academia and research, considering agronomic and ecological 

grounds, civil society, government, NGOs, media, and multinational food companies 

supported regenerative practices (Gosnell, Gill and Voyer, 2019; Giller et al., 2021; 

Umantseva, 2022; Sharma, Lara, and Lee, 2022; Levine, 2023; DEFRA, 2020).  

 

However, the production economics literature on regenerative agriculture found mixed 

profitability (Bennett, 2021; Boston Consulting Group, 2023; WBCSD, 2023; Schreefel et 

al., 2022a; Constantin et al., 2022) and that low profitability would constrain wide scale 

adoption and scaling up of regenerative practices. Research indicates that the choice of 

regenerative agriculture practices is sensitive to enterprises, farming systems, 

technologies, and the regional context of farming (Schreefel et al., 2022b; Lal, 2023). To 

manage spatial and temporal heterogeneity of crop species within the same field farmers, 

agribusinesses, agri-tech innovators, ecology innovators, and researchers have 

suggested multiple cropping systems such as pixel, relay and strip cropping as alternative 

approaches of whole field sole cropping (i.e., monoculture crops) (Ditzler and Driessen, 

2022; Juventia et al., 2022).  

 

Multiple cropping is well known in manual agriculture, but usually disappears when 

farming is mechanized with a focus on whole field sole cropping practices for labour 

productivity (Francis et al., 1986; Brooker et al., 2015). To reduce human labour 

requirements of multiple cropping, autonomous machines have been proposed (Pearson 

et al., 2022; The Futures Centre, 2022; Ward, Roe and Batte, 2016), but differences in 

plant height and growth pattern are proving to be an engineering challenge for more 

complex cropping patterns (Ditzler and Driessen, 2022). Strip cropping is the simplest 

mixed cropping system. It is technically feasible with conventional mechanization, but rare 

because of labour and management requirements. Researchers have long hypothesized 

that autonomous machines might make strip cropping economically feasible (Ward, Roe 
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and Batte, , 2016). Al-Amin et al. (2022a) presented preliminary results indicating that 

autonomous strip cropping maize and soybeans would be more profitable than whole field 

sole cropping in the US. They also pointed out that an autonomous strip cropping system 

has the potential of achieving the techno-economic and environmental feasibility which 

may facilitate regenerative practices through the inclusion of buffer strips for precision 

conservation and/or grass ley for production of livestock. Strip cropping should be 

considered precision agriculture (PA) because it affects the spatial and temporal 

management of agriculture (ISPA, 2019).  

 

Regenerative agriculture in this study is considered with regenerative strip cropping 

practices that are expected to promote the five soil health principles (Jaworski, Dicks and 

Leake, 2023; Manshanden et al., 2023). The state of the knowledge reveals that the 

scientific definition of regenerative agriculture is not yet clear (Schreefel et al., 2020) 

because the existing definitions are based on processes (i.e., incorporating cover crops, 

livestock and tillage reduction or elimination) or outcomes (i.e., improvement of soil health, 

carbon sequestration and biodiversity enhancement) and/or combination of both (Newton 

et al., 2020; Manshanden et al., 2023). This study adopted the definition of regenerative 

agriculture considering both the processes and outcomes where regenerative strip 

cropping refers to a year-round sustainable farm management strategy that addresses the 

spatio-temporal variability with diversifying crop production within the same field in strips 

to minimize soil disturbance, improve resource use efficiency of the farm through reducing 

synthetic chemical input use, boosting soil health, biodiversity, and farm productivity. 

 

Considering the technical, economic, and environmental feasibility of regenerative 

agriculture, precision agriculture (PA) technologies are suggested (Green Biz, 2020; 

Listen Field, 2021; Futures Centre, 2023; Manshanden et al., 2023; Pixel Farming 

Robotics, 2023; Davies, 2022; Keshavarz and Sharafi, 2023; Pearson et al., 2022; 

McLennon et al., 2021; Pearson, 2007). This study hypothesized that autonomous 

machines could make regenerative strip cropping profitable, thereby supporting the 

agricultural transition plan of the UK to improve soil health, biodiversity and achieve 

carbon net zero target. In this study, the context of the UK was considered as a case 

study because British agriculture is intensified through crops, inputs use and agricultural 

mechanization since 1945. The intensification approaches entail a loss of biodiversity, soil 

fertility, ecosystems services and increase greenhouse gas (GHG) emissions (Robinson 

and Sutherland, 2002; Agrospecials, 2023). To help achieve food security, restore, and 

enhance the environment for the next generation, the UK government has set a broad 

vision. The British government has initiated an ambitious plan to achieve a net zero target 

by 2050 through a wide range of resource efficient and nature friendly land management 
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measures in agriculture (Bank of Scotland, 2021; RASE, 2021; DEFRA, 2020; 

Agrospecials, 2023).  

 

In the UK research suggests regenerative agriculture as a means of reinvigorating natural 

systems interactions (Cusworth, Garnett, and Lorimer, 2021). As farmers are the pivotal 

player to tackle the challenges of climate change and biodiversity loss, the public goods 

subsidization policy (i.e., "public money for public goods") is encouraged in recent times 

(DEFRA, 2020; Lowenberg-DeBoer et al., 2022c). A growing number of farmers have 

started considering long term changes of their farms through regenerative practices. The 

input price inflations, record heat, prolonged dry spells, and wet winters push farmers to 

consider risk-reducing and less external inputs dependent regenerative practices to 

improve farm profitability and resilience against climate change (Agrospecials, 2023; 

Abram, 2020; Abram, 2021). 

 

In Great Britain, regenerative agriculture is hypothesized to help decarbonize cereal 

intensive farming practices where autonomous machines could facilitate this goal (Davies, 

2022). Nevertheless, the cost-effective regenerative farming practices are not yet guided 

with policy suggestions. To guide future regenerative practices and promote scaling up, 

this study used an ex-ante analysis built on the Hands Free Hectare - Linear 

Programming (HFH-LP) model developed by Lowenberg-DeBoer et al. (2021a). This 

study modelled a five-year winter wheat-winter barley-nectar flower mix-winter wheat-

spring bean yearly rotations because for same height plants typical in the UK optimizing 

positive edge effects through strip orientation and timing of field operations could be the 

best alternative available. In the UK, most crop plants are of a similar height (e.g., wheat, 

barley and field bean are all about one meter tall) and no yield information is available 

from experimental trials to estimate strip cropping edge effects. This study assumed that 

strip crop yield benefits are possible even when crop height is similar because of temporal 

differences in crop growth. For instance, winter wheat and barley largely stop growth by 

late June and in July are maturing and drying down, while field beans continue active 

photosynthesis in July and early August. This cereal intensive rotation is proposed 

assuming that in the UK this could help achieve food security, transitional agricultural 

target and build resilience against climate change and biodiversity loss as envisaged by 

the British government (Agro Business Consultants, 2018; DEFRA, 2020; Agrospecials, 

2023). This five-year rotation is the shortest one including all the different aspects of the 

crop only system. Apart from cereals, the nectar flower mix (NFM) was modelled in the 

interior field and two-sided headlands because equipment needed frequent access to the 

interior field strips at different stages for farm operations. The NFM here represented the 

mid-tier Countryside Stewardship Scheme (CSS) scheme.  
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Considering five soil health principles of regenerative agriculture, including grass ley strips 

in interior field and headlands would be best combined with ruminant livestock raising (Lal, 

2023; Jaworski, Dicks and Leake, 2023). However, due to the complexity of adding 

livestock (e.g., impractical to graze narrow strips, logistical challenges in harvesting forage 

from strips and transporting it to animals over public roads, challenges in transporting and 

returning manure to the strips) and the lack of data from autonomous mixed crop and 

livestock farms, this study considered the NFM under the UK government’s CSS 

programmes. The nectar flower seed mix contains both shorter-lived legumes and longer-

lived wildflower species to provide an extended supply of pollen and nectar from late 

spring through to the autumn for beneficial insects such as bees, butterflies and moths 

(United Kingdom Rural Payments Agency, 2022). The NFM is subsidized by the British 

government to promote diversity of flora and fauna in crop fields (Agro Business 

Consultants, 2018; Redman, 2018) which is relevant because this study used 2018 input 

and output prices and government CSS programme to make comparison with the base 

modelling scenarios of Lowenberg-DeBoer et al. (2021a) conducted for whole field sole 

cropping. During 2018 the Environmental Land Management Scheme (ELMs) of the UK 

was in pipelines. This study assumed that the ELMs will be allied with the CSS 

programme.  

 

This ex-ante economic analysis is expected to guide the regenerative practices. Start-ups 

and commercial manufacturers could benefit from a clearer understanding of profitable 

autonomous regenerative agriculture practices to guide prototype development, adoption 

and further scaling up. Finally, the British transitional agriculture sector will get insights 

about cost-effective practices that improve soil health, biodiversity and help achieve the 

carbon net zero target by 2050 while linking with the public money for public goods policy. 

 

5.2 Materials and methods 

5.2.1 Case study and data  

The study considered the context of the United Kingdom to model 500 ha farm as followed 

in the study of Lowenberg-DeBoer et al. (2021a). The 2018 input and output prices and 

government programme data were used to avoid the volatility of current farm prices due to 

supply and demand shock of COVID-19 pandemic, Russian invasion of Ukraine, and the 

policy uncertainty of post-BREXIT Britain. The use of 2018 prices also facilitated the 

comparisons with the baseline HFH economics study of Lowenberg-DeBoer et al. 

(2021a). The data of yield, output prices, operating costs, and CSS grant payment (i.e., 

mid-tier scheme of nectar flower mix (NFM)) and costs were taken from Agro Business 

Consultants (2018) and the Nix Pocketbook (Redman, 2018).  
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The per ha subsidy payment of the CSS that assumed to be received in December was 

based on the Agro Business Consultants (2018). The costs per ha for predrill herbicide & 

drilling the NFM (i.e., Bumble bird mixture) assumed to be incurred in March was collected 

from the Nix Pocketbook (Redman, 2018).  

 

The equipment specifications and costs information of 221 kW conventional machines 

with human operators, 28 kW smaller conventional machines with human operators and 

28 kW smaller conventional machines retrofitted for autonomy were collected from Agro 

Business Consultants (2018), Lowenberg-DeBoer et al. (2021a) and Hands Free Hectare 

(HFH) (2021). The hardware and software needed for retrofitting the 28 kW conventional 

machines included the safety equipment, control system, control adaptations, camera 

feedback, communications, consumables. The list of inventory and associated costs are 

adopted from Lowenberg-DeBoer et al. (2021a). The driver’s seats and steering wheels 

are retained on the autonomous machines to allow a human driver to move the equipment 

on public roads. Implying that the HFH type autonomous machines considered in this 

study are assumed to be conducted farm operations autonomously, while public road 

driving was conducted by a driver. For further details of the retrofitting costs see the 

following supplementary material of Lowenberg-DeBoer et al. (2021a): Supplementary 

file6 (DOCX 52 kb) at: https://link.springer.com/article/10.1007/s11119-021-09822-

x#:~:text=By%20using%20smaller%20equipment%20more,equipment%20on%20the%20

smallest%20farm 

  

Field operation timing was adopted from Finch, Samuel and Lane (2014) and Outsider’s 

Guide (1999). The yield penalties for non-optimum planting and harvesting operations 

were based on Witney (1988).  

 

5.2.2 Base modelling 

The study used long-term ‘steady state’ optimization models that were based on the 

Hands Free Hectare – Linear Programming (HFH-LP) model. The concept of steady state 

implies that the annual solutions of the model would be repeated indefinitely (Lowenberg-

DeBoer et al., 2021a). The ex-ante model assumed monthly time steps from January to 

December. The HFH-LP model was coded in the General Algebraic Modelling Systems 

(GAMS) software (GAMS Development Corporation, 2020).  

 

 

The gross margin maximization model is mathematically expressed as: 

 

https://link.springer.com/article/10.1007/s11119-021-09822-x#:~:text=By%20using%20smaller%20equipment%20more,equipment%20on%20the%20smallest%20farm
https://link.springer.com/article/10.1007/s11119-021-09822-x#:~:text=By%20using%20smaller%20equipment%20more,equipment%20on%20the%20smallest%20farm
https://link.springer.com/article/10.1007/s11119-021-09822-x#:~:text=By%20using%20smaller%20equipment%20more,equipment%20on%20the%20smallest%20farm
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𝑀𝑎𝑥 𝜋 = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑋𝑗                                                               … … (1) 

Subject to: 

∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑋𝑗  ≤  𝑏𝑖 𝑓𝑜𝑟 𝑖 = 1, … … , 𝑚;                               … … (2) 

 

𝑋𝑗 ≥ 0 𝑓𝑜𝑟 𝑗 = 1, … … , 𝑛;                                                 … … (3) 

 

where, π = gross margin, 𝑋𝑗 = the level of jth production activities, 𝑐𝑗 = the gross margin 

per unit over fixed farm resources, 𝑎𝑖𝑗  = the amount of ith resource required per unit of jth 

activities, 𝑏𝑖 = the amount of ith resource available.  

 

The objective of the study was to maximize gross margin subject to land, operator labour 

time, tractor time for drilling and spraying, and combine time for harvesting. The study 

estimated return to operator labour, management and risk taking (ROLMRT) by 

subtracting fixed costs from the gross margin. The fixed costs included land rent, property 

and building repairs, professional fees and subscriptions, water, electricity, etc, building 

depreciation and miscellaneous fixed costs (for details see Lowenberg-DeBoer et al., 

2021a). 

 

Three machine sets were evaluated. The conventional whole field sole cropping was 

assumed to operate with 221 kW conventional equipment sets with human operators. The 

conventional strip cropping was assumed to operate with 28 kW smaller conventional 

equipment with human operators and autonomous strip cropping operated with 28 kW 

smaller conventional equipment set that was assumed to be retrofitted for autonomy. The 

28kW equipment sets modelled the potential of swarm robotics. The 28 kW size is not 

necessarily the optimal swarm robot size, but it was selected because that is the size 

used on the HFH. The equipment times were estimated following the algorithms of 

Lowenberg-DeBoer et al. (2021a), but zero overlap was assumed instead of 10% overlap 

assumption based on the recent HFF experience (Harper Adams University (HAU), 2023).  

 

This study modelled 500 ha farm assumed to have roughly 10 ha sized rectangular fields 

with the length of the field about 10 times the width as assumed in the study of Al-Amin et 

al. (2023) for sole field sole cropping grain-oil-seed farm in the UK. The farm was 

assumed to be 90% tillable, where the remaining 10% was occupied for ecologically 

focused areas such as lanes, hedgerows, drainage ditches and farmstead (Lowenberg-

DeBoer et al., 2021a).  
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A five-year winter wheat-winter barley-nectar flower mix-winter wheat-spring bean yearly 

rotations were considered. The optimum planting and harvesting dates are based on  

Finch, Samuel and Lane (2014), Outsider’s Guide (1999) and Agro Business Consultants 

(2018). The optimum planting and harvesting dates modelled in this study were: winter 

wheat planted in October and harvested August, winter barley planted in October and 

harvested in August, nectar flower mix planted in March and subsidy grant received in 

December, and spring bean planted in March and harvested in September. 

 

In whole field sole cropping each crop was assumed to be planted on 90 ha out of the 

total 450 tillage ha. Given that managing strip cropping requires repeated access to the 

field interior (i.e., field except the headlands) for different crops, the strip crop headlands 

(i.e., 0.14 ha, 1% of the fields) were assumed to be sown to nectar flower mix. The interior 

of the strip crop fields (i.e., 9.86 ha) were cultivated with 2 m strips of winter wheat-winter 

barley-nectar flower mix-winter wheat-spring bean annual rotations. In the interior field, 

each enterprise encompassed 1.972 ha, i.e., 20% of the field interior.  

 

The groups of the five strips were assumed to be repeated across the whole interior field 

(Figure 5.1). In the subsequent years annual rotations were followed keeping the objective 

of maximizing edge effects. The edge effects are usually predominant for larger and 

smaller plants growing in strips, e.g., maize and soybean (Ward, Roe and Batte, 2016). 

However, this study assumed that for similar height plants typical in the UK that don’t 

differ much in height like soybean and maize, they do differ in growth pattern. For 

example, winter wheat achieved maximum biomass and photosynthesis in midsummer 

(usually June-July) and was harvested in August, field beans achieved maximum growth 

in late summer and usually harvested in September. From this crop layout as shown in 

Figure 5.1, this would create synergies among the crops. For instance, in the first-year 

winter wheat in strip 2 could capture more sunlight in early summer when the field beans 

are small. Field beans could capture more sunlight in late summer after the wheat is 

mature and has been harvested. Similarly, in strip 4, winter wheat was assumed to benefit 

from both sides of spring bean and nectar flower mix. In second year, winter barley in strip 

2 was assumed to be benefited from both sides, for being next to nectar flower mix and 

being before winter wheat. 
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Figure 5.1: Five-year rotational layout of regenerative strip cropping to maximize edge 

effects. 

 

This study modelled risk aversion considering the probability assumed for good field days. 

The original Purdue Crop Livestock Linear programming (PC/LP) model assumed good 

field days data available for the 17th worst year out of 20 (McCarl et al. 1977) which is the 

food field days available at 85% of the time. The Agro Business Consultants (2018) 

followed in this study considered good field days available for 4 years out of 5 which is 

80% of the time as followed in the study of Lowenberg-DeBoer et al. (2021a) and Al-Amin 

et al. (2023) for the Great Britain. 

 

This study assumed that conventional machines operated during daytime which is about 

10 h/day. The autonomous machine scenarios assumed that the machines operated for 

22 h/day, while remaining 2 h/day for repair, maintenance, and refuelling. However, for 

grain harvesting, the autonomous machines assumed 10 h/day which is limited 

considering the UK weather, especially for night dew as assumed in the study of 

Lowenberg-DeBoer et al. (2021a) and Al-Amin et al. (2023). Further details of the base 

modelling assumptions are available in the study of Lowenberg-DeBoer et al. (2021a) as 

presented in the Supplementary file6 (DOCX 52 kb) available at: 

https://link.springer.com/article/10.1007/s11119-021-09822-

x#:~:text=By%20using%20smaller%20equipment%20more,equipment%20on%20the%20

smallest%20farm.  

 

5.2.3 Sensitivity scenarios 

The reduced external inputs dependency, costs related to inputs use, increasing 

ecosystem services, and yield benefits of regenerative practices are well known (Pearson 
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et al., 2022; McLennon et al., 2021; Eckberg and Rosenzweig, 2020; Rehberger, West 

and Spillane, 2023; Soto, de Vente and Cuellar, 2023; Rhodes, 2017; Bartley et al., 2023; 

Jordon et al., 2022b) but not well studied and quantified. Similarly, strip cropping 

agronomic (i.e., edge effects that is yield benefits of taller plant and penalty for shorter 

plant) and ecological benefits are evident by research in small, medium, and large-scale 

farming context all over the world (Ward, Roe and Batte, 2016; Verdelli et al., 2012; Munz 

et al., 2014; Liu et al., 2022; Rahman et al., 2021; van Apeldoorn, 2020; Qin et al., 2013). 

But strip cropping edge effects and ecological benefits are not quantified by research for 

the same height plants typical in the UK.  

 

Based on the state of the knowledge, this study assumed that regenerative strip cropping 

practices could ensure agronomic and biodiversity benefits. However, due to the lack of 

data on agronomic and ecological benefits for the same height cereals typical in the UK, 

this study modelled 10% yield benefits and 10% inputs saving premiums. This study 

hypothesized that selection of appropriate enterprises, addressing spatial heterogeneity 

through strips rotation and temporal heterogeneity through early and late planting and 

harvesting, and farm operations at different times will help to optimize the edge effects 

and ecological benefits of regenerative strip cropping practices in both conventional farm 

management with human operated machines and autonomous farm management with 

retrofitted machines. The longer-term vision is that if autonomous strip cropping were 

found profitable, on-field trials could be worthwhile for maximizing agronomic and 

ecological benefits. This autonomous regenerative strip cropping practices will in-turn help 

to achieve simultaneously the production goals of productivity and profitability and 

environmental goal of limiting environmental footprints of arable farming. 

 

5.3 Results  

5.3.1 Baseline results 

The baseline optimum solutions with all 450 ha of arable land planted models are 

presented in Table 5.1. Compared to the whole field sole cropping more intensive winter 

wheat, oilseed rape (OSR) and spring barley rotations in the baseline HFH study 

conducted by Lowenberg-DeBoer et al. (2021a), the gross margins with the regenerative 

rotations (i.e., a five-year winter wheat-winter barley-nectar flower mix-winter wheat-spring 

bean) considered in this present study were substantially lower. For example, the gross 

margin for the 450 ha baseline conventional farm in the HFH study of Lowenberg-DeBoer 

et al. (2021a) was £353,677.  Gross margin for that more intensive rotation of Lowenberg-

DeBoer et al. (2021a) was £76,530 (i.e., £353,677-£277,147) higher than for the whole 

field sole cropping of this regenerative rotation with conventional machines (i.e., 221 kW 
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machines for whole field sole cropping). This is because a smaller portion of the land was 

devoted to the higher return crops (i.e., winter wheat and OSR). In this study, gross 

margin for the strip cropping with conventional equipment (i.e., 28 kW smaller 

conventional machines with human operators) are somewhat lower than the whole field 

scenario because 13 times more labour was required, and the labour constraint was 

binding in August. The operator time was binding in March, April, May, August, 

September, and October. Labour hired in the autonomous strip crop scenario is more (i.e., 

66 person days per year per farm) than in the conventional whole field case (i.e., 21 

person days per year per farm), but still much less than in the conventional strip crop 

scenario (i.e., 280 person days per year per farm).     

 

Results of the baseline models reveal that return to operator labour, management and risk 

taking (ROLMRT) was £71,974 for autonomous regenerative strip cropping. This is 

£57,760 higher than whole field sole cropping and £25,596 higher than conventional 

regenerative strip cropping. The autonomous strip cropping ROLMRT advantage is larger 

because two units of retrofitted 28 kW autonomous machines (i.e., swarm robots) were 

able to operate the 450 ha regenerative farm profitably while the conventional strip crop 

unit required four 28 kW machines and the much higher investment cost of machines for 

the whole field conventional farm scenario. These two units of autonomous machines 

requirement for strip cropping can be compared to three 28 kW autonomous machines 

required for the 450 ha farm in the HFH study conducted by Lowenberg-DeBoer et al. 

(2021a). Fewer autonomous machines were required for the regenerative rotation 

because the nectar flower mix (NFM) required very little machine time during predrill 

herbicide & drilling operations and the field beans were planted and harvested during 

periods when machine time was not in high demand. Even with four units of 28kW 

conventional machines in the conventional regenerative strip cropping scenario, operator 

time was binding in March to May and August to October, and temporary labour was 

binding in the peak harvesting period (i.e., August) of winter wheat and winter barley. 

Although gross margin was higher for whole field sole cropping with conventional 

equipment, this mono-cultural system required more operator time (i.e., 73 person days 

per year per farm) than the autonomous regenerative strip cropping (i.e., 63 person days 

per year per farm) and had much higher equipment costs. In the UK, hiring agricultural 

labour is difficult at the best of times and has become even more problematic in the post-

BREXIT period, so the higher labour requirement is problematic.  
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Table 5.1: Optimization models outcomes for five-year winter wheat-winter barley-

nectar flower mix-winter wheat-spring bean rotations in the UK arable farm. 

Equipment scenario* 

 

Labour hired 

(Person-

days per 

year per 

farm) 

Operator 

time 

(Person-

days per 

year per 

farm) 

Gross 

margin (£ 

per year 

per farm) 

Return to 

operator 

labour, 

management 

and risk taking 

(£ per year per 

farm) 

Baseline 

Conv. 221 kW: Whole farm 

sole cropping 

21 73 277147 14213 

Conv. 28 kW4: 

Regenerative strip cropping 

280 135 249976 46377 

Autonomous 28 kW2: 

Regenerative strip cropping 

66 63 264343 71974 

Yield Advantage Sensitivity Test 

Conv. 28 kW4: 

Regenerative strip cropping 

280 135 290497 86898 

Autonomous 28 kW2: 

Regenerative strip cropping 

66 63 304633 112264 

Cost Reduction Sensitivity Test 

Conv. 28 kW4: 

Regenerative strip cropping 

280 135 265852 62253 

Autonomous 28 kW2: 

Regenerative strip cropping 

66 63 280219 87849 

Note: *The superscript indicates the number of equipment sets needed.  

 

5.3.2 Sensitivity results 

Empirical research in small scale farming (i.e., China) and large-scale farming (i.e., North 

America) shows that strip cropping with plants that differ in height show the edge effects 

(Qin et al., 2013; Van Oort et al., 2020; Ward, Roe and Batte, 2016). In particular, in 

maize-soybean systems, the maize yields tend to be higher in strip cropping because 

outside rows next to the shorter soybeans can capture more light. However, in the UK, 

most crop plants are of a similar height (e.g., wheat, barley and field bean are all about 

one meter tall) and no yield information is available from experimental trials to estimate 

strip cropping effects. It is hypothesized that strip crop yield benefits are possible even 

when crop height is similar because of temporal differences in crop growth. For example, 

winter wheat and barley largely stop growth by late June and in July are maturing and 

drying down, while field beans continue active photosynthesis in July and early August. 

Optimizing the yield impact of strip cropping would probably depend on the crop varieties 

and agronomic practices. This assumption was the basis for a sensitivity test considering 

a 10% yield increase.  
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A scenario with 10% yield premiums for winter wheat, winter barley and spring field beans 

show that with swarm robots, the per annum gross margin per farm was £40,290 (i.e., 

£304,633-£264,343) higher compared to without autonomous strip cropping yield 

advantage considered in the baseline scenario (Table 5.1). As the equipment use was the 

same for this yield advantage scenario, the ROLMRT increased by the same amount as 

the gross margin (i.e., £40,290). The conventional strip cropping gross margin was 

£40521 (i.e., £290,497-£249,976) higher with 10% yield premiums as compared to the 

conventional strip cropping base scenario without any yield advantage for regenerative 

strip cropping practices.  

 

Similarly, there is a hypothesis that improved soil health and more robust field ecosystems 

could reduce pest management costs in strip cropping. There is some evidence of greater 

insect diversity in strip crop fields (Alarcón‐Segura et al., 2022). This hypothesis was the 

basis for a scenario which assumed a 10% reduction in variable costs. In the 10% variable 

costs reduction scenario, the per annum gross margin per farm was increased £15,876 

(i.e., £280,219 - £264,343) more compared to the autonomous strip cropping scenarios 

considered in baseline modelling (Table 5.1). With 10% inputs saving advantage 

conventional regenerative strip cropping ROLMRT was £15876 (£62253 - £46377) higher 

than conventional regenerative strip cropping in baseline scenario without any input 

savings through regenerative strip cropping practice.  

 

5.4 Discussion 

Many British farmers chose agricultural careers to continue family traditions and because 

they want an active, outdoor lifestyle, but to retain enough farmers in the sector to achieve 

the UK’s food security and land management goals, the earnings must be comparable to 

other options, including conventional industrial mono-crop farming and non-farm careers. 

The relevant benchmark earnings needed to make regenerative practices attractive is not 

clear, but this study shows that autonomous regenerative strip cropping ROLMRT of 

£71,974 is almost £19,000 less than that of conventional farming with the more intensive 

winter wheat/OSR rotation in the HFH study conducted by Lowenberg-DeBoer et al. 

(2021a), but slightly more than the £64,768 average farm manager compensation from the 

2016 Farm Manager Survey (Redman, 2018). The baseline results without any yield 

benefits and inputs savings premiums shows that autonomous regenerative strip cropping 

was profitable intensification solutions as compared to mechanized conventional 

regenerative strip cropping and whole field sole cropping operated with human drivers.  

 

The yield and variable cost sensitivity testing show that only small yield increases or 

variable cost reductions linked to regenerative strip cropping would be enough to make it 
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competitive with the intensive crop rotation (i.e., wheat-OSR rotational whole field sole 

cropping considered in the HFH study) (Lowenberg-DeBoer et al., 2021a). This study 

assumed whole field agronomic practices for the strip cropping, but those practices may 

need to be modified for strip cropping. Agronomic history suggests that such modest yield 

increases and/or cost savings might be achieved through optimizing the strip width, crop 

genetics, field operation timing, soil management and other aspects of the farming system 

(Ward, Rose and Batte, 2016).  

 

The main limitation of this preliminary study of regenerative strip cropping is lack of 

livestock integrated into the rotational system. Due to the lack of information of precision 

livestock management supported by autonomous forage production, this study assumed a 

nectar flower strip produced entirely for environmental benefits and compensated through 

a government subsidy. Instead of autonomous forage production for supporting livestock 

this study assumed that the inclusion of the CSS (i.e., mid-tier scheme of nectar flower 

mix (NFM)) was more relevant because the study used 2018 input and output prices and 

government programme to make comparison with the base modelling scenarios of 

Lowenberg-DeBoer et al. (2021a).  

 

A more complete analysis is planned which will include livestock grazing, forage 

harvesting, and manure returned to the soil. Because livestock integration is one of the 

five important components of soil health principles of regenerative agriculture. Future 

research could include autonomous grass ley production to support winter finishing 

suckled calves in the modelling which will help achieve the five soil health principles of 

regenerative agriculture. Another important limitation is the lack of experimental data on 

yield and pest management effects of regenerative strip cropping for the same height 

plants typical in the UK. It is hypothesized that autonomous regenerative strip cropping 

and associated intensive data collection may result in several other benefits such as 

improve plant health, early detection of disease, better scouting of crops, improvement of 

soil health and restoration of in-field biodiversity, etc. In North America, there is a long 

history of strip cropping experimental trials in corn-based systems and a similarly long 

history of farmers and agribusinesses trying to find mechanization systems that would 

allow them to reap the benefits of strip cropping without adding too much additional labour 

and management cost. British (and other European) farmers and agribusinesses will 

probably need similarly robust evidence of yield increases and/or cost savings to motivate 

them to explore strip cropping farming systems that would help in regenerative practices 

as strip cropping is the simplest mixed cropping system.   

 

 



 

111 Economics of autonomous machines for regenerative agriculture 

5.5 Conclusion  

The study shows that regenerative strip cropping with autonomous machines was more 

profitable than conventional strip cropping and whole field sole cropping farm with the 

same crop rotations.  The modest increases in yield or reductions in variable costs due to 

lower crop protection expenses could make autonomous regenerative strip cropping 

economically competitive compared to more intensive wheat-OSR rotations without 

regenerative practices. Regenerative strip cropping with autonomous machines could 

provide a profitable approach to restore and improve within-field biodiversity and 

ecosystem services. 
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Chapter 6 

General discussion and conclusions 
 

 

“We are entering at the age of robot farmers…” 

 

Daum (2021): Trends in Ecology and Evolution, 36(9), pp. 774-777. 

 

 

6.1 General discussion 

Production economics research on autonomous machines hypothesized that autonomous 

arable farming operations in small, irregularly shaped fields and mixed cropping systems 

will improve environmental performance as well as maintain farm profitability (Ward, Roe 

and Batte, 2016; Lowenberg-DeBoer et al., 2021a). To contribute to the existing state of 

the knowledge, this study assessed the opportunity costs of autonomous farming 

operations as compared to conventional mechanized farming with human operators. This 

study examined three research hypotheses related to field size and shape implications of 

autonomous machines, autonomous strip cropping to facilitate mixed cropping and 

autonomous regenerative agriculture.  

 

To assess the hypotheses this study used linear programming (LP) to simulate farmer 

decision making. The LP model outcomes are relevant because autonomous machines 

are in the commercial pipeline and farmers will soon need to make investment decisions 

about them (Lowenberg et al., 2021a; Shockley et al., 2021). Research pointed out that 

the world is entering a robotic farming era owing to the advancement of technology and 

increasing labour scarcity (Klerkx and Rose, 2020; Lowenberg-DeBoer et al., 2020; 

Daum, 2021; Shockley et al., 2021). The use of econometric methodology was not 

feasible for this ex-ante study because there is no track record of autonomous machine 

use in arable agriculture. Consequently, ‘steady state’ LP optimization model was used to 

assess the gross margin measure of profitability. The concept of ‘steady state’ here refers 

to the solutions that would be repeated annually over time (Lowenberg-DeBoer et al., 

2021a). The findings of this study have farm management implications, suggesting arable 

commodity crop producers to consider seriously the cropping options and profit 

opportunities available with autonomous machines.  

 

The profitability of autonomous machines irrespective of field size and shape indicates 

that the rule of thumb of conventional machines related to field enlargement and structural 

change through removing biodiversity and hedgerows (i.e., ‘get big, or get out’) will be 
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superseded with autonomous machines. The optimization model shows that autonomous 

machines were more profitable solutions for farms with small 1 ha rectangular and non-

rectangular fields compared to farming with conventional machines with human operators. 

This economic potential of autonomous machines in small, non-rectangular fields imply 

that autonomous machines could help in biodiverse farming as research shows that small 

fields are rich in biodiversity. 

 

The research on automating mixed cropping to date has focused on technical aspects of 

farm management (Ditzler and Driessen, 2022). Strip cropping is the simplest form of 

mixed cropping and thus an appropriate place to start economic analysis. Autonomous 

machines are hypothesized for a profitable strip cropping system because substantial 

labour requirements and fixed costs associated with conventional mechanized farming 

constrained the practice in conventional mechanized system (Ward, Roe and Batte, 

2016). The LP optimization model found that autonomous strip cropping system was more 

profitable than conventional strip cropping and conventional whole field sole cropping, 

implying the adoption and scale up potential. The profitability of autonomous strip 

cropping even under different on-farm resource constraints (field to field transition, 

negative edge effect on smaller plant), market shocks (commodity price ratios) and 

regulatory obligations (human supervision), implying that autonomous machines could 

expand the options for arable open field farming beyond whole field monocultures. 

Autonomous strip cropping will potentially maximize the production goals of productivity 

and profitability. Simultaneously, an autonomous strip cropping system will help achieve 

the environmental goal of limiting environmental footprint of crop agriculture through best 

utilizing within field spatio-temporal heterogeneity.  

 

The profitability of regenerative strip cropping practice with autonomous machines 

compared to conventional regenerative practice and conventional whole field sole 

cropping indicate that autonomous machines could bring a paradigm shift in arable 

farming. The regenerative strip cropping practice could help to improve soil health, 

biodiversity and achieve net zero targets. The findings reveal that autonomous machines 

could facilitate sustainable intensification solutions because autonomous regenerative 

practices will integrate multifaceted objectives of arable farming that farmers and society 

as a whole envisaged.  

 

Overall, the findings of the study have implications to guide arable sole cropping systems 

and mixed cropping systems. The profitability of autonomous machines irrespective of 

field size and shape, even with labour scarcity are expected to help in biodiverse smart 

farming for which labour is the prime constraint (Daum et al., 2023). The ex-ante 
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economic analyses of autonomous agroecological strip cropping and autonomous 

regenerative strip cropping practices already helped motivate the new HFF strip cropping 

demonstration trials at Harper Adams University in the UK (Figure 6.1) (Harper Adams 

University (HAU), 2023).  

 

 

Figure 6.1: New Hands Free Farm demonstration research of autonomous strip cropping. 

Source: https://www.harper-adams.ac.uk/news/207994/new-hands-free-research-set-to-take-root-this-

spring?utm_source=Twitter&utm_medium=Social+Post&utm_campaign=HAU+Social+Media  

 

Although this study considered the context of medium scale farming of the UK (in 

objective 1 and objective 3) and large-scale farming of the US (in objective 2) as case 

study due to the technical, agronomic and economic data availability, this study has 

implications for small scale farming of Asia and Africa having less than two ha average 

farm size (High Level Panel of Experts (HLPE), 2013; Lowder, Skoet and Raney, 2016). 

The small fields and machines considered in this study are similar to those used in the 

smallholder’s context, e.g., in Bangladesh (Al-Amin, Lowenberg-DeBoer and Mandal, 

2023). 

 

 

 

 

 

https://www.harper-adams.ac.uk/news/207994/new-hands-free-research-set-to-take-root-this-spring?utm_source=Twitter&utm_medium=Social+Post&utm_campaign=HAU+Social+Media
https://www.harper-adams.ac.uk/news/207994/new-hands-free-research-set-to-take-root-this-spring?utm_source=Twitter&utm_medium=Social+Post&utm_campaign=HAU+Social+Media
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6.2 Limitations and future research 

This study contributed to the scientific knowledge through economic evaluation of 

autonomous machines for commodity crops production. However, the study has 

limitations in economic modelling and associated scenarios analyses. The limitations of 

this study and future research directions are as follows:  

 

• This study did not quantify the biodiversity benefits. What implications the 

biodiversity benefits have for agricultural policy is yet to be explored. Although this 

research implies that autonomous machines profitability in small, irregularly 

shaped fields will allow greater integration of biodiversity into farming systems, 

future research could address biodiversity benefits and policy implications, 

incorporating hedgerows, in-field trees and wetlands.  

 

• The field time estimation algorithm did not adequately reflect downtime due to 

machine problems. What will be the impact of using autonomous machines on 

downtime? With swarm robotics (i.e., fleet of robots) a breakdown of one machine 

does not stop the field operations, because the other swarm robots continue. With 

large conventional equipment, the failure of one part will often stop all machine 

work. This research has limited scope to work on non-productive stoppage time 

calculation as HFH was a demonstration project. Future research could 

reinvestigate the associated downtime with real time data from the Global 

Positioning System (GPS) log file of autonomous machines. 

 

• The field geometry algorithms used in this study is applicable for rectangular and 

right-angled triangular fields. Future research interested to replicate these 

algorithms of machines times should modify the field specifications algorithms (i.e., 

base area, headland area, and interior field area calculation) to apply for other field 

shapes (e.g., circular, trapezium, square, parallelogram, irregular, etc). The 

equipment specifications, other assumptions, and estimation processes would be 

same as used for rectangular and right-angled triangular fields.  

 

• The economic modelling of this study was unable to answer the questions about 

the optimal size of swarm robots. This study considered 28 kW, 112 kW and 221 

kW conventional equipment sets with human operators and 28 kW autonomous 

machines retrofitted for autonomy. There may be other equipment sets that may 

better fit, especially in small 1 ha fields. Moreover, considering smallholders 

farming of Asia and Africa, a range of small equipment less than 100 kW should be 

examined because smallholders  are producing one-third of the global food 

(Ritchie, 2021) and confronting on-farm resource constraints (Al-Amin and 



 

116 General discussion and conclusions 

Lowenberg-DeBoer, 2021; HLPE, 2013; Lowder, Skoet and Raney, 2016) like 

medium and large scale farming. 

 

• The strip cropping analysis is a preliminary approximation. To capture the within 

field spatio-temporal variability, economic analysis needs field trial data of yield 

estimates considering edge effects, machines time and inputs saving. This study 

only considered taller plant (corn) yield premium and small subordinate plant 

(soybean) yield penalty based on field data to represent edge effects. This study 

modelled six row strips. Future research should model row width variations and 

orientation effects based on field trial data.  

 

• The yield impacts of biodiversity inclusion such as prairie strips in strip cropping 

systems are not available. Future research could guide precision conservation 

incorporating biodiverse inclusions within the fields.  

 

• This study focused on the efficiency aspects among ten elements of 

agroecological farming. Other elements should be considered within a multi-

objective analysis. Future research could extend the focus on rigorous 

agroecological mixed cropping economic modelling including agroecological 

principles.  

 

• The autonomous machines costs for the US context in strip cropping system 

assumed that conventional machines were retrofitted for autonomy following the 

HFH & HFF demonstration experiences (Hands Free Hectare (HFH), 2021) as 

used in the study of Lowenberg-DeBoer et al. (2021). HFH&HFF costs were used 

because there is a lack of data on the market price autonomous systems for farm 

machines. Prior US study conducted by Shockley et al. (2021) also used HFH 

autonomous experience for their research. This study hypothesized that if this type 

of retrofit kit became common there would be commercially available package for 

any given tractor. It is assumed that when the technology is mature these retrofit 

kits will be "plug and play". Future research could conduct sensitivity tests 

considering the costs of newly developed commercial autonomous machines. 

 

• The autonomous regenerative strip cropping practices lack livestock integration on 

rotational systems. A more nuanced regenerative practice must include livestock 

grazing and/or forage harvest for livestock feed and manure returned to the soil to 

achieve the five soil health principles of regenerative agriculture. 
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• The preliminary regenerative strip cropping research lacks recent data and 

Environmental Land Management (ELM) scheme details. The initial analysis 

considered nectar flower mix as an environmental management strategy as 

suggested in the Country Stewardship Scheme (CSS) and added government 

support as a benefit in the modelling. This subsidy benefit and other datasets only 

considered 2018 data to enable comparison with the whole field sole cropping 

study conducted by Lowenberg-DeBoer et al. (2021a). Future research could take 

the advantage of recent data and consider the requirements and subsidy of the 

ELM scheme that will better represent the present scenarios of Great Britain.  

 

• What will be the impact of regenerative strip cropping practices with autonomous 

machines on yield patterns of plants of the same height? Some regenerative 

agriculture argues that with greater soil health crops are more resilient and yield 

less variable. This study was mainly based on ex-ante scenarios analyses due to 

lack of on-farm data of regenerative strip cropping practices. Future research could 

analyse a variety of demonstrate regenerative mixed cropping practices to better 

guide the agricultural transition to achieve the production and environmental goals 

of arable farming.  

 

• This study did not deal with the transitional pathways from conventional equipment 

to autonomous machines. It is unlikely that most farmers will completely get rid of 

all conventional equipment in one go and start over with autonomous machines. 

Future research could explore the transitional period during which they maintain 

both conventional and autonomous machines. Similarly, the likely transition path 

should be investigated. 

 

• The opportunity costs of farmers time are not considered in this study. Availability 

of autonomous technology will probably mean reorganization of farm enterprises. If 

farmers are spending less time driving machines, what will be the optimal use of 

that time? Will they add or expand other farm enterprises (e.g., livestock 

production, controlled environment horticulture, etc.)? Will they start or expand on-

farm value added enterprises? Is it optimal in some cases for the farmer to seek 

off-farm employment? 

 

6.3 Conclusions 

Multiple emerging opportunities are hypothesized with the use of autonomous machines in 

open-field arable farming operations with whole field sole cropping, mixed cropping, and 
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regenerative agriculture practices. Autonomous machines are expected to help 

simultaneously reconcile the production goals of productivity and profitability, and 

environmental goal of limiting environmental footprints of arable crop farming. Research 

envisaged that autonomous machines would facilitate biodiverse farming through making 

small, irregular fields economically profitable, that will supersede the ‘‘get big or get out’’ 

rule of thumb of conventional mechanization operated with human drivers.  

 

Apart from the economies of size in small, irregular fields (i.e., irrespective of field size 

and shape) in whole field sole cropping system, profitable mixed cropping system to 

encourage agroecological farming and regenerative agriculture practice are also 

hypothesized with the advent of autonomous machines. However, prior economic 

research was unable to answer the economics implications of field size and shape, mixed 

cropping, and regenerative practices economics with autonomous machines. In addition to 

the choice of cropping systems in farm management decisions, farmers have to make 

farming decisions under multiple on-farm resources constraint which is really a challenge 

for the resource poor farmers. Challenges like labour scarcity, equipment operations 

timing (tractor time and combine time), climatic challenges that disrupt farming operations 

(i.e., good field days), cashflow, and yield penalty and premiums related to the cropping 

systems selection and/or timing of farm operations are among the prime drivers that 

constraint farm profitability. Considering the context of the UK and the US due to the 

availability of agronomic, economic, and technical parameters, this study provided insights 

on farm management decisions. This study assessed farm profitability under farm 

machinery alternatives such as whether to select conventional mechanization with human 

operators or autonomous machines in specific field and production system conditions.  

 

To guide farm management decisions subject to binding constraints, this study used 

whole farm linear programming (LP) model. The selection of HFH-LP type model was 

rational considering the context of the UK and US because this analytical tool help 

farmers to maximize the gross margin measure of profit with their available on-farm 

resource constraints that is ignored in traditional partial budgeting. Prior research both in 

the UK and the US context also used HFH-LP type optimization model to answer farm 

management decisions.  

 

This study contributed to the state of the arton the implications of field size and shape for 

the economics of autonomous machines. The study found that autonomous machines 

were profitable on small, irregularly shaped fields, implying the potential of preserving 

biodiversity and other environmental benefits. Because research already found that small, 

irregular fields are rich in biodiversity. The wheat production cost curves of autonomous 
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machines and conventional machines in British context shows that autonomous machines 

reduced cost of production by €15/ton to €29/ton for farms with small 1 ha rectangular 

fields and €24/ton to €46/ton for farms with 1 ha non-rectangular fields respectively. The 

study also found that even with on-farm resource constraints, such as increasing wage 

rates and reduced labour availability, autonomous machines were a potentially profitable 

alternative of conventional machines with human operators. 

 

The economic implications of this study go beyond whole field sole cropping system, to 

guide mixed cropping decisions. Strip cropping is considered as an example of within field 

mixed cropping system because strip cropping is the simplest mixed cropping even 

feasible with conventional mechanization with human operators, but substantial labour 

requirement making uneconomic to farm. This study contributed to the strip cropping 

literature considering the North American Corn Belt context. Results found that per annum 

return to operator labour, management and risk-taking (ROLMRT) was $568.19/ha and 

$162.58/ha higher for autonomous corn-soybean strip crop farms compared to whole field 

sole crop and conventional strip crop farm respectively. The conventional strip cropping 

was only profitable with a substantial amount of labour availability because the base 

scenario with 800 h per month labour available was unable to operate the whole farm. The 

optimum solution was only achieved with 1200 h per month labour availability. The 

findings reveal that autonomous machines have the potential to make mixed cropping 

within the fields economically feasible. The sensitivity scenarios of market shocks 

(soybean/corn price ratios), regulatory obligation (human supervision requirements) and 

logistics (increased field-to-field transition distance) show that autonomous strip cropping 

remained more profitable compared to conventional strip cropping and typical whole field 

sole cropping.  

 

The strip cropping economic study was also extended considering regenerative practices 

to assess regenerative agriculture with similar height crop combinations typical of the UK 

and EU. Results of the regenerative strip cropping practices in the context of the Great 

Britain show that without considering any yield increases and input savings, the ROLMRT 

was £71,974 for autonomous regenerative strip cropping practice which is £57,760 higher 

than whole field sole cropping and £25,596 higher than conventional regenerative strip 

cropping. The modest increases in yield or reductions in variable costs due to lower crop 

protection expenses would make the autonomous regenerative practice even more 

economically competitive compared to conventional farming practices.  

 

The profitability of autonomous machines for commodity crop production, irrespective of 

field size and shape, within field strip cropping system, and regenerative strip cropping 
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practices implies that autonomous machines could provide win-win farming solutions. 

Autonomous machines could ensure a profitable approach to restore and improve within-

field biodiversity, and to increase ecosystem services that may facilitate the net zero 

target and precision conservation in arable crop farming. 
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Appendix A 
 
Supplementary materials for: 
Economics of field size and shape for 
autonomous crop machines 
 

 

 

Supplementary Materials Encompass:  

(i) Supplementary Text (i.e.., STEXTT Supplementary Text, which includes Main 

Text of the Technical Note). 

(ii) Algorithms Spreadsheets (i.e., SM1 Rectangular Field Algorithms and SM2 Non-

Rectangular Field Algorithms (i.e., Right-Angled Triangular Field)) 

(iii) Supplementary Figures (i.e., SFs Sensitivity Tests Figure, which includes Figures 

of the Sensitivity Tests). 
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Appendix A (i): Supplementary Text (i.e.., STEXTT Supplementary Text, which 

includes Main Text of the Technical Note) 

 

A TECHNICAL NOTE ON AN ALGORITHM TO ESTIMATE FIELD TIMES AND FIELD 

EFFICIENCY 

Farm machinery performance evaluation has received substantial attention for the 

management of the arable crop farm and improvement of crop equipment operations 

(Bochtis et al., 2010; Sørensen and Nielsen, 2005). The development of Information and 

Communication Technology (ICT) systems accelerates the interest of maximizing 

operational efficiency (Grisso et al., 2002b; Grisso et al., 2004; Bochtis et al., 2010) and 

studies have suggested the shift from large conventional technology to autonomous 

machines for better performance, management and economic feasibility (Blackmore et al., 

2005; Lowenberg-DeBoer et al., 2021a; Shockley, Dillon and Shearer, 2019). To date, 

most of the research on autonomous machines concentrated on the technical feasibility of 

robotic systems (Duckett et al., 2018; Shamshiri et al., 2018). Very few production 

economics studies in arable robotic operations mentioned the significance of field 

performance, for instance, in automated (i.e., still required human operator) field 

operations, Clary et al. (2007) and Cembali et al. (2008) commented on the operational 

efficiency. Likewise, Sørensen, Madsen and Jacobsen (2005) mentioned that efficiency is 

the critical prerequisite for improved profitability and assumed 80% efficiency for 

autonomous robotic weeding. Using the experience of the  Hands Free Hectare (HFH) 

demonstration project at Harper Adams University, UK, Lowenberg-DeBoer et al. (2021a) 

hypothesized that autonomous machines are more economical on small fields. They 

assumed constant 70% field efficiency for all operations and equipment sets based on the 

discussion of Witney (1988). However, the economic viability of autonomous crop 

machines over the range of field sizes and shapes has not been tested.  

 

The existing conventional equipment and precision agriculture literature mainly developed 

models for predicting machinery performance (Sørensen, 2003; Sørensen and Nielsen, 

2005; Jin and Tang, 2010; Fedrizzi et al., 2019) and evaluated the field efficiency in farm 

operation (Taylor, Schrock and Staggenborg, 2001; Grisso, Jasa and Rolofson, 2002a; 

Taylor, Schrock and Staggenborg, 2002; Grisso et al., 2004; Bochtis et al., 2010; Spekken 

and de Bruin, 2013). Nevertheless, the evaluation of field efficiency and field times of 

autonomous machines and the economic implications of field size and shape are still 

unexplored. To fill this research gap, the present study investigated the economic viability 

of autonomous machines in commodity crop production through the lens of machinery 

performance with a reference to different sized and shaped fields.   
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Considering the experiences of the HFH demonstration project, the study developed 

algorithms to estimate field times (h/ha) and field efficiency (%) for different sized 

rectangular and non-rectangular fields (i.e., right-angled triangular fields). The algorithms 

were adopted and modified following the study of Bochtis et al. (2010), Jin and Tang 

(2010), Shamshiri et al. (2013), Fedrizzi et al. (2019), Lowenberg-DeBoer et al. (2021a) 

and the discussion of Witney (1988). The developed algorithms went beyond the existing 

studies as the present study used systems analysis from planting to harvesting that 

incorporated HFH on-field level demonstration experiences, field sizes and shapes, 

machine specifications, overlap consideration, headlands timing, interior passes timing, 

inputs refill timing, fuel refill timing, and field entry and exit time estimation.  

 

The algorithms were developed considering the flexibility of future implications that would 

be applicable for any kinds of arable machines operated in different sized rectangular and 

non-rectangular fields. Keeping the research gaps in mind, the present study gave 

emphasis in the headlands and interior field time calculation as prior studies considered 

headlands passes and headlands turning as non-productive areas (Gónzalez, Marey and 

Álvarez, 2007; Bochtis et al., 2010). However, based on the experience of the HFH 

project, despite having lower yields compared to the rest of the field due to the 

compaction of soil and damage from machines turning, the headland is considered as a 

productive area. In addition, previous studies missed out pass to pass overlap (i.e., 

overlap percentage) in field efficiency estimation (Lowenberg-DeBoer et al., 2019). The 

study of Lowenberg-DeBoer (1999); Griffin, Lambert and Lowenberg-DeBoer, (2005) and 

Ortiz et al. (2013) assumed 10% overlap as the benchmark.  

 

Another contribution of the algorithms is that the present study addressed the limitations 

of earlier studies and incorporated their suggestions. Prior studies suggested that in field 

efficiency estimation, future studies should separately calculate the headlands turning 

time, and stoppages time (Taylor, Schrock and Staggenborg, 2001; Taylor, Schrock and 

Staggenborg, 2002; Bochtis et al., 2010; Shamshiri et al., 2013) because productive times 

and non-productive times play a significant role in field efficiency estimation (Bochtis et al., 

2010; Jensen et al., 2015; Shamshiri et al., 2013; Spekken and de Bruin, 2013). 

Considering the significance of headlands turning types, field size and shape (for details 

see Jin and Tang, 2010 and Fedrizzi et al., 2019), the study incorporated the headlands 

turning pattern of the HFH demonstration project. In summary, in developing the 

algorithms, the present study incorporated field and machine specifications, overlap 

percentage, productive times (i.e., field passes time, headlands turning time, and 

headlands passes time) and non-productive times (i.e., replenish inputs, refuelling, and 
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blockages) for calculating the field efficiency of autonomous machines and conventional 

technologies with human operators for different sized and shaped fields. 

Although logistics software is well developed in trucking and other transportation sectors 

(Software Advice, 2021), there is no readily available commercial software in the UK to 

estimate equipment times and field efficiency encompassing field and machine 

heterogeneity. Field times were sometimes generated as a by-product in the farm 

equipment path planning research literature (Hameed, 2014; Jensen et al., 2012; 

Oksanen and Visala, 2007; Spekken and de Bruin, 2013). The agri-tech economic studies 

often rely on text book (Lowenberg-DeBoer et al. 2021a). For easy use of the algorithms 

by the students and researchers, especially those who are involved in the Agri-Tech 

Economics, the study developed algorithms in Excel spreadsheets. These algorithms 

could be further use for developing software and mobile app.  

 

The technical note is organized with one section on the algorithms for the rectangular field 

and another section focused on the non-rectangular (i.e., right-angled triangular) field. The 

common assumptions and parameters used are as follows: 

 
Assumptions and parameters used 

The study assumed that the equipment enters the field from the entry side and completed 

the headlands first, after which the machine made usual flat turn to start the interior 

passes. The equipment ends on the entry side of the field, even if it is operating a partial 

swath or not at all on the return.  

 

The field and HFH equipment specifications were collected from the experience of the 

HFH demonstration project at Harper Adams University, Newport, Shropshire, UK. HFH 

conventional machine with human operator and HFH autonomous machines are identical 

except for the autonomy hardware and software. The specifications of conventional 

machines were collected from Lowenberg-DeBoer et al. (2021a), John Deere 

(https://www.deere.co.uk/en/index.html), Arslan et al. (2014), and Witney (1988). The 

parameters used and parameter definitions to calibrate the algorithms are presented in 

Table A.1 and Table A.2. 

https://www.deere.co.uk/en/index.html
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ALGORITHMS TO ESTIMATE FIELD TIMES AND FIELD EFFICIENCY FOR 

RECTANGULAR FIELD 

Estimation of field times and field efficiency 

The algorithms used for estimating field times (h/ha) and field efficiency (%) for different 

sized rectangular fields are sub divided in the following sections:  

1) The first section incorporated the main parameters and base calculations, which 

encompassed field and equipment specifications (for details see Table A.1 and 

algorithms presented in excel spreadsheet in Supplementary Material i.e., SM1 

Rectangular Field Algorithms).  

2) Secondly, the algorithms incorporated the headland area and field time calculation.  

3) Thirdly, interior field and passes time were estimated.  

4) Fourthly, non-productive time calculations were performed that incorporated 

headland and interior field input refill time, fuel refill time, and blockages times. By 

summing the input and fuel refilling time and blockages the total non-productive 

time (i.e., total stoppages times) were calculated.  

5) Fifthly, the algorithms estimated the total field operation time.  

6) Sixthly, the theoretical field time was calculated based on the machine design 

specifications, and  

7) Finally, field efficiency was estimated as the ratio of theoretical field time based on 

machine design specifications like the estimates of theoretical field time to its 

actual field productivity.  

 

1. Main parameters and base calculations 

 

Field attributes calculation 

The study tested the algorithms for 1ha, 10ha, 20ha, 50ha, 75ha, and 100ha rectangular 

fields (where, 1 ha = 10,000 m2) equipped with 28 kW conventional machines with human 

operator and autonomous machines, and 112 kW and 221 kW conventional machines 

with human operators. Details of the field specifications are given in Table A.1 and 

Supplementary Material (i.e., SM1 Rectangular Field Algorithms). The study assumed that 

length of the field is ten times the width of the field. Following this assumption, the width of 

the rectangular field was estimated as the square root of the area divided by ten: 

 

𝑊𝑓 = 𝑆𝑞𝑟𝑡 (𝐴/10) …  … (1) 

where, 𝑊𝑓 is the width of the field, and A is the area of the field.  
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Subsequently, the length of the rectangular field was calculated as:  

 

𝐿𝑓 = 10 ∗ 𝑊𝑓 …  … (2) 

where, 𝐿𝑓 is the length of the field. 

 

The equipment specifications are evident in the Table A.1 (for further details see the 

algorithms in the excel spreadsheet in Supplementary Material i.e., SM1 Rectangular 

Field Algorithms). The effective swath width of the implement was calculated as the width 

of the implement multiplied by one hundred minus overlap percentage: 

𝑊𝑠 = 𝑊𝑚 ∗ ((100 − 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒)/100) …  … (3) 

where, 𝑊𝑠 is the effective swath width, and 𝑊𝑚 is the width of the implement. For all 

operations and equipment sets this study assumed a 10% overlap percentage following 

Lowenberg-DeBoer et al. (2021a).  

 

The total number of passes around the headlands for a rectangular field was calculated as 

the width of the headland divided by the effective swath width of the implement:  

 

𝑁ℎ𝑝 =  ⌈𝑊ℎ/𝑊𝑆⌉  …  … (4) 

where, 𝑁ℎ𝑝 is the total number of passes around the headland to the nearest positive 

integer.  

This algorithm ensures that the headland width allows operation of all equipment sets, and 

𝑊ℎ is the width of the headland (i.e., the study assumed headland width equals the 

effective swath width of the sprayer as the sprayer width was the largest implement 

among drilling, spraying, and harvesting operations).  

2. Headlands area and field time calculation 

Time for the headland round was calculated as the sum of the length and width of the 

field, minus the width of the previous headland rounds in four sides of the field, minus the 

square corner distance of four corners of the rectangular field, which is divided by the 

implement running speed in the passes, and plus the four corners distances that is divided 

by the turning speed of the implement. The turning speed of the implement was one third 

of the implement running speed in the passes. Thousands were used to convert speed 

from km/h to m/h. The study used the following algorithm to calculate headlands round 

time:  
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Thi = {

(((𝐿𝑓 + 𝑊𝑓) – (𝑛ℎ𝑖 − 1) ∗ 4 ∗ WS)– ((2 ∗ r) + (0.5 ∗ 2 ∗ Ws)) ∗ 2) ∗ 2/(1000 ∗ 𝑣𝑝) 

+ (r ∗ 𝜋/2) ∗ 4/(1000 ∗ 𝑣𝑡) ; 𝑛ℎ𝑖 ≤ 𝑁ℎ𝑝 

0;  𝑛ℎ𝑖 > 𝑁ℎ𝑝 
 

                                                                                                                         …  … (5) 

where, 𝑇ℎ𝑖 is the time required for the headland round (i = 1, 2, …  …, 9), 𝑛ℎ𝑖 is the 

number of rounds required for the headland operation (i. e., 𝑛ℎ𝑖 =1, 2, …  …, 9), r is the 

turning radius of the implement, 𝑣𝑝 is the implement running speed in the passes, and 𝑣𝑡 

is the implement turning speed. When the number of passes is less than or equal to the 

total number of headlands passes, the first term is half the perimeter of the field. It is 

multiplied by 2 (the 2 just before the first slash) to give the whole perimeter. In the first 

headland round the machine travels a path that is half a swath width inside the perimeter; 

this is why (0.5 ∗ 2 ∗ Ws) is deducted. For each headland round after the first another four 

swath widths are deducted in each half perimeter (i.e., (𝑛ℎ𝑖 − 1) ∗ 4 ∗ WS); one on each 

side of the field width and one on each side of the field length. The corner turn distance is 

as the turning speed and in estimated in the second term which is four quarter turns in a 

half field perimeter (𝑖. 𝑒. , (r ∗ 𝜋/2) ∗ 4). To avoid double counting two radius lengths are 

deducted from the first term at pass speed (i.e., 2*r). To allow for deceleration and 

acceleration before and after the corner a second swath width is deducted (0.5 ∗ 2 ∗ Ws). 

 

After completing the headlands first, the machine entered the interior field (i.e., refers to 

the field excluding width of the headlands on all four-sides). The time from headland to the 

first interior pass was calculated following the experience of the HFH demonstration 

project and the study adopted and modified the typical “Flat” turn of Jin and Tang (2010) 

as follows: 

 

Thturn = (Ws ∗ (1 +  n +  Cot𝛿))  +  (r ∗ (𝜋 − 2)) / (1000 ∗ 𝑣𝑡) …  … (6) 

 

where,  𝑇ℎ𝑡𝑢𝑟𝑛 is the turning time from headland to first interior pass, n is the number of 

swaths skipped during turning, and 𝛿 is the swath direction in radians. The Jin and Tang 

(2010) equation is modified by including the “n” which is the linear distance along the 

headland when swaths are skipped before resuming the next pass. Skipping swaths is 

required for flat turns when the turning radius exceeds the swath width. The Ws*Cot 𝛿 term 

is used to estimate the extra distance travelled when the headlands are not exactly 

perpendicular to the passes.  

 

The total time in the headlands rounds was estimated as the summation of all headlands 

round times and the turning time from headland to first interior pass as follows: 
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𝑇ℎ = =  ∑ 𝑇ℎ𝑖
9
𝑖  +  𝑇ℎ𝑡𝑢𝑟𝑛 … … (7) 

where, 𝑇ℎ is the total time in the headland rounds. 

 

The area of the headland of the field was calculated as follows: 
 

𝐴ℎ𝑓 = 𝐴 − (𝐿𝑖𝑓 ∗ 𝑊𝑖𝑓) …  … (8) 

where, 𝐴ℎ𝑓 is the area of the headland, 𝐿𝑖𝑓 is the length of the interior field, and 𝑊𝑖𝑓 is the 

width of the interior field. 

 

3. Interior field and passes time calculation 

Interior field refers to the field excluding the four-sided widths of the headland. The length 

of the interior field was calculated as the length of the field minus the two sides headlands 

width of the field: 

 

𝐿𝑖𝑓 = {
(𝐿𝑓  − 2 ∗ 𝑊ℎ);  𝑊𝑖𝑓 ≥  𝑊𝑠 

0;  𝑊𝑖𝑓 <  𝑊𝑠 
 …  … (9) 

 
The width of the interior field was calculated as the width of the field minus the two sides 
headlands width of the field as follows: 
 

𝑊𝑖𝑓  =  {
(𝑊𝑓 − 2 ∗ 𝑊ℎ); (𝑊𝑓 − 2 ∗ 𝑊ℎ) > 0

0; (𝑊𝑓 − 2 ∗ 𝑊ℎ) ≤ 0
 …  … (10) 

  
 
The area of the interior field was estimated as the length of the interior field multiplied by 

the width of the interior field: 

 

𝐴𝑖𝑓 = 𝐿𝑖𝑓 ∗ 𝑊𝑖𝑓 …  … (11) 

where, 𝐴𝑖𝑓 is the area of the interior field. 

 

For rectangular field, the number of interior headland turn was estimated by dividing the 

width of the interior field parallel to which the interior turns take place by the effective 

swath width as follows: 

 

𝑁 = {
 ⌈𝑊𝑖𝑓/𝑊𝑠⌉;  ⌈𝑊𝑖𝑓/𝑊𝑠⌉ > 0

0; ⌈𝑊𝑖𝑓/𝑊𝑠⌉  ≤ 0
  …  … (12) 

where, N is the total number of interior headlands turn. This algorithm ensures that the 

headland width allows operation of all equipment sets.  
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The total number of interior passes of the field must be even to bring the machine back to 

the entry side of the field. Consequently, it was estimated as the total number of interior 

headlands if even and total number plus one if odd.  

 

𝑁𝑃  = {
𝑁 + 1; 𝑁 = 𝑂𝐷𝐷

𝑁; 𝑁 = 𝐸𝑉𝐸𝑁
 …  … (13) 

where, 𝑁𝑃 is the total number of interior passes. The conditional algorithm is used to 

ensure field entry and exit in the same path. 

 

The total time in the interior field passes was calculated by multiplying the length of an 

interior field pass with the total number of interior field passes which is divided by the 

running speed of the implement in the passes and one thousand is divided to reach in the 

unitary of the units used: 

 

𝑇𝑝 =  (𝑁𝑃 ∗ 𝐿𝑖𝑓) / (1000 ∗ 𝑣𝑝) …  … (14) 

where, 𝑇𝑝  is the total time in the interior field passes. 

 

In field efficiency calculation, the headland turning time is considered with greater 

importance (Witney, 1988; Grisso et al., 2002b; Gónzalez, Marey and Álvarez, 2007; 

Bochtis et al., 2010; Jin and Tang, 2010). Even though, prior studies considered 

headlands as non-productive area (Witney, 1988; Gonzalez, Alvarez and Crecente, 2004; 

Gónzalez, Marey and Álvarez, 2007; Bochtis et al., 2010), the study treated headland as 

useful area based on the HFH demonstration experience. The methodology of headland 

turning time was adopted and modified from the study of Jin and Tang (2010) and Fedrizzi 

et al. (2019). The study of Jin and Tang (2010) considered several turning types (i.e., 

“Flat” turn, “U” turn, “Bulb” turn, “Hook” turn). The study modified their algorithm following 

the HFH demonstration project, which always follow the “Flat” turn, unlike the “Flat” turn of 

Jin and Tang (2010) as HFH equipment skipped swaths. The autonomous machinery 

operations of HFH followed the “Flat” turn with skipping of swaths (i.e., during headlands 

turning the machine skipped two swaths nearer and enter the field after skipping those 

swaths) (for typical “flat turn” see Jin and Tang 2010  and for HFH “flat turn” see Figure 

3.1 and Figure 3.2 in the main manuscript). With the experience of the HFH demonstration 

project, the turning time for “flat” turn goes beyond the calculation of Jin and Tang (2010) 

and was calculated as: 

 

Tturn =  ((Ws ∗ (1 +  n +  Cot𝛿))  +  (r ∗ (𝜋 − 2)) / (1000 ∗ 𝑣ℎ)  …  … (15) 

where, 𝑇𝑡𝑢𝑟𝑛 is the interior headland turning time.  
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The total interior headlands turning time of the field was estimated by multiplying the 

number of interior headlands turn with the interior headlands turning time as follows: 

 

𝑇𝑟 = N ∗ 𝑇𝑡𝑢𝑟𝑛  …  … (16) 

 

where, 𝑇𝑟 is the total interior headlands turning time. 

 

The distance to field entry and exit assumes that after the last pass (and returning to the 

entry side of the field if the number of passes in odd) the machine ends up at the far side 

of the interior field relative to the entry. The distance from the far side is assumed to be a 

diagonal line across the headland to the entry in the corner. Using the Pythagorean 

theorem that distance is the square root of the square of the headland width plus the 

square of the field width minus the headland width. To calculate the total time for field 

entry and exit passes these square distances of field entry and exit were divided by the 

implement turning speed. The algorithm of the total time for field entry and exit passes 

was as follows: 

 

𝑇𝑓𝑒 =  √((𝑊ℎ)2 + (𝑊𝑓 − 𝑊ℎ)2) / (1000 ∗ 𝑣𝑡)  …  … (17) 

where, 𝑇𝑓𝑒 is the total time for field entry and exit passes. 

 

The total observed time in the interior field and passes (𝑇𝑜𝑏𝑠) incorporated the total time in 

the interior field passes (𝑇𝑝), the total time in the interior headlands turning (𝑇𝑟), and total 

time for field entry and exit passes (𝑇𝑓𝑒) as follows:   

𝑇𝑜𝑏𝑠 =  𝑇𝑝  + 𝑇𝑟  + 𝑇𝑓𝑒 …  … (18) 

 

4. Non-productive times calculation 

The non-productive time is another important factor associated with field times and field 

efficiency estimation. In this study, non-productive time encompassed replenishing inputs, 

blockage, and refueling. The algorithms for estimating non-productive times are as 

follows: 

  

Headland and interior field input refill time calculation 

Input required for the interior field was calculated as multiplication of the seeding rate per 

ha to the area of the interior field as follows:  

 

𝐼𝑅𝑖𝑓 = (𝑄𝑠 ∗ 𝐴𝑖𝑓)/10000 …  … (19) 

where, 𝐼𝑅𝑖𝑓 is the input required for the interior field, and 𝑄𝑠 is the seeding rate per ha.  



 

 

175 Appendices 

Input required for the headlands was calculated as multiplication of the seeding rate per 

ha to the area of the headland of the field:  

 

𝐼𝑅ℎ = (𝑄𝑠 ∗ 𝐴ℎ𝑓)/10000 …   … (20) 

where, 𝐼𝑅ℎ is the input required for the headland. 

 

Input required for the headland and interior fields was calculated by summing the input 

required for the interior field and input required for the headland as follows:  

 

𝐼𝑅ℎ𝑖𝑓 = 𝐼𝑅𝑖𝑓 +  𝐼𝑅ℎ𝑓 …  … (21) 

where, 𝐼𝑅ℎ𝑖𝑓 is the input required for the headland and interior field. 

 

Number of refills needed within the field was estimated as dividing the input required for 

the headland and interior field to the capacity of the bin minus one. Because the study 

assumed that the equipment entered the field and started operation with a full bin of seed, 

consequently, the number of refills needed “within” the field would be less than the total 

number of refills needed to complete the field operation. 

 

𝑁𝑅𝑁𝑓 =  ⌈⌊((𝐼𝑅ℎ𝑖𝑓/𝐶𝑏) − 1)⌋⌉ …  … (22) 

 

where, 𝑁𝑅𝑁𝑓 is the number of refills needed “within” the field, 𝐶𝑏 is the capacity of the bin. 

This algorithm used ROUNDDOWN or ROUNDUP represented with ⌈⌊ ⌋⌉, which allows all 

operations with all equipment sets.  ROUNDDOWN is used based on the consideration of 

the capacity of the bin (i.e., if the sum of the input requirement is less than the bin 

capacity). However, if the sum of the input requirement is greater than the capacity of the 

bin, the study used ROUNDUP to avoid equipment running with empty bin and ensure 

seed in the bin.  

 

Total stoppage time for input refill was estimated by multiplying the number of refills 

needed “within” the field with the stoppage time for a single input refill which is divided by 

60 considering unitary of the units used in hour:  

 

𝑇𝑠𝑖𝑟 =  (𝑇𝑠𝑠𝑖𝑟/60) ∗  𝑁𝑅𝑁𝑓 …  … (23) 

where, 𝑇𝑠𝑖𝑟 is the total stoppage time for input refill, 𝑇𝑠𝑠𝑖𝑟 is the stoppage time for a single 

input refill. 
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Headland and interior field fuel refill time calculation 

The headland and interior field fuel refill time followed the same estimation procedures 

mentioned in the above equation (19), (20), (21), (22), and (23). In this case, for 

estimating the fuel required for the interior field and headland, the fuel consumption rate 

per ha (𝑄𝑓) was used. Likewise, to calculate the number of refills needed “within” the field 

the capacity of the fuel tank (𝐶𝑡) was considered. Finally, using the same algorithms of 

stoppage time calculation the total stoppages time for fuel refill (𝑇𝑠𝑓𝑟) was calculated, 

where the stoppage time for single fuel refill (𝑇𝑠𝑠𝑓𝑟 ) was considered.  

 

Blockages time calculation 

They study assumed zero blockage time because of lack of clear data from the HFH 

demonstration project.  

 

 Total stoppages time calculation 

The total stoppages time “within” the field is the summation of the total stoppages time for 

input refill (𝑇𝑠𝑖𝑟), total stoppage time for blockage (𝑇𝑠𝑏), and total stoppages time for fuel 

refill (𝑇𝑠𝑓𝑟) that was calculated as: 

 

𝑇𝑠𝑓  =  𝑇𝑠𝑖𝑟 +  𝑇𝑠𝑏 +  𝑇𝑠𝑓𝑟  …  … (24) 

where, 𝑇𝑠𝑓 is the total stoppages time “within” the field. 

 

5. Total field operation time calculation  
 
The total time for field operation was calculated as the summation of the total observed 

time in the interior field and passes (𝑇𝑜𝑏𝑠), total headland round time (𝑇ℎ), and the total 

stoppages time in the field (𝑇𝑠𝑓): 

 

𝑇𝑡𝑓𝑜 =  𝑇𝑜𝑏𝑠 + 𝑇ℎ + 𝑇𝑠𝑓   …  … (25) 

where, 𝑇𝑡𝑓𝑜 is the total time for field operation. 

 
Total time for field operation per hectare was estimated as the ratio of the total time for 

field operation by the area of the field in hectare. 

 

𝑇𝑡𝑓𝑜ℎ𝑎 = 𝑇𝑡𝑓𝑜/𝐴 …  … (26) 

where, 𝑇𝑡𝑓𝑜ℎ𝑎 is the total time for field operation per hectare. 
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6. Theoretical field time calculation  

The theoretical field time was measured based on the machine design specifications. The 

study followed Lowenberg-DeBoer et al. (2021a) to estimate theoretical field time as 

follows: 

 

 𝑇𝑇 = [A / (𝑊𝑇𝑠 ∗ 𝑣𝑝 ∗ 1000)] … … (27) 

where,  𝑇𝑇 is the theoretical field time, and 𝑊𝑇𝑠 is the theoretical swath width.  

 

Theoretical field time per hectare was estimated as the ratio of the theoretical field time 

divided by the field area in hectare. 

 

𝑇𝑇ℎ𝑎 = 𝑇𝑇/𝐴 …  … (28) 

where, 𝑇𝑇ℎ𝑎 is the theoretical field time per hectare. 

 

7. Field efficiency calculation 

The study calculated field efficiency, following the estimation procedure of Lowenberg-

DeBoer et al. (2021a), Bochtis et al. (2010), and Shamshiri et al. (2013). In the present 

study, field efficiency is defined as the ratio of theoretical field time based on machine 

design specifications like the estimates of theoretical field time to its actual field 

productivity:  

 

𝐸𝑓 =  [𝑇𝑇 / (𝑇𝑜𝑏𝑠 +  Th  +  Tsf)]  ∗  100  …  … (29) 

where, 𝐸𝑓 is the field efficiency, TT is the theoretical field time, Tobs is the total observed 

time in the interior field and passes, 𝑇ℎ is the total headland round time, and 𝑇𝑠𝑓 total 

stoppages time “within” in the field. Simply the above field efficiency algorithm can be 

represented as: 𝑇𝑡𝑓𝑜ℎ𝑎/𝑇𝑇ℎ𝑎 (see the algorithms in the excel spreadsheet in 

Supplementary Material i.e., SM1 Rectangular Field Algorithms). 

 

 

 

 

 

 

 

 

 

 



 

 

178 Appendices 

ALGORITHMS TO ESTIMATE FIELD TIMES AND FIELD EFFICIENCY FOR RIGHT-

ANGLED TRIANGULAR FIELD 

Estimation of field times and field efficiency 

The algorithms used for estimating the field times (h/ha) and field efficiency (%) for 

different sized non-rectangular (i.e., right-angled triangular) fields are also sub divided in 

seven sub-sections similar to the rectangular field algorithms. Details of the algorithms are 

as follows:  

 

1. Main parameters and base calculations 

Field attributes calculation 

To test the algorithms, the study used 1 ha, 10 ha, 20 ha, and 25 ha sized right-angled 

triangular fields equipped with the same equipment sets used in rectangular fields. Details 

of the field specifications are given in Table A.1 and Supplementary Material (i.e., SM2 

Non-Rectangular Field Algorithms). The study assumed that each field has the height 

equalling twice the base. Following this assumption, the adjacent base of the right-angled 

triangular field was calculated as the square root of the area:  

 
𝐴𝑏𝑓 = 𝑆𝑞𝑟𝑡 𝐴 …  … (1) 

where, 𝐴𝑏𝑓 is the adjacent base of the field. 

 

As the study assumed that height equalling twice the base, the opposite height of the 

triangular field was calculated as: 

 

𝑂ℎ𝑓 =  2 ∗ 𝐴𝑏𝑓 …  … (2) 

where, 𝑂ℎ𝑓 is the opposite height of the field.  

 

Following the Pythagorean theorem, or Pythagoras' theorem, the hypotenuse of the right-

angled triangular field was calculated as: 

 

𝐻𝑦𝑝𝑓 = 𝑆𝑞𝑟𝑡 ((𝑂ℎ𝑓)2 + (𝐴𝑏𝑓)2)…  … (3) 

where, 𝐻𝑦𝑝𝑓 is the hypotenuse of the field.  

 

Right angle of the triangle was calculated as: 

 

𝜃 =  Degrees ((PI()/2)  =  Radians (Degrees)…  … (4) 

where, 𝜃 is the right angle of the right-angled triangular field. During the calculation of 

angles, to ensure naturalness in mathematics, trigonometric arcs relationship, and have 
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more elegant formulation of a number, the degrees (o) were converted to radian (rad) 

considering the International Systems of Units. 

 

Second largest angle of the right-angled triangular field was estimated using the sine 

trigonometric function of an angle, where sine is the ratio of the opposite height to the 

hypotenuse:  

 

𝜑 =  Degrees (Asin (𝑂ℎ𝑓/𝐻𝑦𝑝𝑓))  =  Radians (Degrees)…  … (5) 

where, 𝜑 is the second largest angle. 

 

Smallest angle of the right-angled triangular field was estimated using the sine 

trigonometric function of an angle: 

 

𝜇 =  Degrees (Asin (𝐴𝑏𝑓/𝐻𝑦𝑝𝑓)  =  Radians (Degrees)…  … (6) 

where, 𝜇  is the smallest angle. 

 

In case of right-angled triangular fields, the study assumed same algorithms similar to 

rectangular field to calculate effective swath width (𝑊𝑠) and the total number of passes 

around the headland (𝑁ℎ𝑝). For details of the equipment specifications and estimation see 

Table A.1 and Supplementary Material (i.e., SM2 Non-Rectangular Field Algorithms). 

 

2. Headlands area and field time calculation 

Time for the headland round was calculated as the sum of the opposite height, adjacent 

base, and hypotenuse of the right-angled triangular field, minus the width of the previous 

headland rounds in three sides, minus the square corner distance of the three corners of 

the right-angled triangular field, which is divided by the implement running speed in the 

passes, and plus the three corners distances that is divided by the implement turning 

speed. When the number of passes is less than or equal to the total number of headland 

passes, the first term is the perimeter of the field. The corner estimates are multiplied by 3 

which is before the first slash to give the whole perimeter. In the first headland round the 

machine travels a path that is half a swath width inside the perimeter; this is why (0.5 ∗ 2 ∗

Ws) is deducted. For each headland round after the first another three swath widths are 

deducted in each half perimeter (i.e., (𝑛ℎ𝑖 − 1) ∗ 3 ∗ WS); on the opposite height, adjacent 

base, and hypotenuse of the right-angled triangular field. To avoid double counting two 

radius lengths are deducted from the first term at pass speed (i.e., 2*r). The study used 

the following algorithm to calculate headlands round time:  
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 𝑇ℎ𝑖

= {

((𝑂ℎ𝑓 + 𝐴𝑏𝑓 + 𝐻𝑦𝑝𝑓)– (𝑛ℎ𝑖 − 1) ∗ 3 ∗ WS)– ((2 ∗ r)  + (0.5 ∗ 2 ∗ Ws))) ∗ 3/(1000 ∗ 𝑣𝑝) 

+((r ∗ 𝜃) + (r ∗ φ) + (r ∗ μ))/(1000 ∗ 𝑣𝑡); 𝑛ℎ𝑖  ≤ 𝑁ℎ𝑝

0; 𝑛ℎ𝑖  ≤ 𝑁ℎ𝑝 

 

                                                                                                                                 …  … (7)  

After completing the headlands first, the machine entered in the interior field. The time 

from headland to the first interior pass (Thturn) and the total time in the headland rounds 

(𝑇ℎ) was calculated following the same algorithm described in rectangular field algorithm 

section.  

 

The area of the headland was calculated as follows:  
 

𝐴ℎ𝑓 = 𝐴 − (0.5 ∗ 𝐴𝑏𝑖𝑓 ∗ 𝑂ℎ𝑖𝑓) …  … (8) 

where, 𝐴ℎ𝑓 is the area of the headland, 𝐴𝑏𝑖𝑓 is the adjacent base of the interior field, and 

𝑂ℎ𝑖𝑓 is the opposite height of the interior field. 

 

3. Interior field and passes time calculation 

For right-angled triangular field, interior field refers to the field excluding three-sided width 

of the headlands. The adjacent base of the interior field indicated the whole adjacent base 

of the external field minus the headland width on the right-angled corner side minus the 

horizontal widths across the diagonal headland that was represented by sine function of 

an angle and minus the horizontal width in the headland corner which was represented by 

the tangent function of an angle. The sine is the ratio of the opposite height to the 

hypotenuse and the tangent is the ratio of the opposite height to the adjacent base. The 

adjacent base of the interior triangular field was estimated as follows: 

𝐴𝑏𝑖𝑓 =  𝐴𝑏𝑓 – 𝑊ℎ  −  (𝑊ℎ/Sin(𝜑))  −  (𝑊ℎ/Tan(𝜑))… … (9) 

where, 𝐴𝑏𝑓 is the adjacent base of the field, 𝑊ℎ is the width of the headland, and φ is the 

second largest angle. 

 

Projection of the width of the headland on the hypotenuse that is close to the smallest 

angle of the right-angled triangular field was calculated as the ratio of the width of the 

headland to the cos trigonometric function of an angle, where cos is the ratio of the 

adjacent base to the hypotenuse: 

 
𝑃𝑊ℎℎ𝑦𝑝 =  𝑊ℎ/Cos(𝜑)… … (10) 

where, 𝑃𝑊ℎℎ𝑦𝑝 is the projection of the width of the headland on the hypotenuse.  
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Opposite height of the interior triangular field is the opposite height of the field minus the 

projected width of the headland on the hypotenuse minus width of the headland, minus 

the ratio of the width of the headland to the tan trigonometric function of the smallest angle 

was estimated as:  

 

𝑂ℎ𝑖𝑓  =  𝑂ℎ𝑓  −  𝑃𝑊ℎℎ𝑦𝑝  − 𝑊ℎ  −  ((𝑊ℎ/Tan(μ)) … … (11) 

 

The number of interior headlands turn that were taken parallel to the adjacent base and 

the hypotenuse of the external field was estimated as follows: 

 

𝑁 = ⌈(𝐴𝑏𝑖𝑓/𝑊𝑠 − 1, 0)⌉  … … (12) 

where, N is the total number of interior headlands turn, 𝑊𝑠 is the effective swath width. 

This algorithm ensures that the headland width allows operation of all equipment sets.  

 

The total number of interior passes (𝑁𝑝) was calculated following the same process 

described in the rectangular field algorithm section (for further details see the 

Supplementary Material i.e., SM2 Non-Rectangular Field Algorithms). 

 

To calculate the length of the interior field passes, the study subtracted half of the 

effective swath width from the adjacent base of the interior triangular field minus the width 

of the previous headland rounds and multiply this with the tangent function of the second 

largest angle. The length of the interior field passes was calculated as: 

 

𝑙𝑝𝑖 = {
ABS((𝐴𝑏𝑖𝑓 − 𝑊𝑆/2) – ((𝑛ℎ𝑖 − 1) ∗ 𝑊𝑆) ∗ Tan (φ), 0); 𝑛𝑝𝑖 ≤ 𝑁𝑝 

0; 𝑛𝑝𝑖 > 𝑁𝑝
 …  …   (13) 

where, 𝑙𝑝𝑖 is the length of the interior field passes (i = 1, 2,  …  …, 361), 𝑛𝑝𝑖 is number of 

passes in the interior field operation (i. e., 𝑛𝑝𝑖 =1, 2, …  …, 361), 𝑁𝑝 is the total number of 

interior field passes, and ABS is used for absolute value function as the study assumed 

that the equipment ends on the entry side of the field, even if the equipment is operating in 

the small end passes (i.e., to deal with the negative distance in case of tiny end passes).  

 

The total length of the interior field passes was estimated as the summation of the length 

of all interior field passes as follows: 

 

𝐿𝑝=  ∑ 𝑙𝑝𝑖 …  … (14) 

where, 𝐿𝑝 is the total length of the interior passes. 
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The total time in the interior field passes was calculated by dividing the total length of the 

interior field passes to the running speed of the implement in the passes as follows: 

 

𝑇𝑝 = ∑ 𝐿𝑃/(1000*𝑉𝑝) …  … (15) 

 
For interior headlands turning time (𝑇𝑡𝑢𝑟𝑛) and total interior headlands turning time (𝑇𝑟) 

calculation, the study used the same algorithms described in the rectangular field 

algorithms section.  

 

Width of the headland with the second largest angle was calculated as follows, where the 

adjacent base of the interior triangular field and the headland width on the right-angled 

corner side was subtracted from the adjacent base of the exterior field: 

𝑊ℎ2𝑛𝑑𝑙𝑐 = 𝐴𝑏𝑓 - 𝐴𝑏𝑖𝑓 - 𝑊ℎ …  … (16) 

where, 𝑊ℎ2𝑛𝑑𝑙𝑐 is the width of the headland on the second largest corner.  

 

The distance for field entry and exit encompassed the square of the travel distance of the 

headland width on the right-angled corner side and the headland width on the second 

largest corner side plus these square corner headlands widths were subtracted from the 

square of the adjacent base of the external field. To calculate the total time for field entry 

and exit, these square distances of field entry and exit were divided by the implement 

turning speed. The algorithm of the total time for field entry and exit passes was as 

follows: 

𝑇𝑓𝑒 =  Sqrt ((𝑊ℎ  +  𝑊ℎ2𝑛𝑑𝑙𝑐)2  +  (𝐴𝑏𝑓 – (𝑊ℎ  +  𝑊ℎ2𝑛𝑑𝑙𝑎))2/(1000 ∗ 𝑣𝑡)   …  … (17) 

 

The total observed time in the field and passes (𝑇𝑜𝑏𝑠) was calculated using the same 

procedure described in the rectangular algorithm section.  

 

4. Non-productive times calculation  

The non-productive time encompassed replenishing inputs, blockage, and refueling.  

 

Input required for the interior field (𝐼𝑅𝑖𝑓) was calculated as multiplication of the seeding 

rate per ha (𝑄𝑠) with the total length of the interior passes (𝐿𝑝) and effective swath width 

(𝑊𝑠) as follows:  

 

𝐼𝑅𝑖𝑓 = (𝑄𝑠 ∗ 𝐿𝑝 ∗ 𝑊𝑠)/10000 …  … (18) 

 

The rest of the calculation such as input required for the headlands (𝐼𝑅ℎ), input required 

for the headland and interior fields (𝐼𝑅ℎ𝑖𝑓), number of refills needed within the field (𝑁𝑅𝑁𝑓), 
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and time stoppage for input refill (𝑇𝑠𝑖𝑟) followed the same estimation procedures 

mentioned in the rectangular algorithms’ sections. 

 

For the calculation of headland and interior field fuel refill time and total stoppages time 

(𝑇𝑠𝑓) the study used the same procedure described above and in the rectangular 

algorithms section. 

 

For estimating other sub-sections (5, 6, and 7) which encompass the calculation of total 

time for field operation (𝑇𝑡𝑓𝑜), theoretical field time ( 𝑇𝑇), and estimation of field efficiency 

(𝐸𝑓), the study followed the same estimation procedures described earlier in rectangular 

algorithms sections (for details see excel spreadsheet in the Supplementary Material i.e., 

SM2 Non-Rectangular Field Algorithms). 

 
Validation of field efficiency estimation 

Even though field efficiencies are not constant values that may vary for specific equipment 

and depends on various factors (Bochtis et al., 2010; Hunt, 2001), to validate the 

algorithms, the study provides the following field efficiency comparison as shown in Table 

A.3. The field efficiency estimation is justifiable based on the comparison of Witney (1988) 

and  Hunt (2001). The estimates available in the literature are few decades earlier and 

unable to address field and equipment heterogeneity, whereas the present study provides 

the recent experience of field efficiency considering field and equipment heterogeneity. 

Future attempts should be made to validate with on-field estimation of autonomous 

machines and conventional machines with human operators. Because the Hands Free 

Hectare (HFH) was a demonstration project, it was difficult to separate on-field stops and 

down time while the engineers tinkered from those stoppage that would have occurred in 

normal field operations. Consequently, the model parameters were based on published 

machine specifications and farm budget information and guided the experience of the 

HFH project demonstrated at Harper Adams University, Newport, Shropshire, UK. 

 

Conclusions 

Field efficiency maximization is an important consideration in arable field operations. The 

study developed algorithms for estimating field times (h/ha) and field efficiency (%) of 

different sized and shaped rectangular and non-rectangular (i.e., right-angled triangular) 

fields equipped with autonomous machines and conventional machines with human 

operators. The ultimate objective of the study was to examine the economics of 

autonomous machines subject to field size and shape with the lens of field efficiency and 

field times. The study is the first attempt in the development of algorithms for autonomous 
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and conventional machine for arable field operations from planting to harvesting. The 

calculated field efficiencies were used to estimate the equipment times that were used as 

an input for estimating the coefficient of labour, tractor, and combine used for Hands Free 

Hectare - Linear Programming (HFH-LP) model. The coefficient estimation format is 

available in the supplementary material of Lowenberg-DeBoer et al. (2021a), namely field 

operations and equipment times by crop, month and equipment set of optimum yields. 

The assessment of the economic implications will guide the farmers, engineers, 

agribusinesses, and policy makers for further development of the technology, decision 

making for farm management and machinery selection with the existing farm resource 

constraints. 
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Table A.2: Parameter definitions. 

Parameters Description Unit 

A area of the field Square meter 
(m2) 

𝑨𝒊𝒇 area of the interior field m2 

𝑨𝒉𝒇 area of the headland m2 

𝑨𝒃𝒇 adjacent base of the field Meter (m) 

𝑨𝒃𝒊𝒇 adjacent base of the interior field m 

𝑪𝒃 capacity of the bin Kilogram (kg) 

𝑪𝒕 capacity of the fuel tank Litre (L) 

𝑬𝒇 field efficiency Percentage (%) 

𝑯𝒚𝒑𝒇 hypotenuse of the field m 

𝑰𝑹𝒊𝒇 input required for the interior 
field

kg 

𝑰𝑹𝒉 input required for the headland kg 

𝑰𝑹𝒉𝒊𝒇 input required for the headland and interior field kg 

𝑳𝒇 length of the field m 

𝑳𝒊𝒇 length of the interior field m 

𝒍𝒑𝒊 length of the interior field passes m 

𝑳𝑷 total length of the interior passes m 

n number of swaths skipped during turning Number (No.) 

𝒏𝒉 number of rounds required for the headland operation No. 

N total number of interior headlands turn No. 

𝒏𝑷 number of passes in the interior field operation No. 

𝑵𝑷 total number of interior passes No. 

𝑵𝒉𝒑 number of passes around the headland No. 

𝑵𝑹𝑵𝒇 number of refills needed “within” the field  No. 

𝑶𝒉𝒇 opposite height of the field m 

𝑶𝒉𝒊𝒇 opposite height of the interior field m 

𝑷𝒘𝒉𝒉𝒚𝒑 projection of the width of the headland on the 
hypotenuse 

m 

𝑸𝒔 seeding rate per ha kg/ha 

𝑸𝒇 fuel consumption rate per ha  L/ha 

r turning radius of the implement m 

𝑻𝒉𝒊 time required for the headland round  Hour (h) 

𝑻𝒉 total time in the headland round h 

𝑻𝑷 total time in the interior field passes h 

𝑻𝒉𝒕𝒖𝒓𝒏 turning time from headland to first interior pass  h 

𝑻𝒕𝒖𝒓𝒏 interior headland turning time h 

𝑻𝒇𝒆 total time for field entry and exit passes h 

𝑻𝒐𝒃𝒔 total observed time in the interior field and passes h 

𝑻𝒓 total interior headlands turning time h 

𝑻𝒔𝒔𝒊𝒓 stoppage time for a single input refill h 

𝑻𝒔𝒊𝒓 total stoppage time for input refill h 

𝑻𝒔𝒔𝒇𝒓 stoppage time for single fuel refill  h 

𝑻𝒔𝒇𝒓 total stoppages time for fuel refill  h 

𝑻𝒔𝒃 total stoppage time for blockage h 

𝑻𝒔𝒇 total stoppages time “within” the field h 

𝑻𝒕𝒇𝒐 total time for field operation h 
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Table A2: Parameter definitions (Continued). 

𝑻𝒕𝒇𝒐𝒉𝒂 total time for field operation per hectare h 

𝑻𝑻 theoretical field time h 

𝑻𝑻𝒉𝒂 theoretical field time per hectare h 

𝒗𝒑 implement running speed in the passes  Kilometre per 
hour (km/h) 

𝒗𝒕 implement turning speed  km/h 

𝑾𝑻𝒔  theoretical swath width m 

𝑾𝒇  width of the field m 

𝑾𝒉 Width of the headland m 

𝑾𝒊𝒇 width of the interior field m 

𝑾𝒎 width of the implement m 

𝑾𝒔 effective swath width  m 

𝑾𝒉𝟐𝒏𝒅𝒍𝒄 width of the headland on the second largest corner m 

𝜹 swath direction Radians (rad) 

𝜽 right angle of the right-angled triangular field rad 

𝝋 second largest angle rad 

𝝁 smallest angle rad 

 

 

Table A.3: Field efficiency comparisons subject to field shapes. 

Field 
Operations 

Equipment Present Study (2021) * Hunt 
(2001) 
** 

Witney 
(1988) 
*** 

Rectangul
ar Field 

Triangular 
Field 

Drilling HFH equipment 89% 70% 77-
90% 

75-
85% Small conventional 

equipment with human driver  
94% 54% 

Large conventional 
equipment with human driver  

87% 43% 

Spraying HFH equipment 69% 66% 55-
80% 

55-
65% Small conventional 

equipment with human driver  
70% 46% 

Large conventional 
equipment with human driver  

65% 36% 

Harvesting HFH equipment 91% 71% 63-
90% 

65-
75% Small conventional 

equipment with human driver  
83% 48% 

Large conventional 
equipment with human driver  

87% 41% 

Note: *Authors estimation, assumed 10 ha rectangular and right-angled triangular field (See Supplementary 
Materials i.e., SM1 Rectangular Field Algorithms and SM2 Non-Rectangular Field Algorithms); ** See Table 
1.1, p. 5, Hunt (2001); *** See Table 3.3, p. 103, Witney (1988). 
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Appendix A (ii): Algorithms Spreadsheets (i.e., SM1 Rectangular Field Algorithms 

and SM2 Non-Rectangular Field Algorithms (i.e., Right-Angled Triangular Field)) 

 

For detail of the Algorithms Spreadsheets, please visit as follows: 

 

Al-Amin, A.K.M.A., Lowenberg‐DeBoer, J., Franklin, K., Behrendt, K. (2023). Economics 

of field size and shape for autonomous crop machines. Precision Agric., 

https://doi.org/10.1007/s11119-023-10016-w 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.1007/s11119-023-10016-w
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Appendix A (iii): Supplementary Figures (i.e., SFs Sensitivity Tests Figure, which 
includes Figures of the Sensitivity Tests) 
 

 
 
Figure A.1: Sensitivity test (i.e., wage rate double) for wheat unit cost of production in euro 
per ton for farms with rectangular fields of different sized farms. The labels on the data 
points for 1 ha and 10 ha fields are the size of the tractor used and the number of 
equipment sets. The curves without labels are the baseline analysis which was done 
without field size and shape modelling.   
 
 
 

 
 
Figure A.2: Sensitivity test (i.e., wage rate triple) for wheat unit cost of production in euro 
per ton for farms with rectangular fields of different sized farms. The labels on the data 
points for 1 ha and 10 ha fields are the size of the tractor used and the number of 
equipment sets. The curves without labels are the baseline analysis which was done 
without field size and shape modelling.   
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Figure A.3: Sensitivity test (i.e., reduced labour availability of 50 person days per month) 
for wheat unit cost of production in euro per ton for farms with rectangular fields of 
different sized farms. The labels on the data points for 1 ha and 10 ha fields are the size 
of the tractor used and the number of equipment sets. The curves without labels are the 
baseline analysis which was done without field size and shape modelling.   
 
 
  

 
 
Figure A.4: Sensitivity test (i.e., wage rate double) for wheat unit cost of production in euro 
per ton for farms with non-rectangular fields of different sized farms. The labels on the 
data points for 1 ha and 10 ha fields are the size of the tractor used and the number of 
equipment sets. The curves without labels are the baseline analysis which was done 
without field size and shape modelling.   
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Figure A.5: Sensitivity test (i.e., wage rate triple) for wheat unit cost of production in euro 
per ton for farms with non-rectangular fields of different sized farms. The labels on the 
data points for 1 ha and 10 ha fields are the size of the tractor used and the number of 
equipment sets. The curves without labels are the baseline analysis which was done 
without field size and shape modelling.   
 
 
 
 

 
 
Figure A.6: Sensitivity test (i.e., reduced labour availability of 50 person days per month) 
for wheat unit cost of production in euro per ton for farms with non-rectangular fields of 
different sized farms. The labels on the data points for 1 ha and 10 ha fields are the size 
of the tractor used and the number of equipment sets. The curves without labels are the 
baseline analysis which was done without field size and shape modelling.   
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Appendix B 
 
Supplementary materials for: 

Economics of strip cropping with 

autonomous machines 
 

 

The Supplementary Materials incorporate:  

(i) Supplementary Tables  

(ii) Supplementary Text  

(iii) Coefficients Estimation Spreadsheets (i.e., Estimating 

Coefficients_AJ_VFF.xlsx) 

(iv) LP Excel Spreadsheets of the Base Models (i.e., 

HFH_LP_Strip_Crop_Conv50hp_170922.xlsx; 

HFH_LP_Strip_Crop_Conv310hp_170922.xlsx; and 

HFH_LP_Strip_Crop_Robot50hp_170922.xlsx) 
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Appendix B (i) Supplementary Tables: 

Supplementary Table B.1: Machinery choice and corresponding profitability of whole field 
sole cropping and strip cropping practices under historical average, maximum and 
minimum soybean/corn (S/C) price ratios.  
Equipment Scenario Hired 

labor 
time 
(h/ha/yr) 

Operator 
time 
(h/ha/yr) 

Gross 
margin 
($/ha/yr) 

Return to 
operator labor, 
management 
and risk-taking 
($/ha/yr) 

Sensitivity tests: Constant soybean price ($527.27/t), while variable corn prices 

Average S/C price ratio (2.49): (Corn = $211.6377/t) 

Whole field sole cropping: Conventional 
228 kW2 

0.65 0.57 1263.47 -54.89 

Strip cropping: Conventional 37.4 kW5 2.06 0.66 1433.96 330.14 

Strip cropping: Crop Robot 37.4 kW3 0.49 0.53 1507.45 491.41 

Maximum S/C price ratio (3.19): (Corn = $165.26/t) 

Whole field sole cropping: Conventional 
228 kW2 

0.65 0.57 940.48 -377.88 

Strip cropping: Conventional 37.4 kW5 2.05 0.66 1087.04 -16.77 

Strip cropping: Crop Robot 37.4 kW3 0.49 0.53 1154.33 138.29 

Minimum S/C price ratio (1.99): (Corn = $264.81/t) 

Whole field sole cropping: Conventional 
228 kW2 

0.65 0.57 1634.55 316.20 

Strip cropping: Conventional 37.4 kW5 2.06 0.66 1836.83 733.01 

Strip cropping: Crop Robot 37.4 kW3 0.49 0.53 1912.35 896.31 

Sensitivity tests: Constant corn price ($246.05/t), while variable soybean prices 

Average S/C price ratio (2.49): (Soybean = $613.01/t) 

Whole field sole cropping: Conventional 
228 kW2 

0.65 0.57 1682.64 364.28 

Strip cropping: Conventional 37.4 kW5 2.06 0.66 1874.47 770.66 

Strip cropping: Crop Robot 37.4 kW3 0.49 0.53 1960.15 944.11 

Maximum S/C price ratio (3.19): (Soybean = $785.02/t) 

Whole field sole cropping: Conventional 
228 kW2 

0.65 0.57 2042.13 723.77 

Strip cropping: Conventional 37.4 kW5 2.05 0.66 2241.16 1137.34 

Strip cropping: Crop Robot 37.4 kW3 0.49 0.53 2341.43 1325.39 

Minimum S/C price ratio (1.99): (Soybean = $489.92/t) 

Whole field sole cropping: Conventional 
228 kW2 

0.65 0.57 1425.65 107.29 

Strip cropping: Conventional 37.4 kW5 2.06 0.66 1616.38 512.56 

Strip cropping: Crop Robot 37.4 kW3 0.49 0.53 1686.44 670.40 
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Supplementary Table B.2: Profitability of strip cropping practice with autonomous 
machine under different human supervision scenarios. 

Equipment scenario Hired labor 
time 
(h//ha/yr) 

Operator 
time 
(h//ha/yr) 

Gross 
margin 
($/ha/yr) 

Return to operator 
labour, management 
and risk-taking 
($/ha/yr) 

Base scenario: 
10% supervision 

0.49 0.53 1769.50 753.46 

Sensitivity test: 
50% supervision 

1.18 0.59 1754.28 738.24 

Sensitivity test: 
100% supervision 

2.07 0.65 1717.55 701.51 

 
 

Supplementary Table B.3: Profitability of whole field sole cropping and strip cropping 
practices under conventional and autonomous machine scenarios at increased field-to-
field transition distance. 

Equipment Scenario Hired labor 
time 
(h//ha/yr) 

Operator 
time 
(h//ha/yr) 

Gross 
margin 
($/ha/yr) 

Return to operator 
labor, 
management and 
risk-taking 
($/ha/yr) 

Whole field sole 
cropping: 
Conventional 228 
kW2 

0.77 0.60 1490.30 171.94 

Strip cropping: 
Conventional 37.4 
kW6 

2.54 0.73 1649.60 496.99 

Strip cropping: Crop 
Robot 37.4 kW4 

0.89 0.68 1752.63 684.53 

 
 

 

 

 

 

 

 

 



 

 

198 Appendices 

Appendix B (ii) Supplementary Text  

SUPPLEMENTARY TEXT: STRIP CROPPING HFH-LP MODEL: ASSUMPTIONS AND 

PARAMETERS ESTIMATION 

This study adopted and re-estimated the HFH-LP maximization model to estimate the 

gross margin measure of profitability for human operated larger conventional mechanized 

whole field sole cropping system, human operated smaller conventional mechanized strip 

cropping and autonomous strip cropping systems. The maximization models were re-

estimated subject to the binding constraints of land, operator time, tractor time for field 

preparation, planting and spraying, combine time for harvesting, good field days, and 

working capital and cashflow. The models considered in this study were known as 

‘steady-state’ models, adopted from Orinoquia model (Fontanilla-Diaz et al., 2021), imply 

that solutions would be repeated annually over time. The HFH-LP was developed based 

on the Purdue Crop/Livestock Linear Program (PC/LP) model (Dobbins et al., 1994).  

The study also estimated return to operator labor, management and risk taking through 

subtracting fixed costs from farm gross margin. Following assumptions were considered 

for maximizing gross margin (GM) and evaluation of return to operator labor, management 

and risk-taking (ROLMRT):  

• Land scenario: 

The average farm size of Indiana is 180.09 ha (USDA NASS, 2022). However, based on 

the assumptions of Ward, Roe and Batte (2016) the study modelled 2156.974 ha non-

irrigated farm. Because the study examined their hypothesis that profitability of strip 

cropping could be achieved with autonomous machines as conventional mechanized 

farms faced labor and fixed costs constraints. 

• Equipment scenarios: 

For ex-ante economic analysis, the study updated the equipment inventory of Ward, Roe 

and Batte (2016) and added autonomous equipment option. The study used three 

equipment scenarios: 

(i) Larger conventional equipment scenario: This scenario incorporated 

approximately 228 kW tractor, 292 kW combine with 6.09 m corn head (8 row) 

and 10.67 m grain head, and 36.58 m self-propelled sprayer with human operator. 

A grain cart was included because harvest unloading on-the-go was assumed.  

 

(ii) Smaller conventional equipment scenario: Small machines encompassed a 

37.4 kW tractor, 151 kW combine equivalent to AVERO 240 model with 4.57 m 
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corn head (6 row) and 4.57 m grain head, and 18.29 m trailed sprayer with human 

operator.  

(iii) Autonomous equipment scenario: The autonomous machine scenario was 

assumed to have smaller conventional equipment, but retrofitted for autonomy 

based on the experience of the Hands Free Hectare (HFH) (Hands Free Hectare 

(HFH), 2021; Lowenberg-DeBoer et al., 2021a). It was assumed that with 

retrofitting, the equipment can be operated manually on public roads and 

autonomously for field operations. Consequently, for field-to-field movement, the 

operator flips the switch to manual and drives to the next field. As with the HFH 

study, it was assumed that grain hauling on public roads must be done with 

human drivers. Similarly, in addition to public roads, the strip cropping practice 

assumed that the grains were unloaded from combine to the grain semi at the end 

of the field. Consequently, there was no grain cart in this inventory and the grain 

semi was not retrofitted for autonomy. 

 

The initial investment costs were priced from different equipment manufacturers sites 

having available list price for the US, like (https://www.deere.com/en/ and 

https://www.caseih.com/northamerica/en-us/home) and if new equipment list price was 

not available, prices for recent used equipment was used from websites such as 

Equipment Trader (https://www.equipmenttrader.com/), St. Joseph Equipment 

(https://www.stjosephequipment.com/default.htm), Fastline Equipment 

(https://www.fastline.com/), Machinery Pete (https://www.machinerypete.com/) and 

Rechtien (https://www.rechtien.com/). For example, the price of approximately 228 kW 

tractor was estimated based on the average list prices of John Deere 8R 310, Magnum 

310 PS AFS C. and Magnum 310 CVT AFS C (for details see: 

https://www.deere.com/en/tractors/row-crop-tractors/row-crop-8-family/8r-310-tractor/ and 

https://www.caseih.com/northamerica/en-us/Pages/Build-and-Price-

Iframe.aspx?series=MAGNUM%20TRACTORS). Similarly, the price of approximately 184 

kW tractor was calculated based on the average price of John Deere 8R 250, and 

Magnum 250 PS AFS C. and Magnum 250 CVT AFS C. The price of the S770 Combine 

(292 kW), 8 row 6.09 m corn head and 10.67 m 735D draper head for grain were collected 

from John Deere as similar implements list price were not available from other 

manufacturers. To check if the list prices were consistent with those of used equipment, 

the study reviewed the used equipment price of these implements on used equipment 

websites. In these used equipment websites, the image of the specific implement and 

price changes frequently. Consequently, instead of giving the particular implement link, 

the study provides a general website link. With allowance for depreciation the price of the 

used machines was consistent with the list price. 

https://www.deere.com/en/
https://www.caseih.com/northamerica/en-us/home
https://www.equipmenttrader.com/
https://www.stjosephequipment.com/default.htm
https://www.fastline.com/
https://www.machinerypete.com/
https://www.rechtien.com/
https://www.deere.com/en/tractors/row-crop-tractors/row-crop-8-family/8r-310-tractor/
https://www.caseih.com/northamerica/en-us/Pages/Build-and-Price-Iframe.aspx?series=MAGNUM%20TRACTORS
https://www.caseih.com/northamerica/en-us/Pages/Build-and-Price-Iframe.aspx?series=MAGNUM%20TRACTORS
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The price of 36.58 m sprayer was estimated based on the average of prices of recent 

used self-propelled sprayers available at TractorHouse (https://www.tractorhouse.com/), 

where the average price estimation incorporated self-propelled sprayer of John Deere, 

Miller, HAGIE and New Holland. The price of self-propelled sprayers was not available at 

John Deere and Case IH as they suggested searching for a dealer instead the of Build 

Your Own Price option. It was assumed that recent self-propelled sprayers would be 

equipped with boom control, so that was not priced separately. Prior study mentioned that 

non-productive times (e.g., refilling fertilizer, herbicide and pesticide) play a significant role 

in the economics of machinery usage (Al-Amin et al., 2022b; Al-Amin et al., 2021). 

Therefore, the study used a 9084.99 L portable tank to refill when needed. The tank was 

assumed to be hauled by the grain semi. The tank was priced based on the price 

available at Plastic-Mart (https://www.plastic-mart.com/). 

 

The study considered 23 FT VT-FLEX 435 chisel plow list price in the machinery inventory 

to keep similarity with Ward, Roe and Batte (2016) study. The price was collected from a 

manufacturer, namely Case IH (https://www.caseih.com/). To check the price, the study 

reviewed other price options available from different manufacturers, such as Case IH and 

Machinery Pete. The field cultivator price was collected from TractorHouse and further 

recheck with John Deere. The 16 row (12.19 m) planter price was estimated based on the 

average price of 1725 CCS Stack-Fold Planter, ER 2130 PLANTER 16R30 and 1775NT 

Planter available at John Deere and Case IH.  

 

The grain semi price was considered and rechecked considering typical and present 

market scenarios. In recent times due to the Covid-19 pandemic and Russia-Ukraine war, 

the US farm equipment market faced supply side shock and machinery price are highly 

volatile (details are available here: https://www.agweb.com/news/machinery/used-

machinery/machinery-pete-grain-trailers-semis-and-trucks-oh-my and 

https://www.freightwaves.com/news/the-big-rig-boom-is-finally-slumping). The used grain 

semi market was particularly volatile. Consequently, the grain semi price was estimated 

based on the average prices of Durabak used equipment 

(https://www.durabakcompany.com/blogs/durabak/how-much-does-a-semi-truck-cost). To 

recheck the grain semi price, the study also reviewed the prices available at 

TractorHouse, Fastline and Rechtien (https://www.rechtien.com/).  

 

The grain cart (27.29 t) typical list price was estimated from Unverferth 

(https://www.unverferth.com/) after requesting a price quote. The prices at the time of the 

study were rising rapidly (details are available at: https://www.wlagrisales.com/default.htm, 

https://www.randallbros.biz/default.htm, https://www.farms.com/ and 

https://www.tractorhouse.com/
https://www.plastic-mart.com/
https://www.caseih.com/
https://www.agweb.com/news/machinery/used-machinery/machinery-pete-grain-trailers-semis-and-trucks-oh-my
https://www.agweb.com/news/machinery/used-machinery/machinery-pete-grain-trailers-semis-and-trucks-oh-my
https://www.freightwaves.com/news/the-big-rig-boom-is-finally-slumping
https://www.durabakcompany.com/blogs/durabak/how-much-does-a-semi-truck-cost
https://www.rechtien.com/
https://www.unverferth.com/
https://www.wlagrisales.com/default.htm
https://www.randallbros.biz/default.htm
https://www.farms.com/
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https://www.agdealer.com/). To recheck the price, the study reviewed the grain cart price 

available at TractorHouse and North Star Ag (https://northstar-ag.com/).  

 

The price of the smaller conventional equipment and the autonomous equipment were 

collected from manufacturer and used equipment websites. The list price of the 37.4 kW 

tractor was estimated based on the average price of 5050E utility tractor, Massy Ferguson 

1749 and Kubota L5740 tractors available as follows: 

https://www.deere.com/en/tractors/utility-tractors/5-family-utility-tractors/5050e-utility-

tractor/; https://www.tractordata.com/farm-tractors/007/4/2/7428-massey-ferguson-

1749.html and https://www.tractordata.com/farm-tractors/001/8/3/1838-kubota-l5740.html.  

 

The combine needed for 4.57 m strips are no longer manufactured in the US and are not 

currently marketed there new. Prices that are available in the US for the used combines of 

that size are mostly very old and near the end of their useful life span. Therefore, a price 

estimate is needed to approximate the cost of a new combine of that size in the Corn Belt 

region of Indiana. The preliminary analysis used a Chinese made Lovol GM80 combine, 

but none of the co-authors were familiar with the reliability, maintenance cost and salvage 

value of the Lovol GM80 under the US conditions. Thus, prices were sought for the 

CLAAS AVERO (151 kW) which is sold and used in the Europe and UK under conditions 

that are similar to those in the US. It is assumed that if strip cropping were shown to be 

profitable and it became common in the US, some manufacturer would either resume 

making combines that size in North America or arrange to import them from a subsidiary 

or partner in the Europe or Asia.  

 

The study considered AVERO 240 model (151 kW) combine for strip cropping practices 

(Figure B.1). Even though the HFH did not use AVERO 240 model, from the experience 

with CLAAS combines the team hypothesized that AVERO 240 would be better fit for 

corn-soybean strip cropping than the Chinese one. At present, the Hands Free Farm 

(HFF) is using a CLAAS Crop Tiger 30 retrofitted for autonomy (HFH, 2021). 

The price of AVERO 240 model was estimated based on the price quote for a new 

machine provided by the CLAAS representative in the UK1. The price of used AVERO 240 

model combines was checked in Agriaffaires (https://www.agriaffaires.co.uk/). With some 

allowance for depreciation the price of the used AVERO combines was consistent with the 

list price.  

 
1 The market price of the UK’s was multiplied by the last one year (i.e., from Oct. 2021 to Sept. 2022) monthly 
average exchange rates from GBP to US$ of 1.28 (Board of Governors of the Federal Reserve System (U.S.)., 
2022) to address the volatility of exchange rates owing to the supply shocks for COVID-19 pandemic and 
Russia-Ukraine war.  

 

https://www.agdealer.com/
https://northstar-ag.com/
https://www.deere.com/en/tractors/utility-tractors/5-family-utility-tractors/5050e-utility-tractor/
https://www.deere.com/en/tractors/utility-tractors/5-family-utility-tractors/5050e-utility-tractor/
https://www.tractordata.com/farm-tractors/007/4/2/7428-massey-ferguson-1749.html
https://www.tractordata.com/farm-tractors/007/4/2/7428-massey-ferguson-1749.html
https://www.tractordata.com/farm-tractors/001/8/3/1838-kubota-l5740.html
https://www.agriaffaires.co.uk/
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Figure. B.1: AVERO 240 model.  

Source: https://www.agriaffaires.co.uk/used/combine-harvester/42832773/claas-avero-240.html 

 

In the equipment market, 4.57 m corn head and 4.57 m grain head are not typical. For 

approximation of price estimation, the study used the half price of CLAAS 9.14 m corn and 

soybean head. Details of 9.14 m heads are available at CLAAS manufacturer's website 

(https://www.claas.co.uk/).  

 

For strip cropping, 18.29 m trailed sprayer price was estimated based on the average of 

prices for recent used equipment available at TractorHouse. The study of Ward, Roe and 

Batte (2016) assumed that the strips were sprayed one at a time with a 4.75 m boom. This 

is very time consuming. To increase application efficiency, this study assumed that 

sprayer boom control was used to allow for multiple strips to be sprayed with one sprayer 

pass through the field. It could not be assumed that boom control was standard equipment 

on trailed sprayers, so the study estimated the cost of retrofitting boom control. The study 

assumed the use of automatic boom control sections following the study of Rahman 

(2018; p.g., 43), for automatic boom control sections in 18.29 m trailed sprayer, the study 

assumed 4 boom control sections each with 4.57 m boom control section. The study used 

the price of 6 boom control sections (i.e., in-cab controller (console)), where 4 boom 

control sections were operated, remaining 2 boom control sections unused. This is 

because of the unavailability of 4 boom control sections and price (for details of the 

https://www.agriaffaires.co.uk/used/combine-harvester/42832773/claas-avero-240.html
https://www.claas.co.uk/
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available boom control section options see: https://ravenind.com/products/applications-

booms/scs-control-consoles. Based on the review of Rahman (2018), the study 

hypothesized that the 4 boom control sections needed 36 Solenoid valves and associated 

wiring and harness collected from SpraySmarter.com (https://www.spraysmarter.com/) 

and Farmtronics (https://farmtronics.com/). The price of solenoid valves was estimated as 

the average of prices available at Dultmeier Sales (https://www.dultmeier.com/). For the 

strip cropping scenarios the 18.29 m sprayer boom was equipped with section control 

making it possible to apply chemicals on two strips in one pass. 

 

The price of the small chisel plow 2.44 m was estimated as the average of prices available 

at MarketBook (https://www.marketbook.ca/), John Deere, and Agriaffaires 

(https://www.agriaffaires.us/). The price of field cultivators was collected from MarketBook 

and for rechecking compared with the average of prices available at TractorHouse and 

Machinery Pete. The list price of the 6-row planter (4.57 m) was collected from Case IH. 

The price was further rechecked through reviewing and averaging the prices available at 

Machinio (https://www.machinio.com/). Finally, RTK GPS and Autopilot list price was 

collected from the HFH experience using 2022 USD conversion due to the unavailability of 

the US data set for retrofitted machines. 

 

The strip crop scenarios assumed that urea or other granulated N would be used for 

nitrogen because regulatory approval of autonomous anhydrous ammonia (NH3) 

application may be problematic. The list price of fertilizer applicator (Urea and other 

granulated N) was obtained from 1st products.com (https://1stproducts.com/) by 

requesting for a quote. The fertilizer applicator assumed is available in Figure B.2 (for 

details see: https://1stproducts.com/agriculture-wholegoods/dry-fertilizer/). The study 

assumed that conventional 37.4 kW tractor with human operator and autonomous 

machine (37.4 kW) for strip cropping scenarios used this fertilizer applicator. For 

conventional mechanized farming scenarios, the study assumed NH3 application @13.75 

per acre (0.41 ha) using custom hire service (Arnall, 2017).  

https://ravenind.com/products/applications-booms/scs-control-consoles
https://ravenind.com/products/applications-booms/scs-control-consoles
https://www.spraysmarter.com/
https://farmtronics.com/
https://www.dultmeier.com/
https://www.marketbook.ca/
https://www.agriaffaires.us/
https://www.machinio.com/
https://1stproducts.com/
https://1stproducts.com/agriculture-wholegoods/dry-fertilizer/
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Figure. B.2: Typical fertilizer hopper for 6 row tool bars. 

Source: https://1stproducts.com/agriculture-wholegoods/dry-fertilizer/ 

 

• Tillage operation scenarios: 

Whole farm conventional sole cropping and strip cropping tillage operations were 

assumed to be used a chisel plow and field cultivator following Ward, Roe and Batte 

(2016) that was unlike the HFH field operations which used direct drill. The post-harvest 

primary tillage was assumed to be completed month after harvest and for November 

harvest in November and preplant tillage at the month of planting.  

 

• Crop rotation and yield scenarios: 

The whole field conventional sole cropping assumed corn-soybean yearly rotations. The 

strip cropping practices assumed continuous soybean in the headlands and the interior 

field strips cultivated with yearly rotations of corn and soybean.  

Following the Purdue PC-LP Farm Plan (Doster et al., 2006), the optimum planting and 

harvesting dates are as follows: 

➢ Corn: Earliest possible option was corn planted in April and harvested in 

September. Latest possible options were corn planted in May and June and 

harvested in October and November, and 

➢ Soybean: Earliest possible option was soybean planted in April and harvested in 

September. Latest possible options were soybean planted in May and June and 

harvested in October and November. 

https://1stproducts.com/agriculture-wholegoods/dry-fertilizer/
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Further details of the planting and harvesting dates are available at Table B.4. The yield of 

corn and soybean was taken from 2022 Purdue Crop Cost and Return Guide for rotational 

corn and soybean of high productivity soil (Langemeier et al., 2022) and the yield 

adjustment were adopted from the Purdue PC-LP Farm Plan B-21 Crop Input Form 

(Doster et al., 2006, Pg., 43-44). The HFH-LP model used a monthly time period. 

Consequently, the PC-LP time periods were combined in monthly time period.  

 

In strip cropping yield scenarios, in addition to the yield adjustment from the Purdue PC-

LP Farm Plan, the study considered the yield benefits of corn and penalty of soybean 

owing to the edge effects following the normal condition of Ward, Roe and Batte (2016). 

The percentage for 6 row strips was estimated as = (((1st row yield + 2nd row yield + center 

row yield + center row yield + 2nd row yield + 1st row yield)/Total number of rows)/ center 

row yield). For instance, based on the field trial of Illinois during 2009 and 2010 mentioned 

in the study of Ward, Roe and Batte (2016), the corn percentage change over a 6 row 

strips were = 115% = ((301+237+220+220+237+301)/6)/220) and soybean percentage 

change over a 6 row strips was = 92% = (((48+61+62+62+61+48)/6)/62). The headlands 

(i.e., 5% of the field) yield for continuous soybean was considered 80% of total yield due 

to the penalty of continuous soybean production. Further sensitivity tests could investigate 

different penalty scenarios for the headlands. The yield adjustment for the whole farm 

conventional sole cropping and strip cropping are available at the Coefficients Estimation 

Spreadsheets (i.e., Estimating Coefficients_AJ_VFF.xlsx).  

 

• Enterprises price and direct costs scenarios: 

The harvest price of the corn and soybean and direct costs for farm operations were 

collected from 2022 Purdue Crop Cost and Return Guide for rotational corn and soybean 

production for high productivity soil (Langemeier et al., 2022) on a per ha basis. For corn 

and soybean price conversion the agricultural conversion calculators were used 

(https://www.cmegroup.com/tools-information/ag-calculator.html). The direct costs 

incorporated seed, fertilizer, pesticide, dryer fuel, interest, and insurance from 2022 

Purdue Crop Cost and Return Guide for rotational corn and soybean production for high 

productivity soil except the costs of machinery fuel, machinery repairs and hauling as 

these items were considered in annual machinery costs estimation. For conventional 

whole field sole cropping, the study assumed custom hire services for NH3 application 

and granulated fertilizer. In strip cropping practices, NH3 was not considered due to the 

technical infeasibility and unavailability of machines for NH3 application in strip cropping 

practices. Here the study considered granulated urea. Details are available at the 

Coefficients Estimation Spreadsheets (i.e., Estimating Coefficients_AJ_VFF.xlsx).  

 

https://www.cmegroup.com/tools-information/ag-calculator.html
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• Transport on public roads scenario: 

Following Lowenberg-DeBoer et al. (2021a), the study assumed that autonomous 

machines were transported by an operator in the public roads considering the safety issue 

and lack of permission to drive autonomous arable farm machines in the public roads. 

 

• Hired labor scenario: 

The study considered the $16.95/h wage rate in the US Corn Belt following the USDA 

2021 database for economic class of farm regions and states (USDA NASS, 2021, p.g., 

20). The human, machine and autonomous equipment time was modelled as eight hours 

increments following the Orinoquia analysis (Lowenberg-DeBoer et al., 2021a).  

 

• Field work rates scenarios: 

The field times (h/ha) were estimated following the algorithms of  Lowenberg-DeBoer et 

al. (2021a). The field efficiency (%) of the machines for farm operations were adopted 

from Ward, Roe and Batte (2016). The study assumed zero overlap for farm operations in 

both sole cropping and strip cropping practices. Combine field efficiency for strip cropping 

was assumed similar to the conventional larger combines (i.e., considered 10% less from 

the Ward, Roe and Batte (2016) for small combines) because the study assumed that the 

grains were unloaded into the grain semi at the end of the field. Details work rates are 

available at Table B.5.  Operations were based on Ward, Roe and Batte (2016) and 2022 

Purdue Crop Cost and Return Guide (Langemeier et al., 2022).  

 

In coefficient estimation for each month, the study assumed farm machines always follow 

the next field during field operations. The study considered field transition times following 

the assumption of Ward, Roe and Batte (2016) that all fields were 2.01 km apart for 

transport with road speed between fields were 19.96 km/h except for combine that was 

14.97 km/h. Because the field time parameters in the model were given on a per hectare 

basis, the travel time was proportional over the area of the field operation at each visit: 

53.82 ha for the whole field sole crop farming and 26.95 ha for the strip cropping 

scenarios. Field-to-field time per ha was calculated as: (Distance of field apart for 

transport/Road speed)/ Field area. Field-to-field time per ha for all equipment except 

combine was estimated as = (2.012/19.956)/53.823 = 0.0019 h/ha. Field-to-field time per 

ha for combine was estimated as: (2.012/14.967)/53.823 = 0.0025 h/ha. Considering field-

to-field distance for both corn and soybean operation the coefficient was estimated as: 

(Number of Corn operations*Field-to-field time/ha + Number of Soybean operations*Field-

to-field time/ha)/2+(Corn operation Days + Soybean operation days)/2. The study 

assumed half of the field produced corn and the rest is Soybean. For strip cropping field-
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to-field time/ha for all equipment except combine was estimated as = 

(2.012/19.956)/26.952 = 0.0037 h/ha. Field-to-field time/ha for combine was estimated as: 

(2*2.012/14.967)/26.952 = 0.0050 h/ha. Considering field-to-field distance for both corn 

and soybean operation the coefficient was estimated as: (Number of Corn 

operations*Field-to-field time/ha + Number of Soybean operations*Field-to-field 

time/ha)/+(Corn operation Days*0.475 + Soybean operation days*0.525). Details of the 

field times required for each month by crop and equipment sets and farming systems are 

available at the Coefficients Estimation Spreadsheets (i.e., Estimating 

Coefficients_AJ_VFF.xlsx).  

 

• Good field days scenario: 

The study collected the good field days data from the AgManager.info. (2022) at 80th 

(more) percentile available at: https://agmanager.info/farm-management/machinery/days-

suitable-fieldwork-all-states. Apart from a good field day scenario, the study assumed that 

autonomous tractor operated for 22 h and conventional tractors with human operators for 

10 h. With the advent of technological development, the conventional tractor could 

operate 22 h. Further sensitivity tests could address this issue. 

 

• Input resupply and finance scenarios:  

Following Lowenberg-DeBoer et al. (2021a), the study assumed refilling and refueling 

during field operations are part of normal workload for conventional systems and were 

part of human supervision for autonomous system.  

 

• GAMS coding: 

Details of the GAMS coding are available at Lowenberg-DeBoer et al. (2021a). 

 

• Return to operator labor, management and risk-taking scenarios: 

The return to operator labour, management and risk taking (ROLMRT) was estimated as 

gross marging minus overhead costs following Witney (1988) and Lowenberg-DeBoer et 

al. (2021a). In this estimation processes the following assumptions are considered: 

a) Depreciation: The study used straight line depreciation assuming 7 years for 

combine and planter and 10 years for other equipment sets (Langemeier et al.,  

2022). 

b) Opportunity cost of capital: The opportunity cost of capital is assumed 5% of the 

original investment (Langemeier et al., 2022). 

https://agmanager.info/farm-management/machinery/days-suitable-fieldwork-all-states
https://agmanager.info/farm-management/machinery/days-suitable-fieldwork-all-states
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c) Insurance: Considered as a percentage of original investment that was 1% for 

tractor and combine, 0.25% for other implements (Agro Business Consultants, 

2018) and in case of grain semi the study assumed 3%. For the grain semi, the 

insurance, repair and maintenance, and fuel and lubricant percentage was 

adjusted for the fact that a used truck was priced. The ratio of a new semi-truck list 

price to a used truck price is about 1.5 (i.e., 150,000/100,000). The price of an 

average new semi is from the Durabak Company 

(https://www.durabakcompany.com/blogs/durabak/how-much-does-a-semi-truck-

cost). Thus, insurance, repair and maintenance, and fuel and lubricant estimates 

were based on the price of a new grain semi (1.5 x 2% =3%).  

d) Repair and Maintenance: Considered 2% of the original investment (Agro 

Business Consultants, 2018) and for grain semi 3%. 

e) Fuel and Lubricant: Considered 2% of original investment for tractor and combine 

(Agro Business Consultants, 2018) and 3% for the grain semi. 

Due to the unavailability of overhead costs items in 2022 Purdue Crop Budget, to make 

representative estimation, the following fixed costs assumptions were considered to 

calculate return to operator labor, management and risk taking: 

a) Land Rent: High quality farmland was considered $741.30/ha following the Purdue 

Farmland Survey (Kuethe, 2021). 

b) Property and Building Repairs: Assumed $16.05/ha following the average costs of 

building repair and rent for systematic corn and soybean rotations on high 

productivity farmland from Illinois Crop Budget 2022 (Schnitkey and Swanson, 

2022).  

c) Professional Fees and Subscriptions: Assumed $28.41/ha following the average 

costs of insurance and interest (non-land) for systematic corn and soybean 

rotations on high productivity farmland from Illinois Crop Budget 2022 (Schnitkey 

and Swanson, 2022).  

d) Water, Electricity, etc.: Assumed $14.82/ha based on the average costs of utilities 

for systematic corn and soybean rotations on high productivity farmland from 

Illinois Crop Budget 2022 (Schnitkey and Swanson, 2022).  

e) Building Depreciation: Assumed $29.64/ha following average costs of building 

depreciation for systematic corn and soybean rotations on high productivity 

farmland from Illinois Crop Budget 2022 (Schnitkey and Swanson, 2022).  

f) Miscellaneous Fixed Costs: Assumed $29.64/ha based on the average costs of 

miscellaneous costs for systematic corn and soybean rotations on high productivity 

farmland from the Illinois Crop Budget 2022 (Schnitkey and Swanson, 2022).  

 

https://www.durabakcompany.com/blogs/durabak/how-much-does-a-semi-truck-cost
https://www.durabakcompany.com/blogs/durabak/how-much-does-a-semi-truck-cost
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Table B.4: HFH-LP enterprises production activities and yield. 

Enterprise 
production 

Corn 
yield 
(t/ha)* 

Soybean 
yield 
(t/ha)* 

Description 

Corn_April-
Sept/Soy_April-
Sept 

12.95 4.02 Corn planted in April & harvested in 
Sept./Soybean planted in April & harvested 
in Sept. 

Corn_April-
Sept/Soy_April-Oct 

12.95 4.24 Corn planted in April & harvested in 
Sept./Soybean planted in April & harvested 
in Oct. 

Corn_April-
Sept/Soy_April-
Nov 

12.95 3.99 Corn planted in April & harvested in 
Sept./Soybean planted in April & harvested 
in Nov. 

Corn_April-
Sept/Soy_May-
Sept 

12.95 4.02 Corn planted in April & harvested in 
Sept./Soybean planted in May & harvested 
in Sept.a 

Corn_April-
Sept/Soy_May-Oct 

12.95 4.27 Corn planted in April & harvested in 
Sept./Soybean planted in May & harvested 
in Oct. 

Corn_April-
Sept/Soy_May-Nov 

12.95 4.03 Corn planted in April & harvested in 
Sept./Soybean planted in May & harvested 
in Nov. 

Corn_April-
Sept/Soy_June-
Oct 

12.95 3.82 Corn planted in April & harvested in 
Sept./Soybean planted in June & harvested 
in Oct. 

Corn_April-
Sept/Soy_June-
Nov 

12.95 3.68 Corn planted in April & harvested in 
Sept./Soybean planted in June & harvested 
in Nov. 

Corn_May-
Oct/Soy_May-Oct 

12.88 4.27 Corn planted in May & harvested in 
Oct./Soybean planted in May & harvested in 
Oct. 

Corn_May-
Oct/Soy_April-Sept 

12.88 4.02 Corn planted in May & harvested in 
Oct./Soybean planted in April & harvested in 
Sept. 

Corn_May-
Oct/Soy_April-Oct 

12.88 4.24 Corn planted in May & harvested in 
Oct./Soybean planted in April & harvested in 
Oct. 

Corn_May-
Oct/Soy_April-Nov 

12.88 3.99 Corn planted in May & harvested in 
Oct./Soybean planted in April & harvested in 
Nov. 

Corn_May-
Oct/Soy_May-Sept 

12.88 4.02 Corn planted in May & harvested in 
Oct./Soybean planted in May & harvested in 
Septt. 

Corn_May-
Oct/Soy_May-Nov 

12.88 4.27 Corn planted in May & harvested in 
Oct./Soybean planted in May & harvested in 
Nov. 

Corn_May-
Oct/Soy_June-Oct 

12.88 3.82 Corn planted in May & harvested in 
Oct./Soybean planted in June & harvested in 
Oct. 

Corn_May-
Oct/Soy_June-Nov 

12.88 3.68 Corn planted in May & harvested in 
Oct./Soybean planted in June & harvested in 
Nov. 

Corn_June-
Nov/Soy_June-Nov 

8.06 3.68 Corn planted in June & harvested in 
Nov/Soybean planted in June & harvested in 
Nov. 
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Table B.4: HFH-LP enterprises production activities and yield (Continued). 

Corn_June-
Nov/Soy_April-
Sept 

8.06 4.02 Corn planted in June & harvested in 
Nov/Soybean planted in April & harvested in 
Sept. 

Corn_June-
Nov/Soy_April-Oct 

8.06 4.24 Corn planted in June & harvested in 
Nov/Soybean planted in April & harvested in 
Oct. 

Corn_June-
Nov/Soy_April-Nov 

8.06 3.99 Corn planted in June & harvested in 
Nov/Soybean planted in April & harvested in 
Nov. 

Corn_June-
Nov/Soy_May-Sept 

8.06 4.02 Corn planted in June & harvested in 
Nov/Soybean planted in May & harvested in 
Sept. 

Corn_June-
Nov/Soy_May-Oct 

8.06 4.27 Corn planted in June & harvested in 
Nov/Soybean planted in May & harvested in 
Oct. 

Corn_June-
Nov/Soy_May-Nov 

8.06 4.03 Corn planted in June & harvested in 
Nov/Soybean planted in May & harvested in 
Nov. 

Corn_June-
Nov/Soy_June-Oct 

8.06 3.82 Corn planted in June & harvested in 
Nov/Soybean planted in June & harvested in 
Oct. 

Corn_April-
Oct/Soy_April-Oct 

13.96 4.24 Corn planted in April & harvested in 
Oct/Soybean planted in April & harvested in 
Oct. 

Corn_April-
Oct/Soy_April-Sept 

13.96 4.02 Corn planted in April & harvested in 
Oct/Soybean planted in April & harvested in 
Sept. 

Corn_April-
Oct/Soy_April-Nov 

13.96 3.99 Corn planted in April & harvested in 
Oct/Soybean planted in April & harvested in 
Nov. 

Corn_April-
Oct/Soy_May-Sept 

13.96 4.02 Corn planted in April & harvested in 
Oct/Soybean planted in May & harvested in 
Sept. 

Corn_April-
Oct/Soy_May-Oct 

13.96 4.27 Corn planted in April & harvested in 
Oct/Soybean planted in May & harvested in 
Oct. 

Corn_April-
Oct/Soy_May-Nov 

13.96 4.03 Corn planted in April & harvested in 
Oct/Soybean planted in May & harvested in 
Nov. 

Corn_April-
Oct/Soy_June-Oct 

13.96 3.82 Corn planted in April & harvested in 
Oct/Soybean planted in June & harvested in 
Oct. 

Corn_April-
Oct/Soy_June-Nov 

13.96 3.68 Corn planted in April & harvested in 
Oct/Soybean planted in June & harvested in 
Nov. 

Corn_April-
Nov/Soy_April-Nov 

12.88 3.99 Corn planted in April & harvested in 
Nov/Soybean planted in April & harvested in 
Nov. 

Corn_April-
Nov/Soy_April-
Sept 

12.88 4.02 Corn planted in April & harvested in 
Nov/Soybean planted in April & harvested in 
Sept. 

Corn_April-
Nov/Soy_April-Oct 

12.88 4.24 Corn planted in April & harvested in 
Nov/Soybean planted in April & harvested in 
Oct. 
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Table B.4: HFH-LP enterprises production activities and yield (Continued). 

Corn_April-
Nov/Soy_May-Sept 

12.88 4.02 Corn planted in April & harvested in 
Nov/Soybean planted in May & harvested in 
Sept. 

Corn_April-
Nov/Soy_May-Oct 

12.88 4.27 Corn planted in April & harvested in 
Nov/Soybean planted in May & harvested in 
Oct. 

Corn_April-
Nov/Soy_May-Nov 

12.88 4.03 Corn planted in April & harvested in 
Nov/Soybean planted in May & harvested in 
Nov. 

Corn_April-
Nov/Soy_June-Oct 

12.88 3.82 Corn planted in April & harvested in 
Nov/Soybean planted in June & harvested in 
Oct. 

Corn_April-
Nov/Soy_June-Nov 

12.88 3.68 Corn planted in April & harvested in 
Nov/Soybean planted in June & harvested in 
Nov. 

Corn_May-
Nov/Soy_May-Nov 

11.94 4.03 Corn planted in May & harvested in 
Nov/Soybean planted in May & harvested in 
Nov. 

Corn_May-
Nov/Soy_April-
Sept 

11.94 4.02 Corn planted in May & harvested in 
Nov/Soybean planted in April & harvested in 
Sept. 

Corn_May-
Nov/Soy_April-Oct 

11.94 4.24 Corn planted in May & harvested in 
Nov/Soybean planted in April & harvested in 
Oct. 

Corn_May-
Nov/Soy_April-Nov 

11.94 3.99 Corn planted in May & harvested in 
Nov/Soybean planted in April & harvested in 
Nov. 

Corn_May-
Nov/Soy_May-Sept 

11.94 4.02 Corn planted in May & harvested in 
Nov/Soybean planted in May & harvested in 
Sept. 

Corn_May-
Nov/Soy_May-Oct 

11.94 4.27 Corn planted in May & harvested in 
Nov/Soybean planted in May & harvested in 
Oct. 

Corn_May-
Nov/Soy_June-Oct 

11.94 3.82 Corn planted in May & harvested in 
Nov/Soybean planted in June & harvested in 
Oct. 

Corn_May-
Nov/Soy_June-Nov 

11.94 3.68 Corn planted in May & harvested in 
Nov/Soybean planted in June & harvested in 
Nov. 

Note: The yield here adopted from 2022 Purdue Crop Cost and Return Guide representing high productivity 
soil rotational corn and soybean yield (Langemeier et al., 2022) and the yield adjustment were adopted from 
Purdue PC-LP Farm Plan B-21 Crop Input Form, Pg., 43-44 (Doster et al., 2006). Because the HFH-LP 
used a monthly time period, the PC-LP time periods were combined as follows in the optimization model of 
the study as: April: April 22-May 2; May: May 3-May 30; June: May 31-June 13; Sept.: Sept. 20-26; Oct.: 
Oct.: Sept. 27-Oct. 31, Nov.: Nov. 1-Dec. 5. 
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Table B.5: Estimate hectares per hour and hours per hectare for key items in each 
equipment set. 

Machine Width of 
the 
Implement 
(m) 

Overlap Field 
speed 
(km/h)* 

Field 
Efficiency* 

Ha/h** H/ha 

Conventional, Larger (228 kW): 
   

Primary tillage 
(chisel plow) 

6.706 0% 9.012 85% 5.14 0.19 

Preplant 
tillage (field 
cultivator) 

14.326 0% 9.012 80% 10.33 0.10 

Planter  12.192 0% 9.012 75% 8.24 0.12 

Sprayer 36.576 0% 9.012 65% 21.43 0.05 

Combine 6.096 0% 14.9669 65% 5.93 0.17 

Conventional, Smaller (37.4 kW) 
    

Primary tillage 
(chisel plow) 

2.438 0% 9.012 90% 1.98 0.51 

Preplant 
tillage (field 
cultivator) 

3.658 0% 9.012 85% 2.80 0.36 

Fertilizer 
Applicator 

4.572 0% 9.012 85% 3.50 0.29 

Planter  4.572 0% 9.012 90% 3.71 0.27 

Sprayer 18.288 0% 9.012 80% 13.18 0.08 

Combine 4.572 0% 14.9669 65% 4.45 0.22 

Autonomous - HFH Type (37.4 kW) 

Primary tillage 
(chisel plow) 

2.438 0% 9.012 90% 1.98 0.51 

Preplant 
tillage (field 
cultivator) 

3.658 0% 9.012 85% 2.80 0.36 

Fertilizer 
Applicator 

4.572 0% 9.012 85% 3.50 0.29 

Planter  4.572 0% 9.012 90% 3.71 0.27 

Sprayer 18.288 0% 9.012 80% 13.18 0.08 

Combine 4.572 0% 14.9669 65% 4.45 0.22 

Note: *Following 9.012 Km/h for tillage implements, planter and sprayer and 14.97 Km/h for combine 
assumptions of Ward, Roe and Batte (2016). **Field efficiency following Ward, Roe and Batte (2016) with 
0% overlap percentage. For strip cropping cases, the combine efficiency was assumed 10% less similar to 
conventional whole farm combine efficiency as the combine was hypothesized to unload grain to the grain 
semi at the end of the field. 
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Appendix B (iii) Coefficients Estimation Spreadsheets (i.e., Estimating 

Coefficients_AJ_VFF.xlsx) 

 

Appendix B (iv) LP Excel Spreadsheets of the Base Models (i.e., 

HFH_LP_Strip_Crop_Conv50hp_170922.xlsx; 

HFH_LP_Strip_Crop_Conv310hp_170922.xlsx; and 

HFH_LP_Strip_Crop_Robot50hp_170922.xlsx) 

 

Both Appendix B (iii) and (iv) are be available on request to the author at: 

abdullah.alamin@live.harper.ac.uk or abdullah.alamin@bau.edu.bd. 
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Appendix C 

GAMS code used  

 

The GAMS code for this study was adopted from Lowenberg-DeBoer et al. (2021a). 

Appendix A – UK-Wheat-OSR-Barley_EditedRobot3-20190117.gms – The GAMS source 

code for the preliminary version of the HFH-LP 

* The origins of this model are from Preckel et al. (2019), and were modified by 

* Lowenberg-DeBoer et al. (2019). This program may be distributed or further modified  

* provided that this comment remains and is updated according to the future 

modifications  

* and provided that any modified program continues to be freely distributed. 

* Citations: 

* P. Preckel, C. Fontanilla, J. Lowenberg-DeBoer, J. Sanders, “Orinoquia agricultural 

linear 

* programming model – documentation.” (Colombia Purdue Partnership, Purdue 

University, 

* https://www.purdue.edu/colombia/partnerships/orinoquia/docs/OrinoquiaLPDoc.pdf, 

*  2019). 

* Lowenberg-DeBoer, James, Karl Behrendt, Richard Godwin and Kit Franklin, “The 

Impact of  

* Swarm Robotics on Arable Farm Size and Structure in the UK.” – paper presented at 

the  

* Agricultural Economics Society (AES) Conference, April 2019, Warwick, UK.  

* Note that if you change the name of the data spreadsheet, then the name 

* of the first Excel file in the line below to the name of your new file. 

$call copy UK-Wheat-OSR-Barley_Conv38hp_20190125.xlsx Orinoquia_Tables.xlsx 

* If you would like to see the equations, increase limrow in the line below. 

* If you would like to see the activities, increase limcol in  the line below. 

Option limrow=0,limcol=0 ; 

* Note all of the data are read from the spreadsheet; so not data appears in this 

program. 

Sets 

 t(*)            Time periods 

 e(*)            Enterprises 

 c(*)            Commodities 

 l(*)            Land type ; 

https://www.purdue.edu/colombia/partnerships/orinoquia/docs/OrinoquiaLPDoc.pdf
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Scalars 

 flab            Family labor available (no. of workers) 

 plab            Permanent labor available already employed (no. of workers) 

 trac            Autonomous Tractors available (man days) 

 comb            Autonomous Combines available (man days) 

 thlab           Maximum hired temporary labor in each period (man days) 

 phlab           Maximum additional permanent labor hired (man years) 

 twlab           Temporary wage (GBP per 8 hour man day) 

 pwlab           Permanent worker wage (GBP per man year) 

 initcash        Initial cash available (GBP) 

 intrst          Monthly interest rate 

 mxborrow        Borrowing constraint in GBP ; 

* The following does imports of data from Gams_Tables.xlsx. 

$onecho > tasks.txt 

set=t rng=Scalars_and_Parameters_(R)!f4 dim=1 rdim=1 

set=e rng=Labor_use_(R)!b2 dim=1 rdim=1 maxdupeerrors=50 

set=c rng=Commodity_produced_(R)!c2 dim=1 rdim=1 maxdupeerrors=50 

set=l rng=Commodity_produced_(R)!a2 dim=1 rdim=1 maxdupeerrors=50 

par=flab rng=Scalars_and_Parameters_(R)!c3 rdim=0 cdim=0 

par=plab rng=Scalars_and_Parameters_(R)!c4 rdim=0 cdim=0 

par=trac rng=Scalars_and_Parameters_(R)!c5 rdim=0 cdim=0 

par=comb rng=Scalars_and_Parameters_(R)!c6 rdim=0 cdim=0 

par=thlab rng=Scalars_and_Parameters_(R)!c7 rdim=0 cdim=0 

par=phlab rng=Scalars_and_Parameters_(R)!c8 rdim=0 cdim=0 

par=initcash rng=Scalars_and_Parameters_(R)!c9 rdim=0 cdim=0 

par=intrst rng=Scalars_and_Parameters_(R)!c10 rdim=0 cdim=0 

par=mxborrow rng=Scalars_and_Parameters_(R)!c11 rdim=0 cdim=0 

par=twlab rng=Scalars_and_Parameters_(R)!c12 rdim=0 cdim=0 

par=pwlab rng=Scalars_and_Parameters_(R)!c13 rdim=0 cdim=0 

$offecho 

$call GDXXRW Orinoquia_Tables.xlsx  trace=3 @tasks.txt 

$GDXIN Orinoquia_Tables.gdx 

$LOADDC t,e,c,l,flab,plab,trac,comb,thlab,phlab,initcash,intrst,mxborrow,twlab,pwlab 

$GDXIN 

Set 

 fnt(t)          Final time period ; 

fnt(t) = Yes$(ord(t) eq card(t)) ; 

* Display those sets and scalar values in case we need to verify the data got 
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* read in all right. 

Display t,fnt,e,c,l,flab,plab,trac,comb,thlab,phlab,initcash,intrst,mxborrow,twlab,pwlab; 

* Declare the parameters whose values will also be read from the spreadsheet. 

Parameters 

 lnd(l)          Land of type l available (ha) 

 gfd(t)          Good field days available in period t (days per period) 

 wu(l,e,t)       Labor use of enterprises by period 

 tu(l,e,t)       Autonomous tractor use of enterprises by period 

 comu(l,e,t)     Autonomous combine use of enterprises by period 

 cu(l,e,t)       Cash use for enterprises by period 

 lu(l,e,t)       Land use of enterprises by period (ha per period) 

 entcom(l,e,c,t) Quantity commodity c produced per unit of enterprise e on land l 

* fu(l,e,c,t)     Commodity use of enterprises by period (intermediate inputs) 

 sprc(c)         Selling prices for commodities (GBP per unit) 

 lobd(l,e)       Lower bounds on commodities by enterprise (ha) 

 upbd(l,e)       Upper bounds on commodities by enterprise (ha) ; 

* Import parameter values. 

$onecho > tasks.txt 

par=lnd rng=Scalars_and_Parameters_(R)!b16 dim=1 rdim=1 

par=gfd rng=Scalars_and_Parameters_(R)!f4 dim=1 rdim=1 

par=sprc rng=Scalars_and_Parameters_(R)!j4 dim=1 rdim=1 

par=wu rng=Labor_use_(R)!a1 rdim=2 cdim=1 

par=tu rng=Trac_use_(R)!a1 rdim=2 cdim=1 

par=comu rng=Comb_use_(R)!a1 rdim=2 cdim=1 

par=cu rng=Cash_use_(R)!a1 rdim=2 cdim=1 

par=entcom rng=Commodity_produced_(R)!a1 rdim=3 cdim=1 

par=lu rng=Land_use_(R)!a1 rdim=2 cdim=1 

* par=fu rng=Commodity_use_(R)!a1 rdim=3 cdim=1 

par=lobd rng=Scalars_and_Parameters_(R)!n4 dim=2 rdim=2 

par=upbd rng=Scalars_and_Parameters_(R)!s4 dim=2 rdim=2 

$offecho 

$call GDXXRW Orinoquia_Tables.xlsx o=Orinoquia_Tables_par.gdx trace=3 @tasks.txt 

$GDXIN Orinoquia_Tables_par.gdx 

$LOADDC lnd,gfd,sprc,wu,tu,comu,cu,entcom,lu,lobd,upbd 

$GDXIN 

* Display those parameter values in case we need to verify the data got 

* read in all right. 

Display lnd,gfd,sprc,wu,tu,comu,cu,entcom,lu,lobd,upbd ; 
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* Set the enterprise-land type mapping based on whether the enterprise 

* produces any commodity in any time period on the specific land type. 

* If it doesn't produce anything, it gets supressed. 

Set 

 el(e,l)         Enterprise-land type included if enterprise has output on land l ; 

el(e,l) = Yes$(sum((c,t),entcom(l,e,c,t)) gt 0) ; 

el(e,l)$(lnd(l) eq 0) = No ; 

Display el ; 

Positive Variables 

 produce(l,e)    Produce enterprise e on land type l (ha) 

 sell(c,t)       Sell commodity c in period t (commodity units) 

 phire           Permanent labor hired (man years) 

 thire(t)        Temporary labor hired in period t (man days) 

 save(t)         Cash stored from period t to t+1 (GBP) 

 borrow(t)       Cash borrowed in period t and repaid in period t+1 (GBP) ; 

Variables 

 netret          Net return to the farm (GBP) ; 

Equations 

 land(l,t)       Limit on land use for land of type l in period t (ha) 

 labor(t)        Define amount of labor to hire in period t (man days) 

 autotrac(t)     Define autonomous tractor use in period t (man days) 

 autocomb(t)     Define autonomous combine use in period t (man days) 

 comuse(c,t)     Sources and uses for commodity c in period t (commodity units) 

 cash(t)         Sources and uses of cash in period t (GBP) 

 nrobj           Net return objective ; 

land(l,t) .. 

sum(e$el(e,l),lu(l,e,t)*produce(l,e)) =l= lnd(l) ; 

labor(t)  .. 

 sum(el(e,l),wu(l,e,t)*produce(l,e)) =l= 

 (flab+phire)*gfd(t) + thire(t) ; 

autotrac(t)  .. 

 sum(el(e,l),tu(l,e,t)*produce(l,e)) =l= 

 (trac)*gfd(t)  ; 

autocomb(t)  .. 

 sum(el(e,l),comu(l,e,t)*produce(l,e)) =l= 

 (comb)*gfd(t) ; 

comuse(c,t) .. 

 sell(c,t) 
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 =l= 

 sum(el(e,l),entcom(l,e,c,t)*produce(l,e)) ; 

cash(t) .. 

 sum(el(e,l),cu(l,e,t)*produce(l,e)) 

 + phire*pwlab/card(t) 

 + thire(t)*twlab + save(t) 

 + borrow(t-1)*(1+intrst) 

 + initcash$fnt(t) =l= 

 initcash$(ord(t) eq 1) + sum(c,sprc(c)*sell(c,t)) 

 + save(t-1) + borrow(t)$(not fnt(t)) ; 

nrobj .. 

netret =e= sum(fnt,save(fnt)) ; 

* Set bounds on individual variables. 

produce.lo(l,e) = lobd(l,e) ; 

produce.up(l,e) = upbd(l,e) ; 

thire.up(t) = thlab ; 

phire.lo    = plab ; 

phire.up    = plab + phlab ; 

borrow.up(t)= mxborrow ; 

Model finca / land,labor,autotrac,autocomb,comuse,cash,nrobj / ; 

option lp=cplex ; 

finca.optfile=1 ; 

Solve finca using lp maximizing netret;
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