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ARTICLE INFO ABSTRACT
Editor: Jan Vymazal Peatlands are a major store of soil carbon, due to their high concentration of carbon-rich decayed plant material.
Consequently, accurate assessment of peat volumes is important for determining land-use carbon budgets,
Keywords: especially in the Northern hemisphere. Determination of carbon stocks at the scale of individual peat sites has
Peatlands principally relied on either mechanical probing or electromagnetic geophysical methods. In this study, we
Ca.rbon storage investigated the use of seismic nodal instrumentation for quantifying peat depth. We used Stryde™ nodes for a
Seismology . . . s . .
Tomography deployment at the Whixall moss in Shropshire, England. We measured seismic arrival times from peat-bottom
Instrumentation reflections, as well as dispersive surface waves to invert for a model of variable peat depth along a linear

cross-section. The use of very small seismic nodes (micronodes) allows for particularly rapid deployment on
challenging terrain.
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J.B. Muir et al.
1. Introduction

Peatlands store an estimated 600 gigatonnes of carbon globally (Yu
et al., 2011), which represents approximately a third of all soil carbon
stocks (Carless et al., 2021). Most of this occurs in the northern hemi-
sphere, between 50 and 70°N where within the boreal zone more carbon
is stored in peat than is present in the above ground biomass (Beaulne
et al., 2021). However, these estimates are based on several assump-
tions, most notably using fixed “average” values for peat depth, bulk
density and accumulation history across spatially heterogenous peat
terrains, meaning there are large uncertainties; current estimates state
that northern peatland stocks are in the range of 500 gigatonnes of
carbon +100 gigatonnes (Yu, 2012).

Quantification of peat carbon stocks requires knowing the volume of
peat, along with both the carbon concentration and the dry bulk density.
While carbon concentration and bulk density are measurable to high
levels of accuracy in the laboratory, volume is more difficult to quantify,
as it requires accurate measurements of both the surface area and depth
profile of a peatland. Generally, peat surface area can be mapped
accurately using remote sensing (Aitkenhead, 2017, Bradley et al., 2022,
e.g.) or on ground investigations, but measuring peat depth is commonly
done using peat probes or corers (De Vleeschouwer et al., 2010, Parry
etal., 2014, e.g.). This is labor intensive and so is costly to undertake at a
high resolution and may not be feasible for studies beyond heavily
monitored testbed sites. For example, Jaenicke et al. (2008) attempted
to quantify carbon stocks in Indonesian peatlands. To do so they used
750 individual depth measurements which, due to the difficulties of
working in peatland swamps, were generally situated near drainage
canals and logging railways, potentially biasing the data and reducing
the accuracy of the model.

Due to the typically strong contrast in physical properties between
peat and underlying strata, geophysical imaging methods present an
alternative, non-invasive method for determining peat depth. Electro-
magnetic methods, such as ground-penetrating radar (GPR) and elec-
trical resistivity tomography (ERT), have frequently been used for
determining peat depths (e.g. Parsekian et al., 2012; Parry et al., 2014;
Comas et al., 2015; Proulx-McInnis et al., 2013; Henrion et al., 2024).
However, GPR requires careful calibration against ground-truth probe
data, and deploying cabled ERT and cart-based GPR instrumentation is
time consuming and challenging on rough terrain. As an alternative,
seismic methods are sensitive to the difference in mechanical properties
between the peat and the substrate. Seismology thus provides comple-
mentary information to electromagnetic methods. Traditional near-
surface seismic deployments are based on cabled geophone arrays,
which suffer from similar logistical problems as cabled ERT de-
ployments. However, recent developments in seismic instrumentation
have resulted in the proliferation of seismic nodes — autonomous, cable-
free units consisting of a geophone, battery, data-logger and GPS time
synchronization. The size of seismic nodes has shrunk from early models
with the smallest commercially available units from Stryde being 129 x
41 mm in size and 150 g in weight (for comparison, a commonly used
nodal instrument for large scale deployments is the Fairfield ZLand 3C,
at 163 x 117 mm, 2.8 Kg). We have generically termed the class of very
small nodes as micronodes (<200 g per node, allowing >50 nodes to be
reasonably carried per person). This miniaturization has democratized
large-N seismic deployments, with geotechnical surveys consisting of
dense 2D coverage with thousands of nodes now being routinely per-
formed in a few days with small teams (e.g. Kiers et al., 2023). Seismic
micronodes offer particular promise for the challenging setting of
peatlands, as their small size and low weight allows flexible and rapid
deployment. However, the particular technology mix used in extant
micronode models has not yet been trialed in a peat setting. The purpose
of this study was to assess their effectiveness for future large-scale peat
surveys.
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2. Methods
2.1. Site information

The experiment was carried out at Whixall Moss (52°55'13"N,
002°45'44”W), an ombrotrophic, raised bog that straddles the England /
Wales border. The area is part of the Fenn’s, Whixall & Bettisfield
Mosses National Nature Reserve, which covers 1000 ha. The bog has a
long history of peat extraction but has been under restoration for the
past ~30 years through raising the water table the removal of trees. The
majority of the bog consists of flooded peat workings, with limited raised
access pathways. Vegetation within the bog is dominated by various
sphagnums and cotton sedge grass. The seismic experiment was laid out
along the edge of a flooded ditch, underneath the lip of a berm sepa-
rating workings. Fig. 1 shows the site location in the context of the
Wixhall moss peat workings. Peat depth has previously been quantified
across the site using peat probes to measure point depths at an
approximately 100 x 100 m resolution, finding an average depth of 2.5
m (Worrall, 2022). Physical and compositional properties of the bog are
contained in Table 1.

2.2. Data

The primary experiment consisted of a linear array of 10 Stryde
micronodes, with a sensor spacing of 2 m. This primary array was sup-
plemented by an additional 4 cross-line Stryde nodes and 2 cross-line
GeoSIG GMS 3-channel accelerometers, however results from the
cross-line instruments are not presented in this study. Stryde nodes are a
new generation of portable minaturized seismic instrumentation
(Manning et al., 2018). The Stryde micronode is a single component
piezoelectric accelerometer with a flat instrument response passband of
1-125 Hz. This instrument is wrapped in a water resistant polymer case,
which also contains a GNSS timing system, data recorder, and battery
facilities for 28 days of recording. The total dimensions of Stryde nodes
are 129 mm height by 41 mm diameter, and a weight of 150 g. These
nodes represent a considerable reduction in deployment effort to pre-
vious autonomous seismic instruments. The lack of cabling and low
weight is ideal for the challenging deployment conditions of a peat bog.
The Stryde nodes were easily coupled into the bog by simply pushing
them into the upper layer of decayed organic material to the depth of the
GNSS antenna. The nodes were oriented vertically, and hence record the
vertical accelerations of the ground at the node locations. We employed
standard near-surface geophysical surveying practice and generated
seismic waves by means of repeated sledgehammer blows to a metal
target plate (Milsom and Eriksen, 2013). A minimum of 3 blows were
generated next to each of the deployed instruments. Due to the soft
surface of the peat, the target plate sunk substantially with each blow,
changing the source characteristics — however, this study used imaging
methods that depended only on the timing of waves between receivers.
These measurements are not substantially affected by the sinking source
and are hence robust to the challenging source generation in the peat.
We used the both the timings of refracted compressional waves, and the
dispersion surface waves, to perform imaging using a level-set tomo-
graphic approach (Muir and Tsai, 2020).

2.3. Compressional body wave first arrivals

Seismic waves were generated from hammer blows and travelled
from the source location to each receiver, where they were recorded as a
set of seismograms. Using the snuffler subpackage of the PyRocko seis-
mology toolbox (Heimann et al., 2017), we manually picked the initial
signals of each source for all seismograms, zero-phase high-pass filtering
as appropriate to remove incoherent noise. We then indexed the time of
the seismograms relative to the initial signal on the seismic instrument
immediately next to the source (corresponding to the hammer blow).
The first arriving signals on the seismogram after the source are
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compressional waves, travelling either through the ground or air. Air
waves travel at the speed of sound (~ 330 m/s), which is faster than any
type of wave recorded in this study; consequently we can be confident
that the first arriving waves visible above the noise level on the re-
cordings are compressional waves travelling through the soil. The first
arriving compressional waves travelled either directly through the peat,
or travelled as refracting head waves along the glacial till. The sub-
stantial surface wave coda of this data hid any impulsive shear-wave
arrivals, so they were not utilized in this study.

Fermat’s principle of least time means that the first arriving wave
will travel directly through the slower peat when the source-receiver
distance is short, and as a head wave through the till for longer off-
sets. The slope of the distance / travel-time curve will therefore change
as a function of source / receiver offset, with the changeover distance
giving an indication of peat interface depth. The slight delay between
the hammer blow and the initial signal propagating to the receiver next
to the source causes a time offset that is approximately constant for all
sources; this acts as a non-zero intercept in the travel-time curve. Fig. 2
shows the recorded travel time curves, together with estimates of the
picking uncertainty derived from repeated hammer blows.

2.4. Rayleigh-type surface waves

Coming behind the compressional first arrivals in the seismograms
are Rayleigh waves. These waves are trapped at the surface and corre-
spond to a mixture of compressional and shearing motion within the
subsurface. A characteristic of Rayleigh waves, or more generally sur-
face waves, is that they are dispersive in layered media, which is to say
that their wave speed depends on frequency. Rayleigh waves at a certain
frequency are sensitive to the geological structure above a depth of
approximately 1/2 of their wavelength (Tsai and Atiganyanun, 2014).
Multiple Rayleigh modes may be present for any particular seismic
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Table 1

Physical and compositional properties of the Wixhall moss (Worrall, 2022).
Moisture content 87+1.48 %
Dry bulk density (0-50 cm depth) 0.07 g cm®
Dry bulk density (50-100 cm depth) 0.55 g cm®
Porosity 95.7-96.1 %
Mean organic C 48.5£1.5 %
Average C budget 33 g C/m%/yr
Age (at 91 cm depth) 861 yr

signal, each of which has their own dispersion curves that dictate the
phase velocity of the mode at a given frequency. The dispersion char-
acteristics depend on the vertical structure of the subsurface, and can be
determined by array analysis. At the scale of this experiment, Rayleigh
wave dispersion gives a strong constraint on the horizontally averaged
structure of the medium across the array.

We derived the Rayleigh phase dispersion map in frequency—phase
velocity (f—c) space using Capon’s array-steering method (Capon, 1969)
applied to a series of 3 hammer blows at 22 m line distance (i.e. 4 m off
the end of the seismic line). Analysis of waves produced by blows past
the end of the line allows Rayleigh type waves to be clearly identified in
the time domain. Capon’s method then optimally weighted signals
across the seismic array to reduce the variance of the beam power es-
timate in f—c space, at the expense of potentially amplifying coherent
noise signals — this allowed for the most precise analysis of the
dispersive surface wave speed as a function of frequency. In our case, the
hammer blow was by far the dominant signal so use of Capon’s method
is appropriate.

Given a set of seismograms u;(t) with Fourier transforms u;(f), Ca-
pon’s method considers the vector @(f) = [i; (f) , da(f) , ..., Un(f)]". For
ease of notation, we will now drop the dependence on f. For a particular
¢ and f, the wavenumber is k = 2zf/c. The coordinate vector is r =

Fig. 1. Site layout, study location (in red) and measured probe depth of peat interfaces near the study area (in green).
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power for phase velocity ¢ and frequency f is then

1
p 3
a*(RJr}J)’la7 3

where 1 is a stabilizing regularization parameter that we set to 107,
Fig. 3 shows the resultant estimate of beam power as a function of phase
velocity and frequency. The fundamental mode (mode 0) is clearly
visible, with a high-frequency phase velocity of approximately c =17 m/
s that corresponds to Rayleigh waves travelling in the uppermost layer of
the bog. Five overtones are visible in the map with varying degrees of
clarity. We estimated the overtones by first masking out all parts of the
dispersion map within 12 dB of the maximum beam-formed power (the
12 dB cutoff was set by manual assessment of the masked modes). The
masks were labelled using the skimage label routine, and the labels cor-
responding to the six observed modes determined manually. We then
calculated the estimated value of the dispersion curve for each mode by
tracking the maximum power as a function of frequency for each mode,
and the uncertainty was estimated by assuming the upper and lower
bounds of the mode mask demarcate a 95 % confidence interval for the
true value of a mode, to a minimum of 1 m/s error (the measurement
precision of the beam-forming algorithm).

3. Imaging inversion scheme

We first derived a 1D layer-over-half-space reference model from the
compressional first arrivals. The travel-time curve between source a and
receiver b in such a model is given by

A A 22,/v: — V2
ty _t0+min{xab,xab+zv2vl}7 4
V1 Vo VoV

where v; and v, are the compressional wave velocities of the layer and
the half-space, respectively, z is the thickness of the layer, Axy and tg
are the distance and travel-time between the source and receiver, and tg
is the static correction to account for the time taken for the hammer
blow to travel to the “source” recording instrument. The free parameters
for the 1D layer-over-half-space model are (ty,v1,V2,2), which we fitted
to the observed travel times using the scipy differential evolution mini-
mizer. We can see from Eq. (4) that the mean depth to peat interface z
derived from seismic imagery is in principle independent of the physical
properties of the peat itself as long as v; and v, can be distinctly resolved.

After fitting the 1D reference model, we proceeded to 2D inversion
using both compressional first arrivals and surface wave data. The ve-
locity model was defined by the location of the interface between the
peat and the underlying glacial till, which is parameterized by a
squared-exponential Gaussian process with mean given by z, the average
thickness derived above, characteristic length scale of 4 m and charac-
teristic amplitude 0.5 m. We assumed uniform compressional wave ve-
locity Vp within the peat and the till, and uniform shear wave velocity Vs
similarly. At this scale, surface wave dispersion is only sensitive to the
velocity model in an average sense, so for the purposes of predicting
surface wave modes the model is laterally averaged and then extended
in depth with a quadratically increasing velocity so that the modes are
trapped at the surface. Further specifics of the model setup are given in
the supplemental information.

We used the factored-eikonal fast-marching method (FEFMM) to
model compressional first arrivals (Treister and Haber, 2016). FEFMM
efficiently finds the minimum travel-time field from the source point to
all other points in the domain. For each candidate 2D model, we
calculated these fields for each source, extracted the predicted travel
time at the other stations, and then added the source term correction t,
to find the predicted travel time curves. To calculate surface wave
dispersion we first found the horizontal average velocity model across
the domain, and then employed a matrix-propagator approach using the
fast-delta algorithm (Buchen and Ben-Hador, 1996) to predict the first
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six dispersion modes over their observed frequency ranges. The forward
solution operator maps candidate models into predicted data by
applying these two methods.

Having defined the data, the model space, its prior, and the forward
solution operator we then estimated the optimal model and its uncer-
tainty using the Ensemble Kalman Sampling (EKS) algorithm of Gar-
buno-Inigo et al. (2020). EKS offers a relatively efficient way of handling
physics-based problems with many free parameters when the derivative
of the data in respect to the model parameters is not easily accessible (for
instance when using black-box forward models, as is the case here). In
EKS, we draw an initial collection of candidate models from the prior
distribution. The predicted data are generated using the forward solu-
tion operators, and an approximate derivative of misfit in respect to the
model parameters is found by comparing the residuals to the observed
data. This derivative is used to update all of the ensemble members,
which are then perturbed by additional random noise scaled by the
covariance of the ensemble. The ensemble eventually converges until
the derivative updates and noise additions are in equilibrium, at which
point further ensemble updates sample a Gaussian approximation of the
posterior distribution. EKS has previously been employed to map peat
depth using electrical resistivity tomography (Tso et al., 2021), but to
our knowledge this is the first investigation employing it for determining
peat depth using seismic data.

4. Imaging results and discussion

Fig. 4 shows the predicted cross-section of peat probability. The
depth of peat varies between 2 and 5 m, with the start of the line being in
the 2-3 m range before a depression to 5 m depth on at the end of the
line. The peat depth is substantively in agreement with values obtained
by mechanical probing (see Supplementary Fig. 1). The depth profile
was confirmed by direct probe measurement of values along the seismic
line, albeit with an absolute shift in depth due to re-wetting and sub-
sequent expansion of the peat between the initial seismic experiment
and probe measurements. As the peat depths derived from this seismic
survey are not calibrated against probe depth measurements, they pro-
vide an independent assessment of the peat volume which is non-
invasive, spatially continuous and cost/labor efficient compared to
probing, GPR or ERT methods. The areal peat estimate in this cross
section is ~74 mz, or 20 % more than the areal estimate of ~64 m?
obtained by averaging the peat depth of the four bounding mechanical
probe measurements. While it is not possible to extrapolate from this
single line to an alternative peat volume for the entirety of Whixall moss,
we note that a 20 % variation represents ~240 kilotonnes of carbon
based on the mean carbon volume estimate of Natural England’s
BogLIFE report (which was based on probe depths coupled with two
vertical profiles of carbon fraction and bulk density, Worrall, 2022).

There is increasing interest in peatland restoration for carbon
sequestration, with a growing carbon credit market supported by or-
ganisations such as the IUCN-UK Peatland Code (https://www.
iucn-uk-peatlandprogramme.org/funding-finance/peatland-code).
Here, carbon credits are obtained for peatland restoration, with credit
values based on avoided greenhouse gas (GHG) emissions from restored
peat rather than payments for sequestered and stored carbon per se. This
is because there is currently no cost effective means of accurately
quantifying peat depth across the necessary scales, in a spatially explicit
manner, to allow temporal monitoring. The approach presented here
represents a potential means to monitor changes in carbon stocks in
peatlands over time, improving our estimates of quantities of carbon
being sequestered by peatland restoration, or being emitted through
peatland degradation. This will facilitate effective comparison of
different restoration techniques to maximize carbon sequestration, or
approaches for minimizing carbon loss from degraded peatlands
through improving our estimates of carbon stocks and how they change
over time. Due to the vast quantities of carbon stored in peatlands
worldwide, and the potentially enormous fluxes of GHG that they can
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Fig. 4. Inferred probability estimate of peat within the cross-section defined by the seismic line. Stations are spaced out at 2 m intervals along the top edge.

produce, how we interact with them moving forward will have conse-
quences for mitigating climate change. By better understanding our peat
stocks we have a better chance of those consequences being positive
rather than negative.

5. Conclusions

We found that micronodal seismic surveying proved to be highly
effective in quantifying spatially variable peat depth. By making use of
simple seismic observables (first arrival travel times and surface wave
dispersion), coupled with an interface-based inversion scheme, spatial
resolution at the meter scale can be achieved using this instrumental
modality. The primary advantages of seismic micronodes are their
flexible deployment geometry and good deployment ergonomics,
stemming from their self-contained nature and low weight. These
characteristics are especially pertinent to the peatland setting, where
traversal of the terrain is often extremely difficult. While this was only a
proof-of-concept study and so the quantitative conclusions are pre-
liminary, we found that higher resolution peat depth maps corresponded
to ~20 % variation in peat depth compared to pre-existing high-reso-
lution mechanical probe data, which has significant implications for the
total carbon budget at Whixall. Our estimates of global peat stocks are,
at best, based on point measurements, inevitably with a much lower
spatial resolution than available for Whixall Moss. As such, it is likely
that our estimates of global C stocks in those peatlands is also subject to a
high degree of error and application of the approach employed in this
study will greatly improve our estimates of global peatland C stocks.
Furthermore, owing to the scalable nature of this approach, it will also
be possible to implement monitoring programs that quantify the
changes in peat depth and hence C stocks overtime, for example in
response to restoration efforts. This approach, therefore, has the po-
tential to improve our understanding of peatland C dynamics and pro-
vide insights into how they can be used to mitigate climate change
through reducing C losses and/or maximizing C sequestration.

Data accessibility and code usage

We used a custom implementation of the FEFMM algorithm available
at https://github.com/jbmuir/FEFMM.]jl, and a custom implementation
of the Ensemble Kalman Sampler as described in Muir et al. (2022). The
surface wave dispersion prediction used the disba package (Luu, 2021),
which is a Python re-implementation of the Computer Programs in
Seismology surf96 code (Herrmann, 2013). Initial 1D inversion made
use of scipy optimizing routines (SciPy 1.0 Contributors et al., 2020).
Figures were created using Plots.jl (Breloff, 2023).
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