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Abstract
Navigation of agricultural mobile platforms in small-scale orchards poses challenges due to narrow row-end turning spaces 
and the need for precise path tracking in the presence of disturbances. The objective of this study is to improve path fol-
lowing and rapid turning maneuvers for a double-Ackermann steering robot by employing a simulation approach for PID-
based waypoint following enhanced by learning-based H∞ robust adaptive control. With the zero-speed turning radius of 
the robot measured at 2.85 m, the primary question to address is determining the minimum achievable turning radius using 
the two controllers. For this purpose, a versatile framework for fine-tuning and analyzing of the controllers is presented in 
MATLAB Simulink blocks interfaced with the virtual replica of the robot in CoppeliaSim. A comparative study between the 
controllers is carried out involving three experiments: offline path following with a fixed number of predefined waypoints, 
online path following with continuously updated waypoints forming paths, and path tracking with disturbance rejection 
using the H∞ controller to reduce the radius of row-end turnings. Results indicate that while the PID controller achieves a 
minimum row-end turning radius of 3.0 m, the learning-based H∞ controller surpasses it with a minimum radius of 2.9 m. 
It is observed that a minimum of 4 waypoints is required for the PID controller to perform effective row-end turning in the 
offline experiment, with a higher number of waypoints enabling the robot to navigate through complex geometries and tight 
turns more effectively. Moreover, by incorporating an actor-critic structure, it has been demonstrated that the learning-based 
H∞ controller maintains stability even when facing wheel slippage disturbances, and outperforms the PID controller in online 
path tracking, particularly when maneuvering along a half-circle path. The framework proposed in this study contributes 
to improving autonomous navigation, particularly in determining the optimal number of waypoints and path configurations 
required for navigating agricultural robots with varying dimensions and steering mechanisms.

Keywords  Agricultural robotics · Path tracking · H∞ robust adaptive controller · Simulation · Autonomous navigation

1  Introduction

The integration of mobile platforms with different dimen-
sions, steering mechanisms, and control systems has shown 
the potential to contribute to higher profits from agricultural 
fields (Fragapane et al. 2021), particularly in practices such 
as field mapping (Tiozzo Fasiolo et al. 2023), crop scout-
ing (Virlet et al. 2017), and autonomous spraying (Mesh-
ram et al. Mar. 2022) that involves repetitive manual work. 
One area where these robots face challenges is in navigat-
ing within small-scale orchards, where the limited spaces 

between plant rows and the necessity for precise maneuvera-
bility at row-end turnings require precision control solutions. 
Larger turning radii of robots increase the risk of damaging 
crops, especially in densely planted orchards where branches 
may extend into pathways. In addition, since these robots are 
typically battery-powered, reducing the operation time and 
energy is crucial for continued navigation in the field, neces-
sitating the implementation of optimized waypoints follow-
ing (Farooq et al. 2023) and path tracking control algorithms 
(Kivrak et al. 2022) that aim at minimizing unnecessary 
movements and optimizing routes.

During actual navigation in dynamic and unstructured 
orchards with variations in terrain, mobile platforms often 
exhibit nonlinear dynamics, making the design of an Extended author information available on the last page of the article
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effective navigation controller challenging, particularly 
when traveling on uneven terrains, slopes, bumps, and the 
presence of Nonholonomic constraints. In these situations, 
sensors such as Odometry(Aqel et al. 2016), GPS(Ryu et al. 
2015), LiDAR(Raj et al. 2020), or cameras may also suffer 
from noise, biases, or measurement inaccuracies, affecting 
the accuracy of path tracking. For example, a fuzzy logic 
path-tracking controller that benefits from the nonlinear least 
square method and GNSS-based navigation system (Gya-
genda et al. 2022) showed significant tracking errors due to 
signal reception issues caused by obstructions such as tree 
branches and leaves, leading to substantial deviations from 
the reference path. While systems equipped with high-preci-
sion RTK GPS (Li et al. 2022) have demonstrated promising 
results in open field cultivation, their reliability is reduced 
within enclosed spaces like closed-field crop productions 
or GPS-denied environments due to potential signal block-
age. Integrating IMUs enhance localization accuracy (Chen 
et al. 2018), however, combining multiple sensor types also 
increases the complexity and cost of the navigation system. 
Therefore waypoint-based path following must operate 
within real-time constraints and employ correction signals 
to ensure timely responses to these changing conditions.

Waypoint-based path following involves guiding the robot 
along a predefined route by sequentially navigating through 
a series of specified locations typically defined as coordi-
nates in the robot's workspace until all waypoints have been 
reached. Each waypoint represents a key position or land-
mark that the robot needs to reach during its mission. The 
path between waypoints can be predefined offline (Weber 
et al. 2023; Asadi et al. 2020) using a fixed set of waypoints 
based on prior knowledge of the environment, or generated 
online (Asadi et al. 2020) using a dynamic mechanism in 
real-time (Kan et al. 2020) or a defined time frame (Kan 
et al. 2021). This path may consist of straight lines, curves, 
or complex trajectories depending on the terrain and mis-
sion requirements. As the robot navigates, it continuously 
compares its current position with the coordinates of the 
next waypoint and adjusts its trajectory and control inputs to 
steer toward the target waypoint. Feedback control mecha-
nisms such as Proportional-Integral-Derivative (PID) con-
trol (He et al. 2022), have been widely used in agricultural 
mobile platforms due to their simplicity and effectiveness 
in continuously adjusting the robot's steering and speed. 
However, traditional controllers often lack robustness in the 
presence of nonholonomic constraints, which restrict the 
robot’s motion beyond its position and orientation in space. 
These constraints, such as limitations on velocity or move-
ment direction, can significantly impact the efficacy of path 
planning and control algorithms. Experiments with PID con-
trollers have revealed difficulties in handling uncertainties 
and disturbances inherent in real-world environments, such 
as wheel slippage on varying soil conditions or unexpected 

obstacles. These challenges cannot be straightforwardly 
addressed within basic differential equations solely consid-
ering the system's positions and velocities.

To address these limitations, advanced control strategies 
such as Stanley (AbdElmoniem et al. Nov. 2020), Model 
Predictive Control (MPC) (Zhou et al. 2023), Sliding Mode 
Control (SMC) (An et al. 2023), Pure Pursuit (Xu et al. 2022; 
Samuel et al. 2016), Linear Quadratic Regulator (LQR) 
(Chen et al. 2023), Artificial Neural Networks (ANNs) 
(Vulpi et al. 2021), Fuzzy Logic Control (FLC) (Wang et al. 
Jul. 2021), and Reinforcement Learning (RL) (Chang et al. 
2021) have been tested in the navigation systems of agricul-
tural mobile platforms (Wijayathunga et al. 2023). Nonlinear 
control methods, such as MPC or SMC utilizes a dynamic 
model of the robot to predict its future trajectory, facilitat-
ing proactive adjustments to control inputs and enhancing 
robustness against disturbances (Deniz et al. 2024; Prado 
et al. 2020). Other advanced algorithms, particularly H∞ 
robust adaptive control, are well-suited for applications 
like orchard navigation, where precise maneuverability and 
robust performance are essential for successful operation. 
For instance, the H∞ robust adaptive controller reported 
in Khalaji and Moosavian (2014) offers robustness against 
uncertainties and disturbances by dynamically adapting con-
trol parameters in real time based on feedback from sensors 
and environmental conditions. To enhance path tracking 
performance, integrating state estimation techniques such 
as Kalman filtering (Greenberg and Tan 2020) or observer 
designs (Guevara et al. 2023) are also used to enable the 
estimation of unmeasured states, providing valuable insights 
into the robot's position, orientation, and velocity. Accurate 
state estimation leads to precise control actions based on 
comprehensive system information, resulting in improved 
overall path tracking performance. Nevertheless, experi-
mentation and validation in simulation environments and 
real-world agricultural settings are essential for assessing the 
effectiveness and applicability of these control methods in 
practical agricultural robotics applications. Table 1 provides 
a summary of the control algorithms used for path tracking, 
outlining their respective benefits and limitations.

The selection of an agricultural mobile platform based 
on kinematic parameters (i.e., wheelbase, width, maximum 
steering angle, ground clearance, wheel diameter, and center 
of gravity), alongside the choice of path tracking control-
ler, influences the robot's ability to navigate (Campbell et al. 
2021), crucially affecting row-end turning. Longer wheel-
bases offer enhanced stability, smoother maneuverability, 
and increased payload capacity, making them ideal for navi-
gating rough terrain and carrying heavier loads. However, 
they may struggle with tight turns and have larger turning 
radii, potentially with lower efficiency in confined spaces. 
Conversely, shorter wheelbases are preferred for greater 
maneuverability, agility, and adaptability to diverse terrains, 
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making them well-suited for navigating narrow rows and 
responding quickly to obstacles. Yet, they may sacrifice sta-
bility and have limited payload capacity, necessitating care-
ful load distribution and terrain assessment. Wider robots 
offer greater stability, traction, and higher payload capacity, 
ensuring reliable performance in harsh field conditions, how-
ever, they may face challenges maneuvering in tight spaces 
and during transportation due to their increased width.

This study was motivated by the need for a simulation 
framework to design and experiment with different path 
following control strategies, to be implemented on agri-
cultural mobile platforms with varying sizes and steering 
mechanisms. The aim was to evaluate their performance in 
accurate path following and determine the minimum space 
required for row-end turnings. Therefore, the main objec-
tive of the study was to design and compare two controllers 
for guiding a simulated double-Ackerman steering mobile 
platform along various waypoints and reference paths within 
a simulated orchard environment with narrow row-ends. 
Knowing the zero-speed turning radius of the robot, the pri-
mary question addressed in this study is focused on deter-
mining the minimum turning radius at which the proposed 
controllers could maintain stability during row-end maneu-
vers. To achieve this, a PID controller for offline and online 
waypoint-based path following, and a learning-based H∞ 
robust adaptive controller for path tracking, were designed 
and evaluated based on their performances in disturbance 

rejection, tracking error, and the ability to achieve the 
smallest radius during row-end turns. This evaluation was 
conducted using a customized simulation framework that 
integrates MATLAB Simulink (MathWorks Inc, MA, USA) 
interfaced with the CoppeliaSim robotic simulator environ-
ment (Coppelia Robotics AG, Zurich, Switzerland), which 
enabled the implementation and visualization of the pro-
posed control strategies' performance, allowing the robot to 
adapt to varying row-end turning patterns and uncertainties 
characteristic of real-world orchard settings.

2 � Materials and methods

2.1 � Kinematic of the robot platform

The kinematic equations derived for this study are based on 
the four-wheel-drive (4WD) double-Ackerman steering mobile 
platform developed by Irus (IRUS Motorgeräte GmbH, Bur-
ladingen, Germany), as illustrated in Fig. 1a. The platform 
features a track width of w = 1.4 m, a wheelbase of L = 2.0 m, 
a maximum steering angle of �max = 25◦ , a maximum forward 
speed of Vmax = 10 km/h, and an approximate weight of 475 kg 
that utilizes a 2-cylinder petrol engine with 20.1 kW (27 HP) 
output power. A schematic representation of the robot is pro-
vided in Fig. 1.b to describe the kinematic model by analyzing 
the instantaneous motion of the robot's center of mass (COM) 

Table 1   Summary of the control methods used for path tracking of mobile platforms, with agricultural applications

Control methods Advantages and disadvantages Application example

pure pursuit Streamlined layout for precise vehicle position control. 
Challenging to implement in high-speed and large road 
curvature scenarios

MAFV robot with differential drive used for wheat seeding 
(Yan et al. 2024)

PID Simplicity and ease of engineering application. Poor versa-
tility and challenging parameter tuning

Husky A200 with Skid-steering used in apple orchard (Blok 
et al. 2019)

Model-Free control Simple control structure, but often perceived as a black box, 
posing challenges to stability analysis

Used in apple-picking robot platform (Chen et al. 2019)

LQR Facilitates achievement of closed-loop optimal control 
objectives. Lack of robustness due to reliance on linear 
models

Used in skid-steering mobile robot for outdoor fields 
(Amertet et al. 2024)

Feedforward and
Feedback

Capable of handling external disturbances, modeling errors, 
and sensor noise. Necessitates expensive sensors for 
vehicle data acquisition

Komodo-01 with Crawler Differential Drive for outdoor 
fields (Huang et al. 2018)

MPC Handling system constraints and future prediction. Strug-
gling with stability analysis and computational cost

SPIDO with Double steering off-road for outdoor fields 
(Fnadi et al. 2019)

H∞ Control Easily establishes hard constraints with strong robustness. 
Requires complex solutions, intricate theory, and only 
handles bounded disturbances

Yanmar VP6E rice transplanter for paddy field (Majdoubi 
et al. 2023)

SMC Fast response, resistant to parameter changes and distur-
bances

Path tracking with SMC requires an adaptive mechanism to 
reduce chatter

AgRover with 4WD/4W steering for outdoor fields (Tu et al. 
2019)

Robust MPC Handles system states and constraints with robustness. 
Faces challenges in stability analysis and incurs high 
computational costs

AROS with skid- steering used in apple orchard (Wen Zhu 
et al. 2023)
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while considering the constraints imposed by the Ackermann 
steering geometry. Here xr and yr denote the Cartesian coor-
dinates of the COM, � is the heading angle calculated using 
arctan2

(
y − y0, x − x0

)
 , and � is the steering angle of the 

wheels. The state vector description of the robot is given by 
q =

[
x, y, �, �

]T . Additionally, v and � represent the linear and 
angular velocities of the COM, respectively.

The robot can achieve a minimum row-end turning radius 
of 2.84 m (d = 5.68 m), as calculated by Eq. 1. The simpli-
fied robot's kinematic model is based on the assumption of 
pure rolling without slippage, which can be expressed as 
q̇ = S(q)U , where the matrix S is given by Eq. 2 and is used in 
conjunction with the vector U = [v,�]T . The linear velocity v 
and angular velocity � are related to the steering angle � and 
the wheel speeds through the Ackermann steering geometry 
constraints. The kinematic equations governing the motion 
of the robot in the absence of disturbances are expressed by 
ẋ = vcos𝜃 , ẏ = vsin𝜃 , 𝜃̇ = v∕L(tan𝛿) , and 𝛿̇ = 𝜔 (Corke et al. 
2023). The superscript dot denotes the time derivative.

(1)d =
L

tan
(
�max

) + w

(2)S =

⎡
⎢⎢⎢⎢⎣

cos(�) 0

sin(�) 0
tan�

L
0

0 1

⎤⎥⎥⎥⎥⎦

It should be noted that these kinematic equations cap-
ture the non-holonomic constraints imposed by the ideal 
Ackermann steering geometry, wherein the robot can-
not move laterally without changing its orientation. To 
account for real-world conditions, such as external dis-
turbances to the system such as slippage and wind in an 
orchard environment, the non-ideal kinematics of the sys-
tem (Bai et al. 2022) was considered as q̇ = S(q)U + k(x)𝛽 , 
where k(x) is the disturbance matrix, and � is a three-
dimensional vector representing the disturbance and 
�amp is the amplitude of it. Consequently, the non-ideal 
kinematics of the system are given in Eq. 3, where T1 
and T2 denote the specific time points when disturbances 
occur (i.e. the slippage occurs continuously from T1 to T2 ), 
with H(.) representing the unit step function (Bai et al. 
2022). A mathematical examination of this formulation 
reveals that the disturbance matrix ( k(x) ) is a 4 × 4 iden-
tity matrix. Hence the disturbance vector � is precisely 
defined by Eq. 4. The derived kinematic model served as 
the foundation for the waypoint following and path track-
ing controller design, as well as the simulation analysis 
presented this study.

(3)

ẋ = vcos𝜃 + 𝛽ampH
(
t − T1

)
sin𝜃

ẏ = vsin𝜃 − 𝛽ampH
(
t − T1

)
cos𝜃

𝜃̇ = v
tan𝛿

L
+ 𝛽ampH

(
t − T1

)
tan𝛿

L

𝛿̇ = 𝜔 + 𝛽ampH
(
t − T1

)
− H

(
t − T2

)

X

Y

COM

Y

X

Fig. 1   The double-Ackerman steering vehicle platform used for path tracking controller design (left) and the kinematic representation of the 
robot (right)
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2.2 � Design of waypoint following with PID 
controller

The control strategy for waypoint following involved guiding 
the robot along a path segment that connects its current posi-
tion to the next waypoint. This was achieved by simultane-
ously adjusting both the robot's steering and speed using two 
PID controllers that generates two control signals, steering 
�(t) , and speed �(t) . The first controller minimizes orienta-
tion errors to align the robot with the next waypoint, while 
the second PID controller regulates the robot's linear veloc-
ity, ensuring a desired speed as it approaches waypoints. 
Moreover, the gains of both controllers were tuned using 
a trial-and-error approach within our simulation frame-
work. By iterating and making adjustments, we managed 
to achieve satisfactory performance (as will be shown in 
the results section). The kinematic equation of the robot 
was discretized with time steps of ∆t as described in Eq. 5, 
using Euler integration method to update the robot’s posi-
tion, allowing the controller to calculate new steering angles 
and linear velocities while enforcing constraints, ensuring 
that the robot's motion stays within safe operational bounds 
and performs smooth and accurate navigation towards the 
waypoints. The kinematic equations provided in Eqs. 5, 6, 
7, along with the two PID controllers described in Eqs. 8, 
9, 10, 11, were implemented in MATLAB as a simulation 
loop that iterates over a predefined number of time steps 
∆t, during which the robot continuously updates its posi-
tion, orientation, and control inputs. Here vmax and vmin are 
the maximum and minimum linear velocity of the robot, � 
is the angular velocity, L is the wheelbase, R is the wheel 
radius, �max is the maximum allowable steering angle, and 
(xt, yt) and �t are respectively the robot current position and 
orientation. In this scheme, the controller first calculates the 
desired orientation �d that the robot needs to align with the 
line connecting its current position (xt, yt) to the next desired 
waypoint (xd, yd) , generating an error signal é𝜃(t) based on 
its current orientation �t . This error is adjusted to ensure it 
falls within the range - � to � , resulting the final error signal 
e�(t) . The controller also calculates the integral of this error 
as ∫ t

0
e�(�)d� to track the accumulated error over time, and 

the derivative of this error as de(�)
dt

 to determine the rate of 
change of the error signal and generate steering control �(t) 
that influence the robot's trajectory towards the target point. 
A similar approach is used for the speed control by compar-
ing the robot distance to the next waypoint with a reference 
distance distref  , resulting in a speed error signal of ev(t) . 

(4)
� = �ampH

(
t − T1

)
×
[
sin �, cos �, tan �∕L, 0

]T

+
[
0, 0, 0,H

(
t − T1

)
− H

(
t − T2

)]T
Finally, in each time step of the simulation, the change in 
the x–y coordinate of the robot's position over a small time 
interval Δt is calculated using Eq. 5. The pseudo-code of the 
controller is provided in Table 2.

The reference inputs, including sets of waypoints (2, 3, 4, 
5, and 10), and paths (square, triangle, trapezoid, and half-
circle row-end turning shapes), as shown in Fig. 2 were 
respectively used for the offline and online path following 
experiments to assess the effectiveness of the proposed PID 
controller. The waypoints for offline experiments were pre-
defined based on known environmental coordinates. For 
online experiments, waypoints were continuously updated 
in real time to form dynamic paths, facilitating naviga-
tion through various geometries and turning patterns. The 
outputs of the implemented PID controllers in MATLAB 
were subsequently integrated with a dynamic model of 
the robot within the CoppeliaSim simulation environment 

(5)
[
xt+1, yt+1

]
=
[
xt + vt.cos

(
�t
)
.Δt, yt + vt.sin

(
�t
)
.Δt

]

(6)�t =
v

L
.tan(�(t)) =

�t+1 − �t

Δt

(7)�t+1 = �t +
(
v

L

)
.tan(�(t)).Δt

(8)�(t) = Kp.e�(t) + Ki.∫
t

0

e�(�)d� + Kd.
de�(t)

dt

(9)uv(t) = Kpv.ev(t) + Kiv.∫
t

0

ev(�)d� + Kdv.
de(t)

dt

(10)é𝜃(t) = 𝜃d − 𝜃t

(11)e𝜃(t) = a tan 2
(
sin

(
é𝜃(t)

)
, cos

(
é𝜃(t)

))

(12)ev(t) =

√
(xd − x)2 + (yd − y)2 − distref

Table 2   PID Controller Pseudo code

Initialize PID gains: Kp, Ki, Kd
For each time step:
 Calculate orientation error eθ(t)
 Calculate speed error ev(t)
 Update steering control δ(t)
 Update speed control uv(t)
 Update robot position and orientation

End
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using API functions as shown in Fig. 3, creating a versatile 
framework for visualization of the robot's behavior across 
various reference inputs and different terrains with uneven 
surfaces. It should be noted that for this study, experiments 
were exclusively conducted on flat terrains. For the simula-
tion parameters in CoppeliaSim, the predefined time step 
of 0.05 s was used to ensure accurate results along with the 
Bullet Physics engine which is known for its robustness and 
good performance, and is suitable for general-purpose simu-
lations. For the MATLAB Simulink, specific details like the 
step size and duration are embedded within the simulation 
loop, where the robot continuously updates its position, 

orientation, and control inputs at each time step (Δt) (Lines 
200–210, Fig. 5 and Fig. 6).

To ensure the accuracy and reliability of the manually 
created waypoints and paths, several verification steps were 
implemented. The paths were first manually checked against 
the high-resolution orthoimage and 3D model to ensure they 
align accurately with the physical layout of the field, and 
cross-referencing was done using the RTK-GNSS measure-
ments to validate the positions of key waypoints along the 
paths. The paths were then tested within the simulation envi-
ronment to identify any potential issues such as collisions 
or navigation errors, and simulated runs were performed to 
ensure the paths are navigable by the robot, adjusting as 
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necessary based on the results. An automated path valida-
tion algorithm was implemented in the simulation to check 
for common human errors, such as paths that pass through 
obstacles or exceed the operational limits of the robot, and 
redundant paths were created where necessary to provide 
alternative routes in case of unforeseen obstacles or errors in 
the primary path. A video demo of the path validation algo-
rithm can be found here: https://​youtu.​be/​IhjEK​PQ7w88. 
Using these verification and failsafe mechanisms, we man-
aged to maintain the integrity of the manually generated 
paths and minimize the risk of human error and ensuring 
reliable navigation through the berry rows.

2.3 � Design of path tracking with learning‑based H∞ 
robust adaptive control

This section presents the details of the proposed learning-
based H∞ robust adaptive controller and its integration 
with the waypoint following algorithm that was specifically 
designed to improve the performance of the orchard robot 
navigation in the presence of uncertainties, disturbances, and 
time-varying dynamics. The objective was to increase the 
stability and performance bounds, even in the presence of 
nonlinearities and constraints. An overview of the control-
ler is illustrated in Fig. 4, demonstrating its aim to achieve 
optimal tracking while maintaining stability by employing 
approximate dynamic programming techniques to solve the 
Hamilton–Jacobi-Isaacs (HJI) equation, balancing tracking 
error minimization and disturbance maximization in a zero-
sum game formulation.

As shown in Fig. 4, a reference path with a half-circle 
row-end shape is first generated using a set of mathematical 
equations. Within the neural estimator block, a proper esti-
mation of the HJI equation is then derived by incorporating 
inputs such as velocity, the difference between the reference 
path and the robot’s position, and their derivatives. Based 
on this initial estimation and the system states, the adap-
tive robust controller (actor) generates the suitable velocity 
control signal for the robot to track the desired path. This 
control loop ultimately enables the robot to follow the refer-
ence path with minimal deviation, even in the presence of 
slip disturbances. (Eqs. 13, 14, 15, 16, 17, 18, 19, 20, 21, 
22, 23, 24, 25, 26, 27, 28, 29, 30) offer a detailed, step-
by-step guide for the control design procedure. Considering 
the nonlinear continuous-time affine system given in Eq. 13. 
Here x = [x1, x2,… , xn] ∈ ℝ

n denotes the state vector of the 
system, u = [u1, u2,… , um] ∈ ℝ

m is the control input vector, 
and � = [�1, �2,… , �p] ∈ ℝ

p is the external disturbance vec-
tor. Furthermore, f (x) ∈ ℝ

n represent the system dynamics, 
g(x) ∈ ℝ

n×m the input dynamics, and k(x) ∈ ℝ
n×m the dis-

turbance dynamics. It is assumed that both u and � satisfy 
the condition L2 ∈ [0,∞) , where L2[0,∞) denotes the L2 
norm on the interval [0,∞) . Functions of f (.) , g(.) , and h(.) 
are local Lipschitz continuous, ensuring the existence and 
uniqueness of solutions, and f (0) = 0 , implying that the 
origin is an equilibrium point of the unforced system. The 
system given in Eq. 13 is presumed to be stable and robustly 
controllable within a compact set Ω ∈ ℝ

n of the state space 
(Lian et al. 2024). In order to find an optimal solution, the 
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cost function given in Eq. 14 (Zhao et al. 2022) was used to 
be minimized by the control input ( u):

The weighting matrices Q and R were chosen to be posi-
tive definite diagonal matrices. The positive constant of � 
was also considered to guarantee the boundedness of the 
cost function with �d denoted as the upper bound of uncer-
tainties (Zhao et al. 2022). Solving the H∞ control problem 
bears a close relationship to the concept of zero-sum games 
within the differential game framework (Xue et al. 2022). 
Consequently, the task of synthesizing a robust controller 
can be formulated as the search for a saddle point that satis-
fies the Nash condition in the context of zero-sum games, 
expressed by Eq. 15 as described in “DIFFERENTIAL 
GAMES” (2012). Here V∗(x) is the optimal value function. 
Differentiating V(x(t)) along system trajectories, yields the 
Bellman equation given in Eq. 16. The Hamiltonian is then 
defined by Eq. 17. Subsequently, through further partial dif-
ferentiation steps described in Eq. 18 and Eq. 19, the optimal 
values of the control input and disturbance, representing the 
two players in the zero-sum game, were computed. Substitut-
ing Eq. 18 and Eq. 19 into Eq. 17 yields Eq. 20.

Here ∇V∗(x) = dV∗∕dx denotes the gradient of the opti-
mal value function V∗ . Equation 20 represents an HJI par-
tial differential equation. Obtaining an analytical solution 

(13)ẋ = f (x) + g(x)u + k(x)𝛽

(14)

V(x(t)) =

∞

∫
t

e−�(�−t)(xT (�)Qx(�) + uT (�)Ru(�) − �d
2(x))d�

(15)
V∗(x) = J(x, u∗, �∗) = min

u
max
d

J(x, u, �) = max
d

min
u
J(x, u, �)

(16)

dv

dx

[
f (x) + g(x)u + k(x)�

]
+ xTQx + uTRu − �V(x) + �d

2(x)

(17)
H(x,V , u, �) =

dv

dx

[
f (x) + g(x)u + k(x)�

]

+ xTQx + uTRu − �V(x) + �d
2(x)

(18)u∗ =
�H

�u
= 0 → u∗ = −

1

2
R−1g(x)T

dV∗

dx

(19)�∗ =
�H

�d
= 0 → �∗ =

1

2�2
k(x)T

dV∗

dx

(20)
V(x) = xTQx + ∇V∗T f (x) − 1

4
∇V∗Tg(x)R−1gT (x)∇V∗

+ 1
4�

∇V∗Tk(x)kT (x)∇V∗ = 0

to this nonlinear equation is generally intractable. In 
this regard, an Adaptive Dynamic Programming (ADP) 
algorithm was employed to approximate its solution in 
actor-critic structure. Following the approach proposed by 
Zhao et al. (2022) and (Zhao et al. 2020), a critic neural 
network was employed to estimate the value function ( ̂V  ) 
given in Eq. 21, where Ŵ ∈ ℝ

l and �(x) ∈ ℝ
l are esti-

mated neural network weight and regressor, respectively. 
Substituting Eq. 21 into Eq. 18 and Eq. 19, yields the 
approximated signals of u and � , given in Eq. 22 and 
Eq. 23

For online updating of the neural network weights ( �̇W  ), 
we employed an adaptive law based on a novel method 
outlined in Zhao et al. (2022). To this aim, Eq. 24 and 
Eq. 25 were used to arrive at the adjusted version of the 
HJI equation as given in Eq. 26, where W  is an unknown 
parameter estimated using the adaptive law �̇W = −𝜉N . 
Here � represents the positive adaptive learning gain (Zhao 
et al. 2022) and N ∈ Rl is an auxiliary vector calculated 
as N = −PW̃ + � . According to Lv and Ren (2019) and 
(Luan et al. 2019) P ∈ Rl×l and Υ ∈ Rl are filtered regres-
sor matrices that are calculated using Eq. 27., and Eq. 28. 
We assumed that � is a positive constant and the initial 
values of P and Υ are equal to zero in the calculation of 
Ṗ = −𝜂P + ΨΨT  and Υ̇ = −𝜂Υ + ΨΦ . It should be noted 
that W̃ = W − Ŵ  is the error of weight estimation and 
� = ∫ t

0
e−�(t−�)�HJIΨ(�)d� is a bounded variable. The adap-

tive law can retain the convergence of the online learning 
algorithm by incorporating estimation errors, as described 
in Luan et al. (2019). Finally, the error-based signals of 
e = q − qr , and ė = S(q)U − q̇r , were defined along with 
an analysis of the preliminaries of adaptive robust control. 
A comparative analysis between ė and Eq. 13 reveals that 
S(q)U = g(e)u and q̇r = f (e) , where the functions g(e) and 
f (e) represent the reformulated system dynamics expressed 
in terms of the error state e . With the system dynamics 
recast in the nonlinear affine formulation, Eq. 22 is used 
to produce the kinematic control input ( u ) as formulated 
in Eq. 29. The pseudo-code description of the controller 
is also provided in Table 3.

(21)V̂(x) = ŴT�(x)

(22)û = −
1

2
R−1g(x)T (∇�(x))TŴ

(23)�̂ =
1

2�2
k(x)T (∇�(x))TŴ

(24)Ψ = −�� + ∇�(x)[f (x) + g(x)u]
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To assess the proposed control scheme's efficacy and 
superiority, a numerical simulation study was carried 
out utilizing MATLAB-Simulink with the corresponding 
blocks shown in Fig. 5 and 6. During the time interval 

(25)Φ = �d
2(x) + xTQx + uTRu

(26)Φ = −WTΨ − �HJI

(27)P = ∫
t

0

e−�(t−�)Ψ(τ)ΨT (�)d�

(28)Υ = ∫
t

0

e−�(t−�)Ψ(τ)Φ(�)d�

(29)û = −
1

2
R−1S(q)T (∇�(x))TŴ

from 15 to 100 s, wheel slippage with the amplitude of 
�amp = 0.2 occurred, characterized by the dynamic equa-
tion given in Eq. 14. The robot’s initial posture was speci-
fied as q =

[
0,0,�∕2, 0

]T . Q = I4,R = 0.01 × I2 and � = 0.1 
are constant parameters utilized in the value function 
defined in (Eq. 9). For the best adaption and robustness, 
other constants related to the adaptive learning method 
were assigned values of � = 50 and � = 100 using a 
trial-and-error process. Altering the matrices of R and 
its coefficients, as well as adjusting the initial values of 
W  , enhances the robustness and efficacy of the control-
ler. The regressor employed in the critic neural network 
is in Eq. 30. The critic neural network used a regressor 
involving the input signals' cross-product. This provided 
a nonlinear mapping of the error signals for the trajectory 
tracking of each state vector. The details of this can be 
found in the NN-Approximator block in Fig. 6, where the 
error signals e1, e2, e3, and e4 correspond to ex, ey, eδ, and 
eθ respectively. Also, the initial values of estimated critic 
NN weights are Ŵ = 20 × [5,1, 1,1, 1,1, 1,5, 1,5].

(30)� =
[
e2
1
, e1e2, e1e3, e1e4, e

2

2
, e2e3, e2e4, e

2

3
, e3e4, e

2

4

]T

3 � Results and discussions

3.1 � Performance of the waypoint‑based 
path‑following controller

The gains of the PID controller for waypoint-based path 
following were fine-tuned using a trial and error approach 

Table 3   Learning-based H∞ Robust Adaptive Controller Pseudo code

Initialize HJI equation parameters and neural network weights
For each time step:
 Generate reference path
 Estimate HJI equation through neural estimator
 Update control signal using adaptive robust controller
 Apply control signal to robot
 Update robot position and orientation

End

1

2

3

4

5

6

7

8
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Fig. 5   Implementation of the reference trajectory path planner in MATLAB Simulink
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within the simulation framework. After multiple iterations 
and adjustments, the PID controller achieved satisfactory 
performance for a row-end turning diameter of 6.0 m, an 
initial robot orientation ( �0 ) of 90 degrees, and a maximum 
linear speed of 2.8 m/s, as shown in Fig. 7.a. Here, the robot 
traveled a path closely aligned with the reference input, 
demonstrating minimal tracking error and effective align-
ment with the desired waypoints. Screenshots of preliminary 
experiments with other scenarios resulting in unstable or 
unsatisfactory responses such as row-end turning diameter 
below 6.0 m, initial orientation of �0 = 0 , maximum linear 
speed of Vmax > 2.8 m/s, or untuned PID gains are also pro-
vided in Fig. 7(b-e). It can be observed that when the PID 
gains were not tuned, slight deviations from the reference 
path could still be observed, depending on the diameter of 
the row-end turning or in scenarios with higher linear veloc-
ity of the robot and introduction of disturbances.

Results of the experiments for offline path following 
with PID controller using different predefined numbers of 

waypoints (P = 2, 3, 4, 5, and 10, labeled as (a) to (e) respec-
tively) are provided in Fig. 8. This includes visualizations 
of the robot's motion, alongside plots of the robot’s steering 
( � ) and orientation ( � ). The primary objective of this experi-
ment was to determine the minimum number of waypoints 
required by the controller to enable stable row-end turnings 
within a 6.0 m distance between two tracks. This minimum 
number of waypoints is particularly crucial not only for 
robot teleoperation from simulation environments, leverag-
ing long-range wireless connectivity (i.e., using a LoRa net-
work) to transmit target waypoints to the robot as explained 
in Shamshiri, et al., (2023), but also for autonomous modes 
of operation.

It can be observed that as the number of waypoints 
increases, the alignment between the robot's traveled path 
and the reference path improves noticeably, particularly with 
4, 5, and 10 waypoints, where the controller demonstrates 
excellent performance, which is desired for navigating 
through narrow row-end turning spaces. This improvement 
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is attributed to reduced tracking errors, enhanced curvature 
negotiation, and improved path coverage. With a higher 
density of waypoints, the robot receives more frequent and 
precise guidance points along the path, which allows for 
finer adjustments in steering commands and velocity con-
trol, resulting in smoother trajectory tracking and orientation 
adjustments as shown in Fig. 8. Moreover, as the number 
of waypoints at the row-end turning increases, the dis-
tance between consecutive waypoints decreases, leading to 
shorter segments of the path, which minimizes the potential 
for cumulative tracking errors, resulting in a more accurate 
reproduction of the reference path. This higher number of 
waypoints enables the robot to navigate through complex 
geometries and tight turns more effectively around curva-
ture changes, hence the controller can anticipate trajectory 
adjustments earlier, and reduce the likelihood of overshoot-
ing or undershooting, contributing to smoother and more 
controlled maneuvering. The plots of steering angle shown 
in Fig. 8 represent the control signal sent to the robot to 
adjust its orientation along the path. It can be seen that as 
the number of waypoints increases from 2 to 10, the steering 
angle plot tends to exhibit smoother transitions and smaller 
fluctuations at the row-end turnings. This is also visible in 
the plot of robot orientation (smoother and more consistent 
orientation). The relationship between the robot's dimen-
sions (wheelbase of 2 m, width of 1.4 m), maximum allow-
able steering angle (25 degrees), and the row-end turning 
radius emphasizes the importance of considering kinematic 
constraints in path planning and controller design. These 
results clearly show that while the proposed PID control-
ler can successfully follow waypoints within certain bounds 
(specifically, a minimum of 4 waypoints), it encounters dif-
ficulties with maneuvers that exceed the robot's physical 
limitations, particularly turning radii below 3 m (as depicted 
in Fig. 7.b), or if the initial orientation of the robot is not 
properly aligned.

The results of online path following experiments with 
the PID controller for various row-end turning shapes are 

demonstrated in Fig. 9, showing plots of the robot’s motion 
overlaid on the reference path, steering angle, linear speed, 
as well as the robot’s lateral and longitudinal trajectories. By 
continuously receiving 1000 waypoints every 0.1 s, the robot 
navigates through paths of varying geometries, including 
square, triangle, trapezoid, and half-circle shapes, all with 
a fixed row-end turning radius of 3.0 m. It can be observed 
that the PID controller has demonstrated satisfactory perfor-
mance in path following for half-circle and trapezoid shape 
row-end turnings, whereas the results are less favorable for 
square and triangle shapes. Here, this difference in perfor-
mance is also attributed to the integral constraints imposed 
by the robot's kinematics and the geometry of the path. 
The gradual curvature of the half-circle shape facilitates 
smoother trajectory tracking, allowing the PID controller to 
make subtle steering adjustments within the constraints of 
the robot's steering mechanism. In contrast, the sharp cor-
ners of square and triangle shapes present challenges for the 
controller, requiring more abrupt changes in steering angle 
(as shown in the plots of steering angle) that may exceed 
the maximum allowable limits or result in suboptimal path 
tracking. In scenarios where the PID controller exhibits 
satisfactory performance, such as with a half-circle shape 
row-end turning, the steering angle plot typically shows 
smooth, gradual changes, indicative of precise steering 
adjustments within the allowable limits. On the other hand, 
in cases where the controller struggles, such as with square 
or triangle shapes, the steering angle plot may exhibit abrupt 
changes or oscillations, suggesting challenges in maintain-
ing desired trajectory tracking. In successful scenarios, the 
speed plot at row-end turnings shows consistent velocity 
profiles, with smooth transitions between acceleration and 
deceleration phases. However, in cases where the controller 
faces difficulties, variations and fluctuations in the speed plot 
are observed, indicating challenges in maintaining optimal 
speed control, particularly during sharp turns or complex 
path geometries. Further analysis of the tracking paths in 
the X and Y directions provides evidence for the controller's 
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Fig. 8   Results of offline path following experiment with PID controller, showing plots of robot travelled path, control input signal (steering 
angle), and the robot response (orientation) with P = 2,3,4,5,10 number of waypoints and row-end radius of 3.0 m
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efficacy in adhering to the reference inputs, that is with trap-
ezoid or half-circle shapes, the robot's motion in both the 
X and Y directions closely corresponds to the respective 
reference paths, showing reduced deviations and minimal 
overshoot or undershoot.

The analysis of the robot's traveled path in the X and 
Y directions compared to the reference data as shown in 
Fig. 10 is used for error analysis and insights into the accu-
racy of online path following experiments. For each path 
experiment, the coefficient of determination (R2) was cal-
culated to represent the variance in the robot traveled path 
from the reference path in order to assess the effectiveness 
of the PID controller in accurately following the desired tra-
jectory. The observed linear relationship suggests that the 
PID controller successfully maintains a consistent trajec-
tory along the reference path, with high R2 values indicating 
strong linear correlations between the robot's actual path 
and the reference path in both the X and Y directions due to 

the controller's ability to adjust robot’s steering, minimizing 
tracking errors and deviations from the desired trajectory. 
It can also be implied that the shape and curvature of the 
path also play a role in influencing tracking accuracy. Paths 
with more gradual curvature or smoother transitions were 
found to be indeed easier for the robot to follow accurately, 
resulting in higher R2 values for the X data compared to 
the Y data. Interestingly, the highest R2 value observed for 
the half-circle path indicates that the controller achieves the 
most accurate path tracking performance for this particu-
lar path geometry, suggesting that the gradual curvature of 
the half-circle shape facilitates smoother trajectory track-
ing, allowing the PID controller to make precise steering 
adjustments that closely align the robot's position with the 
reference path.

The inconsistency observed in R2 values between the X 
and Y data can be attributed to several factors related to the 
robot's kinematics, path geometry, and control strategies. 

Tracking (x,y) Steering angle Robot linear speed Tracking x Tracking y
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Fig. 9   Results of online path following experiment with PID controller, showing plots of robot travelled path, control input signal (steering 
angle), robot linear velocity, and robot tracking in X and Y for row-end turning patterns of square, triangle, trapezoid, and half-circle shapes
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The kinematics of the simulated robot, including its wheel-
base, width, and steering joints influence its ability to main-
tain accuracy in different directions (here better tracking 
performance along X axis is observed). The unexpected 
observation where the R2 value of the square path is slightly 
higher than that of the triangle path can be attributed to the 
predictability of the trajectory that differs between the square 
and triangle paths. Here the robot controller has encountered 
challenges in accurately following the trajectory of the tri-
angle path due to its sharper corners and varying angles, 
leading to increased deviations from the reference path and 
a lower R2 value. These findings highlight the importance 
of path geometry in online path following experiments, with 
certain shapes better suited to the constraints of the robot's 
kinematics. By selecting path shapes conducive to smoother 
trajectory tracking, such as trapezoid or half-circle configu-
rations, users can enhance the performance of PID control-
lers in online path following tasks, particularly for row-end 
turnings with a radius of 3.0 m.

It should be noted that although an offline waypoint-
based path following with the designed PID controller 
offers a practical solution for navigating through orchards 
with narrow row-end space, it does have inherent limita-
tions. Despite its effectiveness in achieving satisfactory 
path tracking performance, this control method struggles 
with managing wheel slippage and other disturbances. 
The challenge of wheel slippage arises due to the dynamic 
nature of the robot’s interaction with the terrain. As the 
robot maneuvers through orchard rows, variations in soil 

conditions or unexpected obstacles can cause wheels to 
slip, leading to deviations from the intended path. While 
the PID controller can adjust steering and velocity com-
mands based on feedback signals (i.e., orientation error 
and distance to the next waypoint), it lacks the capability 
to directly address wheel slippage, making it challeng-
ing to maintain precise trajectory tracking in the presence 
of such disturbance. The achieved row-end turning radius 
of 3.0 m represents a practical limitation for the robot’s 
maneuverability. With a wheelbase of 2.0 m and a width of 
1.4 m, the robot’s physical dimensions impose constraints 
on its ability to execute tight turns, particularly in nar-
row row-end spaces. Additionally, the maximum allow-
able steering angle of 25 degrees for the front wheels 
and – 25 degrees for the rear wheels further restricts the 
robot’s maneuvering capabilities. Our simulation results 
with PID controller showed that below this threshold, the 
robot may become unstable, compromising its navigational 
accuracy and potentially leading to undesirable outcomes 
in real-world applications. These combined constraints 
highlight the challenges in achieving precise row-end turn-
ings with the double-Ackermann steering robot, emphasiz-
ing the need for advanced control strategies to optimize 
path tracking within these limitations.

3.2 � Evaluation of the H∞ controller

The implementation of the H∞ robust adaptive controller 
has significantly improved the robot's ability to follow a 
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predefined path by demonstrating better resistance against 
disturbances, allowing the robot to maintain stability and 
precision, especially during narrow row-end turnings. Plots 
of the simulation results with this controller, including tra-
jectory tracking in the field, robot's position in an x–y direc-
tion, errors between the robot's position and the reference 
path are shown in Fig. 11. It can be observed that despite 
external wheel slippage disturbances, the robot maintains 
robust trajectory tracking while minimizing deviations from 
the reference path, which is required in orchard navigations 
with dynamic changes in the environment. Figure 11.a shows 
the trajectory tracking result of the robot for the half-circle 
shape row-end turning with a radius of 2.9 m. Here the 
orange and black curves respectively represent the refer-
ence and robot trajectories, and the green dots indicate the 
plants’ lines. The trajectory segment where wheel slippage 
occurs is illustrated by the red line, with the start and end 
points denoted by circles. Comparing the robot's motion 
behavior along the x and y axes, as shown in Fig. 11.b and 
Fig. 11.c, respectively, reveals the remarkable superiority of 
this control method over the previous results from the PID 
controller. The absence of overshoots during row-end turns, 
even in the presence of slippage, indicates that the robot does 
not travel excessively along the x-axis. This characteristic 
is of significant practical value, particularly in applications 
like crop scouting or plant monitoring within orchard fields, 
ensuring stable and reliable data collection. Upon examining 
the plots displayed in Fig. 11b–e, it is evident that the pro-
posed controller not only exhibits robustness against exter-
nal disturbances but also displays optimal performance in 
both lateral and longitudinal directions which is attributed 
to benefiting from the power of dynamic programming and 
an intelligent controller.

Further analysis of the error plots (Fig. 11d, e) indicates 
that the robot has accurately tracked the reference trajec-
tory with high precision, however some minor deviations 
are observed, especially around row-end turnings. These 
errors become obvious at the simulation time of t = 15 s, 
as the robot starts to slip, leading to deviation, and show 
their peaks between t = 80 and 110 s. Nevertheless, due to 
the superiority of the H∞ controller over the PID, the robot 
can handle this disturbance and minimize its location to the 
reference path in about 25 s.

Several results are provided regarding the robot's lin-
ear velocity, steering angle, and heading angle, along with 
their respective errors compared to the corresponding ref-
erence values as shown in Fig. 12.a-e. As can be seen in 
Fig. 12.a, the robot's linear velocity remained relatively 
constant throughout the entire simulation, with some vari-
ations observed during the robot's state transitions, such as 
exiting straight-line traversal and initiating turns to enter the 
subsequent lane. This behavior enabled the robot to follow 
the predefined circular path at the end of the trajectory with 
appropriate performance. This phenomenon is supported by 
Fig. 12.b and Fig. 12.c, which demonstrate that the varia-
tions in the steering angle and heading angle, despite their 
continuity (in contrast to the observations with the PID con-
troller shown in Figs. 8 and Figs. 9), assisted the robot's path 
tracking.

Another positive aspect derived from these two plots 
is the superiority of the path tracking approach over way-
point tracking, as evidenced by the smaller variations in the 
robot angle and steering angle over a limited time interval. 
A closer examination of their corresponding error profiles 
(Fig. 12d and Fig. 12e) further highlights the high accu-
racy of the proposed robust controller compared to the 
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PID method. As illustrated, the error profiles of these two 
parameters are in the order of hundredths, indicating the 
controller's precision. In the illustration provided by Fig. 13, 
the process of learning and adaptation of the controller's 
weights during the simulation is depicted. The weights tend 
to converge towards their optimal values, specifically (63.5, 
12.3, 11.7, 12.3, 16.1, 11.4, 9.9, 61.3, 12.4, 61.1). This 
weight adaptation process serves to demonstrate the con-
troller's capacity to adjust its parameters in response to the 
disturbance caused by wheel slippage, ultimately achieving 
convergence to the appropriate values for stable trajectory 
tracking performance.

It should be noted that while the robot platform offers 
the advantage of having a favorable wheelbase-to-width 
ratio for agricultural fields, which significantly enhances its 
stability and reduces the risk of tipping over particularly 
when navigating uneven terrain or executing sharp turns, it 
also exhibits certain limitations in maneuverability and con-
straints. Figure 14 summarized the results of further simula-
tion experiments with half-circle row-end turnings, demon-
strating instability in path following for both PID and H∞ 
controllers when the row-end turning radius approaches the 
minimum turning radius of the robot, set at 2.85 m. Despite 
the nominal difference in achievable turning radii between 
the controllers, both exhibit instability at this critical thresh-
old. This is primarily attributed to the kinematic limitations 
and mechanical constraints of the robot's steering system 
coupled with the controllers' inability to effectively compen-
sate for these constraints, resulting in erratic behavior during 
path following. As explained earlier in Eq. 1, the minimum 
achievable turning radius for this platform is 2.84 m.

When considering the selection of mobile platforms for 
agriculture, it is important to consider the choice of wheel-
base and width with the desired control methods for path 
following, especially when a swarm of robots is used for 
mechanized operation (Albiero et al. 2022). Ultimately, 
the optimal choice depends on balancing these factors to 
successfully meet the specific demands and constraints of 
agricultural tasks.

We compared the PID and H∞ robust adaptive controllers 
based on several criteria including (i) tracking error to deter-
mine the deviation from the reference path, (ii) disturbance 
rejection to highlight the ability of the controller to maintain 
path following under disturbances like wheel slippage, (iii) 
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minimum achievable turning radius to find the smallest turn-
ing radius where each controller maintained stability, and 
(iv) path-following accuracy to by measuring the coefficient 
of determination (R2) between the traveled path and the ref-
erence path. For this purpose, we used two sets of MATLAB 
functions and Simulink blocks, including PID controller 
functions (like pid, sim, and ode45), as well as H∞ control-
ler custom functions within MATLAB Function blocks for 
adaptive dynamic programming and neural network estima-
tions. Our findings indicate that while the PID controller is 
simple and versatile, it struggles to adapt to environmental 
disturbances such as wheel slippage. On the other hand, the 
H∞ robust adaptive controller has demonstrated the abil-
ity to generate nearly optimal real-time control signals to 
effectively counteract these disturbances. This controller 
outperformed the PID controller in all aspects, particu-
larly in maneuvering with a smaller row-end diameter. It 
maintained stability and precision during narrow row-end 
turns and online path tracking. The PID controller, known 
for its simplicity, has lower computational demands. How-
ever, the H∞ robust adaptive controller, despite being more 
computationally intensive due to the need for finding initial 
weights and design matrices, demonstrated superior real-
time performance in terms of tracking, particularly under 
disturbances like wheel slippage. Overall, the combination 
of the steering mechanism and path tracking controller must 
be carefully chosen to optimize the robot's performance, bal-
ancing factors such as accuracy, stability, complexity, and 
cost. Our simulation-based results from the comparative 
study between PID and H∞ controllers highlight the effec-
tiveness of the proposed simulation framework built with 
MATLAB and CoppeliaSim for accelerating the evaluation 
and fine-tuning of controllers for the specific robot under 
study. This approach can be extended to serve as a tool in the 

iterative design process for other mobile platforms, offering 
the opportunity to experiment with diverse design choices, 
including robot platforms, steering systems, and controllers 
for their maneuverability and stability. This virtual inves-
tigation significantly reduced the time and cost constraints 
associated with physical prototyping and afforded insights 
into the complicated dynamics of robotic systems across 
varying operating conditions and scenarios. It can contrib-
ute to enhancing the autonomy and efficiency of orchard 
navigation and provides valuable insights into the optimal 
design and control parameters necessary for the successful 
deployment of agricultural robots in real-world scenarios.

4 � Conclusion

This study presented a comprehensive analysis of offline 
and online path following for a double-Ackermann steer-
ing robot in orchard navigation, using PID and H∞ robust 
adaptive control methods. The proposed approach con-
tributes to the improvement of navigation accuracy during 
row-end turnings with various turning patterns, particularly 
in scenarios where space at the row-ends is limited. The 
PID controller demonstrated its ability to regulate steering 
angle and speed, enhancing navigation between waypoints. 
Increasing waypoint density improved trajectory tracking 
and alignment with the reference path, minimizing track-
ing errors and enhancing navigation precision. Conversely, 
the H∞ robust adaptive controller utilized adaptive dynamic 
programming to optimize trajectory tracking tasks, exhibit-
ing promise in enhancing maneuverability and robustness, 
particularly in the presence of wheel slippage disturbances. 
Through comparative experiments, the PID controller dem-
onstrated satisfactory performance, achieving a minimum 
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Fig. 14   The row-end turning radius R = 2.7 that all controllers were found to be unstable, a PID offline path following, b PID online path follow-
ing, and c H-inf path following
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row-end turning radius of 3.0 m, although with limitations 
in managing wheel slippage and tight turns. In contrast, the 
H∞ controller surpassed the PID, achieving a minimum 
radius of 2.9 m while maintaining stability and precision, 
particularly in online path tracking scenarios. Additionally, 
the study highlighted the significance of balancing factors 
such as accuracy, stability, complexity, and cost in control 
method selection. The research contributes valuable insights 
into agricultural mobile platform design and optimization, 
leveraging simulation frameworks for virtual evaluation of 
diverse design choices, accelerating the design and deploy-
ment of path tracking systems. Ultimately, these findings 
contribute to advancing the autonomy and efficiency of 
orchard navigation, laying a foundation for the successful 
integration of agricultural robots into real-world scenarios. 
Future research may aim to compare the performance of 
other advanced control methods, such as MPC and SMC, 
across different robot platforms and steering mechanisms, 
addressing various environmental disturbances and changes 
in the parameters that affected controller performance.
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