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Latest advances in artificial intelligence, particularly in object recognition and segmentation, provide unprece-
dented opportunities for precision agriculture. This work investigates the use of state-of-the-art AI models,
namely Meta’s Segment Anything (SAM) and GroundingDino, for the task of grape cluster detection in vineyards.
Three different methods aimed at enhancing the instance segmentation process are proposed: (i) SAM-Refine
(SAM-R), which refines a previously proposed depth-based clustering approach, referred to as DepthSeg, using
SAM; (ii) SAM-Segmentation (SAM-S), which integrates SAM with a pre-trained semantic segmentation model
to improve cluster separation; and (iii) AutoSAM-Dino (ASD), which eliminates the need for manual labeling
and transfer learning through the combined use of GroundingDino and SAM. Analysis is conducted on both the
object counting and pixel-level segmentation accuracy against a manually labeled ground truth. Metrics such
as mean Average Precision (mAP), Intersection over Union (IoU), and precision and recall are calculated to
assess the system performance. Compared to the original DepthSeg algorithm, SAM-R slightly advances object
counting (mAP: +0.5%) and excels in pixel-level segmentation (IoU: +17.0%). SAM-S, despite a mAP decrease,
improves segmentation accuracy (IoU: +13.9%, Precision: +9.2%, Recall: +11.7%). Similarly, ASD, although
with a lower mAP, shows significant accuracy enhancement (IoU: +7.8%, Precision: +4.2%, Recall: +4.9%).
Additionally, from a labor effort point of view, instance segmentation techniques require much less time for
training than manual labeling.

1. Introduction phenotyping, disease detection, and yield prediction, demonstrating the
transformative impact of deep learning (Casado-Garcia et al., 2022).
So far, the main disadvantage of deep learning is the need for

massive datasets to train the large number of weights of the entire

The use of Artificial Intelligence (AI) has triggered a paradigm
change in precision agriculture, with the aim of improving crop man-

agement to maximize yields while minimizing environmental impact
(Eli-Chukwu, 2019; Saiz-Rubio and Rovira-Mas, 2020). Specifically,
the incorporation of deep learning into precision agriculture has led
to significant advancements, demonstrating the extensive capability of
this technology to improve crop management and analysis (Liu et al.,
2023; Lin et al.,, 2019). Numerous breakthroughs have been made
possible by the use of convolutional neural networks (CNNs), including
complex methods for tasks like semantic segmentation (Ciarfuglia et al.,
2023) and object recognition (Shen et al., 2023) within agricultural
imagery. These techniques have facilitated automated high-throughput

* Corresponding author.
E-mail address: rosapia.devanna@stiima.cnr.it (R.P. Devanna).

net from scratch. Another significant limitation is the amount and
quality of labeled data. For the network to learn its prediction task,
the data must be properly annotated, which is typically done manually
using image labeling tools. Manual labeling is generally labor-intensive
when using natural images, since scenes can be cluttered and difficult
to interpret even for an expert user. This problem can be mitigated
by pre-trained networks and transfer learning strategies, which allow
knowledge from a similar domain to be transferred in order to perform
new tasks (Sharma et al., 2020). This approach leverages pre-trained
models on large datasets, fine-tuning them for specific agricultural
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tasks (Devanna et al., 2022; Milella et al., 2019). While transfer learn-
ing has reduced the need for extensive data collection and labeling,
it still requires a considerable amount of domain-specific data and
computational resources for training (Najafabadi et al., 2015; Kamilaris
and Prenafeta-Boldd, 2018).

Several studies have explored grape bunch detection using various
deep learning models. For instance, Ghoury et al. (2019) employed
Faster R-CNN for grape detection, achieving significant accuracy but
requiring extensive labeled datasets for training. Shen et al. (2022) uti-
lized Mask R-CNN for instance segmentation of grape clusters, demon-
strating good performance but also highlighting the challenges asso-
ciated with manual annotation of training data. Traditional machine
learning approaches, such as Support Vector Machines (SVMs) and k-
Nearest Neighbors (k-NN) classifiers, have also been applied but often
lack the generalization capabilities of deep learning models (Boateng
et al., 2020). These methods, while effective to some extent, emphasize
the ongoing need for solutions that reduce the dependency on large,
annotated datasets.

Recent advancements in zero-shot models aim to overcome these
limitations by enhancing the generalization capabilities of deep learn-
ing for scene segmentation and object detection tasks, while signifi-
cantly reducing the need for manual labeling. In the context of precision
agriculture, several studies have begun to explore the use of zero-
shot learning techniques. For example, Zhong et al. (2020) applied
zero-shot learning for plant disease identification, enabling models
to recognize diseases without requiring extensive labeled datasets.
Similarly, Williams et al. (2024) utilized zero-shot object detection to
identify leaves in crop fields, reducing the reliance on large annotated
datasets. Further insights about zero-shot networks in precision agri-
culture can be found in Singh and Sanodiya (2023), Tan et al. (2024).
Overall, this approach is particularly advantageous, as it eliminates
the extensive labor and time required for dataset annotation (Liu,
2023; Zhang et al., 2023), which is a major bottleneck in deploying Al
solutions in agriculture. By leveraging zero-shot models, we can achieve
comparable or even superior segmentation performance without the ex-
haustive preparation typically associated with traditional deep learning
approaches, Luo et al. (2016), Van Klompenburg et al. (2020).

Among zero-shot learning models, Meta’s SegmentAnything Model
(SAM) (Osco et al., 2023) has been demonstrated to be particularly
promising for several applications. SAM is a high-quality object mask
generator; it is a transformer-based model that has been trained on a
large dataset of 11 million images and 1.1 billion masks. The model is
designed to perform zero-shot learning, which means it can generate
object masks for images it has never seen before during training. The
model uses a transformer architecture (Lin et al.,, 2022), a type of
deep learning model based on self-attention mechanisms that has been
successfully adopted in various applications, including natural language
processing (Kalyan et al., 2021) and image segmentation (Khan et al.,
2022). The transformer architecture allows the model to handle long-
range dependencies in the data and adapt to new tasks with minimal
fine-tuning (Wang et al., 2023).

Complementary to SAM, GroundingDINO (Cheng et al., 2023) is
an open-set object detector by IDEA-Research. This model introduces
a novel approach to object detection by combining the strengths of
the Transformer-based detector DINO (DlIstillation of knowledge with
No labels) (Zhang et al., 2022) with grounded pre-training (Gan et al.,
2022), enabling it to detect arbitrary objects with human inputs such
as category names or referring expressions. The model is based on
a transformer architecture, similar to the SAM model. It introduces
language to a closed-set detector for open-set concept generalization.
To effectively fuse language and vision modalities, the model is di-
vided into three phases: a feature enhancer, a language-guided query
selection, and a cross-modality decoder for cross-modality fusion. The
GroundingDINO model has shown impressive performance in both
zero-shot and fine-tuned scenarios. It performs remarkably well on
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benchmarks such as COCO, LVIS, ODinW, and RefCOCO/+/g2. It sets a
new record on the ODinW zero-shot benchmark with a mean 26.1 AP.

Research presented in this work aims at evaluating the potential of
zero-shot networks for the task of grape bunch detection and counting
in precision viticulture. In previous work by the authors (Devanna
et al., 2023), a novel approach to grape bunch detection and counting,
hereinafter referred to as DepthSeg, was proposed. It combines seman-
tic segmentation with a depth-based clustering algorithm. DepthSeg
uses visual and depth data provided by an RGB-D sensor for vineyard
image processing. The RGB-D sensor captures vineyard images, which
are processed using a pre-trained deep learning segmentation network
to separate fruit from non-fruit regions. Transfer learning is applied
to fine-tune the network using manually labeled field images. After
isolating the grape regions through semantic segmentation, the algo-
rithm employs depth data to separate individual bunches by detecting
significant depth gradient changes. This also allows for the separation
of adjacent grape clusters by exploiting depth discontinuities among
grape bunch boundaries.

In this work, the DepthSeg method is compared against zero-shot Al
models (Wang et al., 2019) and specifically Meta’s SegmentAnything
Model (SAM) (Kirillov et al., 2023) and GroundingDINO (Liu et al.,
2023). To the best of our knowledge, this is the first work using SAM
and GroundingDINO for the task of automated grape recognition in the
field. Three different methods are proposed: (i) SAM-Refine (SAM-R),
which refines DepthSeg using SAM; (ii) SAM-Segmentation (SAM-S),
which integrates SAM with a pre-trained semantic segmentation model
to improve cluster separation; and (iii) AutoSAM-Dino (ASD), which
eliminates the need for manual labeling and transfer learning through
the combined use of GroundingDino and SAM. The main contribution
of our research is not just to improve grape bunch segmentation but
also to demonstrate how zero-shot models can be effectively used to
save significant time and resources that would otherwise be spent on
dataset labeling and training. This is a considerable improvement over
traditional methods since it enables the rapid deployment of accurate
grape detection systems with little upfront work. Our experimental
results show that zero-shot models can produce outcomes that are
comparable to or better than existing approaches, indicating that they
have the potential for practical applications in precision viticulture. The
object counting and pixel-level segmentation accuracy are analyzed in
comparison to a manually labeled ground truth. To this end, a dataset
comprising RGB images and corresponding depth maps acquired by a
farmer robot in a commercial vineyard in Southern Italy are used. The
dataset has been made publicly available on GitHub at https://github.
com/ispstiima/ECSDVineyardDataset.

The remainder of the paper is structured as follows. Section 2 de-
scribes the materials and methods, detailing datasets, and the proposed
instance segmentation techniques. It also describes the metrics used
for performance evaluation, such as mean Average Precision (mAP),
Intersection over Union (IoU), and precision-recall analysis. Section 3
and 4 discuss the experimental results, providing a critical assessment
of the techniques against the manually labeled ground truth. The paper
concludes with a discussion of the findings, their implications for the
field, and possible future research directions.

2. Materials and methods

In this section, first, the acquisition system, using a custom-built
ground vehicle equipped with an RGB-D sensor is described, along with
the experimental setting and the ground truth generation. Then, inno-
vative Al models for image segmentation and grape bunch detection
are presented. Finally, the performance metrics used to assess their
effectiveness are introduced.
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Fig. 1. The Polibot equipped with an Intel RealSense D435 imaging system: (a) navigating through vineyard rows, and (b) the camera mounted on the Polibot showing the data

acquisition setup.
2.1. Data acquisition

The data for this study was collected using the Polibot, a custom-
built research ground vehicle designed for high mobility over challeng-
ing terrains (Grazioso et al., 2023). The Polibot features an articulated
suspension system capable of handling heavy loads, isolating vibra-
tions, and navigating rough terrain, much like a multi-legged insect.
The control and acquisition systems are implemented under the Robot
Operating System (ROS), providing a flexible and robust framework
for operation. The robot is equipped with an RGB-D camera, the Intel
RealSense D435 imaging system, which is used for the collection of
visual and depth data. Data collection was conducted in a commercial
vineyard with Negroamaro red wine grape variety, located in the
province of Brindisi (Italy).

The datasets were acquired by guiding the robot throughout three
parcels within the vineyard plot. Each parcel spanned two rows and
comprised ten plants, with five plants per row. The robot vehicle was
guided along different rows, see Fig. 1(a), while the camera, mounted
1 meter above the ground, captured lateral views from an approximate
distance of 1.5 m, see Fig. 1(b). The images were recorded at a
resolution of 1280 x 720 and a frame rate of 6 Hz. This frame rate was
selected as an optimal balance between computational load and grape
coverage, considering that the farmer robot travels at an average speed
of about 0.5 m/s. We conducted data acquisition over multiple seasons,
capturing images under a wide range of weather conditions, including
sunny, partially cloudy, and cloudy days. The vineyard environment
was completely uncontrolled, with varying levels of sunlight exposure
and natural obstructions due to leaves and branches. Such a variety
of conditions allowed us to assess the robustness and scalability of the
proposed methods under real-world scenarios. Among the plants in the
vineyard rows, fifteen were selected for this study.

2.2. Data labeling

For the establishment of a replicable ground truth, a manual label-
ing process was undertaken on a set of 30 images depicting vine plants,
encompassing a total of 238 instances. Each grape bunch within the im-
ages was individually labeled to ensure instance-level precision. The la-
beling was performed using the annotation tool LabelMe (Anon, 2023),
enabling the assignment of a unique identifier to each grape cluster.
This dataset serves as a benchmark for evaluating the performance of
the segmentation algorithms developed in this study.

2.3. Instance segmentation methods

Three approaches are developed aimed at enhancing instance seg-
mentation of grape bunches while minimizing the need for extensive
data labeling and model training, i.e.:

1. SAM-Refine (SAM-R): This approach utilizes SAM to refine the
clustering results obtained from a previously proposed depth-
based clustering algorithm (Devanna et al., 2023). While this ap-
proach begins with a pre-trained semantic segmentation model
requiring some labeled data and training, it eliminates the need
for additional instance-level labeling and training. In SAM-R,
depth information from an RGB-D camera is used to calculate
the centroid positions of grape bunch clusters. This is achieved
through a depth-based clustering algorithm that identifies clus-
ters by detecting significant changes in depth values, effectively
separating adjacent grape bunches based on depth discontinu-
ities. These centroid positions are then used as point prompts
for SAM, which generates precise instance masks for each grape
bunch. By integrating SAM’s zero-shot capabilities with depth
data, we enhance the accuracy of instance segmentation without
the need for instance-level labeling or training.

2. SAM-Segmentation (SAM-S): This method focuses on the seg-
mentation masks generated by the semantic segmentation net-
work. It employs SAM’s ability to perform instance segmentation
directly from semantic masks without utilizing depth data. Simi-
lar to SAM-R, it starts with a pre-trained semantic segmentation
model but eliminates the need for depth information, reducing
reliance on additional sensors. SAM-S reduces the effort required
for instance-level data labeling and model training by utilizing
SAM to separate individual grape bunches from the semantic
segmentation output, thus simplifying the process compared to
traditional methods.

3. AutoSAM-Dino (ASD): This method fully leverages zero-shot
models by combining GroundingDINO to autonomously detect
grape bunches without any pre-existing data or prior training,
and subsequently utilizing SAM to generate precise instance
masks from the detected bounding boxes. ASD completely elim-
inates the need for manual labeling and transfer learning for
both semantic and instance segmentation, and does not require
depth information, highlighting the potential of fully zero-shot
models to minimize the overall effort in data preparation, model
development, and reliance on additional sensor data.
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Fig. 2. Comparison of vineyard imagery: (a) Original RGB image, and (b) Clustering result using the depth-based algorithm.

Table 1

Comparison of instance segmentation methods in terms of data requirements and effort.

Method Semantic Instance-Level Depth Data Manual Labeling Model Training
Segmentation Labeling Required Required Effort Effort
Training Required
DepthSeg Yes No Yes Medium High
SAM-R Yes No Yes Medium Medium
SAM-S Yes No No Medium Medium
ASD No No No Low Low

These methods are compared against our original technique, re-
ferred to as DepthSeg, which combines a semantic segmentation net-
work with a computer vision algorithm that separates instances based
on depth data from an RGB-D sensor.

To better illustrate the differences among the methods in terms of
data requirements and effort, a comparison is provided in Table 1.

In the following, each approach will be described in detail. The
sample image of Fig. 2(a) will be used as a running sample case
throughout the section for comparison of the outcomes achieved by the
different segmentation techniques.

2.3.1. SAM-Refine (SAM-R)

This approach employs SAM’s predictive capabilities to refine in-
stance masks generated by the originally proposed depth-based clus-
tering algorithm named DepthSeg (Devanna et al., 2023). In Fig. 2(b)
the result of DepthSeg is shown for the running test case of Fig. 2(a).
DepthSeg uses a pre-trained semantic segmentation network (e.g.,
DeepLabV3+) refined with in-field images, to separate fruit from non-
fruit regions. Successively, the depth map is employed to define each
grape cluster based on depth gradient discontinuities. It can be noticed
that while most grape instances are correctly identified, contours are in
some cases imprecise, leading to misdetection of grape shape. SAM-R
introduces a refinement process that aims at improving the result of
DepthSeg, enhancing the delineation of object contours.

The processing stages of SAM-Refine for the running sample case are
shown in Fig. 3. The process begins with the creation of bounding boxes
around the instance masks centroids generated by DepthSeg, which
are then fed as input into SAM’s predictor (see Fig. 3(a)). Utilizing a
U-Net architecture, SAM’s predictor first produces a coarse mask (see

Fig. 3(b)), which is then refined through a convolutional network to
produce the final object mask for each grape bunch (see Fig. 3(c)).
It can be noticed that the bunch shape is improved with respect to
DepthSeg results. This may be beneficial for applications such as shape
reconstruction or biomass estimation.

2.3.2. SAM-Segmentation (SAM-S)

The second approach exploits the capability of SAM’s mask genera-
tor of automatically segmenting the visual scene into clusters. In order
to detect only clusters pertaining to the grape class, grape pixels are
first isolated based on semantic segmentation (see Fig. 4(a)). Then, the
SAM mask generator is applied to identify single grape instances (see
Fig. 4(b)).

Let us consider that, while some grape bunches may not be detected,
this method offers significant advantages by eliminating the need for
depth data and centroid calculations. This simplification reduces the
data acquisition burden and computational requirements, making it
more feasible for deployment in various agricultural settings. The trade-
off between detection accuracy and resource efficiency is an important
consideration, and SAM-S provides a balanced approach that aligns
with our objective of minimizing extensive data labeling and model
training.

2.3.3. AutoSAM-Dino (ASD)

The third approach explores the synergistic application of Ground-
ingDINO and SAM for instance segmentation. Upon receiving the
keyword grape, GroundingDINO autonomously identifies and creates
bounding boxes for grape bunches (see Fig. 5(a)). These are then
fed into SAM’s predictor, which generates instance masks for each
identified bunch, as shown in Fig. 5(b). This strategy capitalizes on the
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(c)

Fig. 3. SAM-R workflow: (a) Bounding box seeds from the depth-based clustering algorithm, (b) Coarse masks generated by SAM’s predictor, (c) Overlay of the refined masks on

the original RGB image.

(a)

(b)

Fig. 4. SAM-S workflow: (a) masked RGB image used as input to SAM, (b) segmented image with SAM’s outcome of grape clusters overlaid on the original RGB.

advanced capabilities of both models to expedite the object detection
and the instance segmentation process, significantly reducing the time
and resources typically required for data preparation, such as data
collection, labeling, and model training. While this method offers
considerable time savings and operational efficiency, it also presents
limitations in terms of fine-tuning and adaptability. Unlike algorithmic
approaches where the user can modify parameters or intervene directly
in the processing steps, the use of pre-trained models like Ground-
ingDINO and SAM provides less flexibility. If the models do not perform
as anticipated, the user has limited options for adjustments, as the in-
ternal workings of these models are not as accessible for modifications.
This lack of control can be a trade-off for the convenience and speed
of using such advanced, pre-trained systems.

2.4. Metrics for performance evaluation

A comprehensive evaluation framework is employed to assess the
performance of the proposed models against the DepthSeg algorithm,
serving as a benchmark. The framework encompasses quantitative
metrics aimed at evaluating the efficacy of the techniques in enhanc-
ing results, with respect to both their object detection capability and
pixelwise instance segmentation accuracy.

Initially, the assessment considers how well the approach identifies
objects of interest, classifying each instance detected by the model as
a True Positive (TP) or False Positive (FP) irrespective of the ground
truth mask. This binary appraisal necessitates a rigorous method to

determine TP instances, which involves the association of predictions
to their corresponding ground truth targets.

This is a challenging task that necessitates a clear definition and
identification process. Inspired by methodologies available in the liter-
ature (Padilla et al., 2020), the adopted approach involves calculating
the Intersection over Union (IoU) for each predicted instance against
every ground truth instance. Hence, for an image X with n predicted
instances and m ground truth instances, this calculation results in an
m x n matrix of IoU values, offering a numerical representation of the
overlap between predicted and actual instances, as can be seen in Fig. 6.
A matching algorithm is devised to associate a predicted instance with
its actual ground truth counterpart. This algorithm addresses ambigu-
ous and special cases, allowing the selection of an overlap threshold
as the primary discriminator for determining TP from FP instances. In
cases where multiple predictions correspond to a single ground truth
instance, the prediction with the highest overlap is deemed TP, while
others are marked as FP. The threshold for the minimum IoU necessary
for an instance to be considered TP is set at approximately one-third of
the predicted instance’s surface area (IoU > 0.3).

Based on TPs and FPs values, precision and recall metrics are
cumulatively computed across all instances within the test dataset. The
average precision for each instance is calculated and the precision—
recall curve is constructed. The mean Average Precision (mAP) is then
determined using the 11-point interpolation technique.

Subsequently, the instance segmentation performance on TPs at
pixel level is evaluated using the following metrics:
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(c)

Fig. 5. ASD workflow: (a) Initial detection by GroundingDINO, utilizing the keyword grape to autonomously create bounding boxes around grape clusters, (b) Integration of SAM’s
predictive capabilities, refining the bounding boxes from GroundingDINO into precise instance masks for each grape cluster, (c) Final segmentation results overlaying the refined

instance masks on the original RGB image.
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Fig. 6. Intersection over Union (IoU) matrix visualization for Fig. 2(b), a DepthSeg instance segmentation result, consisting of 9 predicted instances (columns) and 10 ground truth
instances (rows). Each cell’s color intensity represents the IoU score, with colder hues indicating greater overlap between predicted and actual instances. Red circles highlight IoU
values that exceed the 0.3 threshold, designating them as potential True Positives (TP) in the object detection evaluation process. This matrix effectively encapsulates the model’s
performance in identifying and delineating objects within the image, facilitating a quantitative analysis of detection accuracy.

« IoU: reflects the exactness of the segmentation, with a higher IoU
indicating a more accurate shape.

+ Precision: assesses the fraction of pixels correctly identified as
part of the instance against the total predicted pixels.

» Recall: evaluates the ability of the model to include all actual
instance pixels in its prediction.

This pixel-level analysis reveals the performance of each approach
in segmenting every instance. By calculating these metrics for each
instance and then averaging them, the mean IoU, Precision and Recall
for all instances are also calculated.

In order to visually represent the performance of the different
methods, a representation such as the one shown in Fig. 7 is adopted.
Specifically, for object detection, a bounding box visualization is used
following a color-coded scheme (see left column of Fig. 7), i.e.:

* Yellow boxes denote the ground truth instances.

+ Green boxes represent the predicted instances correctly identified
as True Positives (TP).

» Red boxes indicate the False Positives (FP), where the predicted
instances did not correspond to the ground truth.
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Fig. 7. In the columns, from left to right: i) Bounding box comparison between the ground truth (yellow) and the SAM-Refine model predictions, with true positives (TPs) in
green and false positives (FPs) in red. ii) Edge-based representation of grape cluster boundaries, providing a clear view of how the SAM-Refine model delineates the shapes of
TPs against the ground truth. iii) Segmentation evaluation focusing on TPs. White pixels represent the correctly segmented TPs, magenta pixels indicate false positives (FPs), and

green pixels show the regions of false negatives (FNs).

Since dense clustering or overlapping boxes could compromise the
clarity of this representation, an alternative graphical representation is
devised, which traces the contours of each instance (see central column
of Fig. 7). Note that this is not intended to demonstrate the model’s
segmentation capability.

In addition, for visualization of instance segmentation at pixel level,
segmentation result overlap is shown as follows (see right columns of
Fig. 7):

» Correctly identified pixels are displayed in white, signifying True
Positives (TP).

+ Pixels erroneously included in the predicted mask are highlighted
in magenta, representing False Positives (FP).

+ Pixels incorrectly excluded from the predicted mask are marked
in green, indicating False Negatives (FN).

3. Experimental results

This section provides a quantitative evaluation of the proposed
instance segmentation techniques based on the metrics presented in
Section 2.4. In Fig. 8 the precision-recall curves are shown for each
method. From them, the mAP has been evaluated, and the results are
reported in the bar chart of Fig. 9.

DepthSeg establishes a baseline, achieving a mAP of 0.590. SAM-
Refine (SAM-R) demonstrates a marginal improvement in mAP to
0.593, a +0.5% increase (see Fig. 10), suggesting that refining in-
stance masks with SAM can slightly enhance object detection accuracy
compared to the depth-based clustering algorithm. In contrast, SAM-
Segmentation (SAM-S) shows a decrease in mAP to 0.515, leading to
a —12.7% reduction, and AutoSAM-DINO (ASD) decreases further to
0.438, marking a —25.8% change.

At pixel segmentation level, all three approaches show compara-
ble performance in terms of IoU, with SAM-R and SAM-S marginally

surpassing DepthSeg. This suggests a similar ability to achieve overlap
between the predicted masks and the ground truth. As regards precision
and recall performance, SAM-R attains the highest precision, underscor-
ing its effectiveness in correctly identifying instance pixels, while ASD
exhibits a significant increase in recall, indicating a more comprehen-
sive inclusion of actual instance pixels in its predictions. Visual insights
about segmentation results are depicted in bar charts in Figs. 11 and
12. In summary, DepthSeg, serving as the baseline, demonstrated a
good performance with a mAP of 0.590, suggesting that the depth-
based approach retains its relevance in object detection. However, the
marginally improved mAP of 0.593 achieved by SAM-Refine (SAM-R)
indicates that even subtle algorithmic refinements can enhance object
detection accuracy. The slight reduction in mAP observed in SAM-
Segmentation (SAM-S) to 0.515 and further to 0.438 in AutoSAM-Dino
(ASD) raises some considerations. While at first glance, this may appear
as a regression in model performance, the underlying reasons are mul-
tifaceted. The SAM-S model, which does not use depth data, indicates
that less information does not necessarily lead to lower performance,
given that the segmentation accuracy in terms of IoU has seen an im-
provement. This suggests a trade-off between the number of instances
detected and the quality of segmentation. ASD’s performance is par-
ticularly noteworthy. Despite a lower mAP, it demonstrates enhanced
accuracy in segmentation, which is evidence of the model’s zero-shot
semantic segmentation capabilities without requiring a training stage.
However, the precision-recall trade-off inherent in this model suggests
a more complex narrative. While ASD can maintain high precision
across a range of instances, the steep decline beyond a certain recall
threshold reflects its limitations in clustering performance, potentially
leading to many true instances going undetected.

4. Discussion

Here, results obtained at both object detection and pixel segmen-
tation levels are discussed in more detail, with reference to additional
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Fig. 8. Precision-Recall Curves illustrating the performance of each segmentation model: DepthSeg, SAM-R, SAM-S, and ASD—used, in the evaluation of instance segmentation
methods. Each curve depicts the relationship between accumulated precision (y-axis) and accumulated recall (x-axis), contributing to the computation of the model’s mean Average
Precision (mAP). The curves encapsulate the comprehensive detection capabilities of each model, with the area under each curve being indicative of the overall precision and
recall balance. The quantified mAP from these curves serves as a benchmark for comparison across the models.
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Fig. 9. Bar chart illustrating the mean average precision (mAP) for each segmentation method. DepthSeg serves as the mAP benchmark, while SAM-Refine (SAM-R) shows a
marginal improvement. SAM-Segmentation (SAM-S) and AutoSAM-DINO (ASD) exhibit reductions in mAP.
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Fig. 10. Percentage change in mean average precision (mAP) relative to DepthSeg. Positive values indicate an improvement over the benchmark, with SAM-Refine (SAM-R)
registering a slight increase. Negative values denote a decrease, as seen with SAM-Segmentation (SAM-S) and AutoSAM-DINO (ASD).
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Fig. 11. Comparative analysis of Intersection over Union (IoU), precision, and recall metrics for true positive instances across the segmentation approaches. Each method’s
performance is evaluated, revealing their relative strengths and weaknesses in instance segmentation accuracy.
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improvement or decline in segmenting instances accurately.
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Fig. 13. Comparative Visualization Under Poor Lighting. These images illustrate the performance of the four segmentation models, where DepthSeg and SAM-R utilize depth data
to discern clusters, and ASD demonstrates enhanced segmentation despite challenging lighting conditions.

sample cases obtained under different conditions. Specifically, the in-
fluence of environmental lighting, quality of depth data, and accuracy
of semantic segmentation are analyzed.

4.1. Influence of lighting on model performance

In precision agriculture, the role of lighting conditions is paramount,
as it directly impacts the quality of visual data and, consequently,
the performance of segmentation models. DepthSeg and SAM-Refine
(SAM-R) use depth data, which becomes particularly beneficial under
poor lighting. This advantage is evident in their ability to discern
clusters that are not distinguishable in standard RGB imagery due to
low illumination levels. It suggests that depth data can serve as a
critical supplement to visual information when light is deficient. An
example is shown in Fig. 13, where SAM-S and ASD fail to separate
some grape instances due to poor RGB information.

In addition, SAM-S suffers when initial semantic segmentation qual-
ity is compromised, which can be further worsened by inadequate light-
ing, while AutoSAM-Dino (ASD) demonstrates a considerable improve-
ment in segmentation under these challenging conditions. Despite the
less effective isolation of individual instances, ASD’s segmentation qual-
ity is notable, signifying the potential of advanced zero-shot learning
models to adapt to variable lighting in agricultural environments.

The performance of the approaches for this test case are visually
represented in Fig. 14.

For DepthSeg, the yellow bounding boxes of the ground truth over-
lap with the model’s green true positives, indicating a moderate success
rate in accurately identifying clusters. However, there is a false positive
instance that did not pass the IoU threshold and has been considered
a false positive due to the low overlap with its respective ground truth
(highlighting the role of initial semantic segmentation quality, which
can be compromised without adequate lighting.).

10

SAM-Refine (SAM-R) exhibits an improvement, with green boxes
more aligned to the ground truth. This alignment denotes SAM-R’s
enhanced ability to refine segmentation, leveraging depth information
effectively even in low-light scenarios. The colored edges show a closer
adherence to the true shapes of clusters, underscoring the precision of
SAM-R’s refinement process.

SAM-Segmentation (SAM-S), on the other hand, shows a scatter-
ing of both green true positives and red false positives. The edges,
while outlining the instances, occasionally merge with adjacent clus-
ters, reflecting the model’s struggle with distinct segmentation in poor
lighting.

AutoSAM-Dino (ASD) demonstrates a more consistent overlay of
green true positives, suggesting its robustness in challenging lighting
conditions. However, the magenta pixels of false positives within the
masks and occasional large green bounding boxes enveloping multiple
ground truth clusters indicate instances where ASD’s zero-shot capabil-
ities have misinterpreted adjacent clusters as a single instance due to
the lack of visual clarity.

4.2. Robustness to noisy depth data

Corrupted or noisy depth data represent another condition that may
decrease the performance of the methods relying on detph, i.e. Depth-
Seg and SAM-R. This can be seen for the sample case of Fig. 15. It can be
noticed that DepthSeg leads to an over-fragmenting of the biggest clus-
ters. This fragmentation underscores the challenges of relying heavily
on depth data that may not always be accurate.

SAM-R partially mitigates the inaccuracies introduced by erroneous
depth data through a refinement of the cluster shapes, thus showing
a better capability to filter out noise and enhance the reliability of
instance segmentation.
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Fig. 15. Segmentation with Noisy Depth Data: Displayed here are the instances of grape clusters identified by each model, with SAM-R’s refinement capabilities being notably
robust against noisy depth data.
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Fig. 16. Visual instance segmentation results representation, evaluated under noisy depth condition.

The visual representation of the segmentation models in the case of
noisy depth data reported in Fig. 16 and provide a clear depiction of
the behavior of each model.

For DepthSeg, the green bounding boxes show where the model
has correctly identified clusters, aligning with the yellow ground truth.
However, the presence of red false positives, especially in cases where
bounding boxes are oversized or incorrectly placed, highlights the
model’s susceptibility to noise in the depth data. These red false posi-
tives suggest an over-segmentation tendency, where DepthSeg is inter-
preting noise as separate instances.

SAM-Refine (SAM-R) displays a marked improvement. Its bounding
boxes are more accurately placed, and the edges are more refined,
closely tracing the true shapes of the grape clusters. This precision in
defining the boundaries of each cluster, even in the presence of noise,
showcases SAM-R’s effective noise-filtering capabilities. The improved
overlap in the mask overlays further corroborates this assumption.

For this test case, the results of SAM-S and ASD, which are not
affected by depth, are also shown in Figs. 15 and 16 for the sake of
completeness.

4.3. Semantic segmentation quality

The dependency on initial semantic segmentation quality is a com-
mon thread across DepthSeg, SAM-R, and SAM-S. An example is shown
in Fig. 17. It can be seen that DepthSeg, SAM-R, and SAM-S perform
poorly due to the loss of multiple grapes in the initial segmenta-
tion phase. However, SAM-R leads to better individual grape cluster
delineation, indicating its effectiveness in enhancing pixel level seg-
mentation. ASD’s independence from the DepthSeg pipeline allows
it to excel beyond the limitations faced by the other models. Being
independent of the initial segmentation’s quality, ASD achieves the best
results.

With reference to Fig. 18, it can be noticed that in the cases of
DepthSeg, SAM-R, and SAM-S, the green bounding boxes that corre-
spond to true positives are confined to the areas output by the initial
segmentation. This reveals their dependency on the quality of the initial

segmentation cues, with the number of true positives being limited to
the instances first recognized in the semantic segmentation phase.

AutoSAM-Dino (ASD), in contrast, demonstrates its capability to
transcend the limitations of the initial segmentation quality. The bound-
ing boxes and masks for ASD are not constrained by the initial seg-
mentation boundaries, as evidenced by the presence of true positive
detections even outside the regions identified by the initial semantic
segmentation. This indicates ASD’s ability to independently identify
and segment instances based on its zero-shot learning, unaffected by
any prior segmentation errors or omissions.

4.3.1. Qualitative analysis

In this section, a qualitative analysis of the proposed approaches is
performed, evaluating the required effort for training and implementa-
tion as well as the degree of transparency of the model parameters to
the user.

Effort Evaluation:

The operational deployment of Al models extends beyond numeri-
cal accuracy; it encompasses the practicality of their implementation.
The following evaluation metrics are defined as indicators of resource
requirements of each model:

Data Requirement: This metric evaluates the extent of data prepara-
tion necessary for the successful application of the segmentation model.
It is rated on a scale from 1 to 3, where:

+ 1 (Low): No new data acquisition or labeling is required, allowing
for immediate deployment.

+ 2 (Medium): New data collection and manual labeling are neces-
sary, indicating a moderate need for resources.

» 3 (High): New data collection, labeling, and the incorporation of
additional data types, such as depth information, are required,
reflecting significant resource investment.

Preparation Time: This metric assesses the time investment required
to set all the segmentation models until they reach operational efficacy.
It is also rated on a scale from 1 to 3, where:
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Fig. 17. Impact of Initial Segmentation Quality: The visual contrasts here highlight the dependency of DepthSeg, SAM-R, and SAM-S on the quality of initial segmentation and
the superior performance of ASD in segment the scenes.

Fig. 18. Visual instance segmentation results representation, evaluated under poor semantic segmentation condition (DepthSeg, SAM-R, SAM-S).
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Table 2

Summary of effort and transparency scores for each segmentation method.
Method Effort Determinants Effort Transp.

Data Req. Train. Time Prep. Complex. Score

DepthSeg 3 3 3 3 2
SAM-R 3 3 3 3 2
SAM-S 2 2 2 2 3
ASD 1 1 1 1 3

* 1 (Low): Models employ zero-shot detection and segmentation
techniques without the need for additional training time.

+ 2 (Medium): A consistent training time is required, including the
manual labeling of ground truth training data.

+ 3 (High): A consistent training time is required, including the
manual labeling of ground truth training data and the potential
development of on-purpose algorithms.

Preparation Complexity: This metric indicates the complexity of the
pre-processing for segmentation deployment. It spans a scale from 1 to
3, where:

* 1 (Low): The model requires minimal preparatory steps, simpli-
fying the deployment process.

* 2 (Medium): Moderate preparatory activities are needed, which
may involve some level of data processing or parameter tuning.

» 3 (High): Intensive preparation is imperative, which could entail
extensive manual labeling or algorithmic customization.

The final effort score for each method is computed by averaging the
individual scores assigned to these criteria, thus yielding an aggregate
indicator of the resource requirement.

Transparency Evaluation:

This score is related to the transparency of the models, i.e., the
degree to which a user can intervene in the model’s parameters and
decision-making process. It is measured on a scale from 1 to 3, where:

» 1 (High): The model operates with full transparency, offering the
user complete access to the algorithms and the ability to make
modifications as needed.

* 2 (Medium): There exists a semi-transparent operation with a
moderate level of understanding and control.

¢ 3 (Low): The model functions are “black boxe” with internal
processes being largely inaccessible or not readily interpretable
by the user.

In Table 2 an overview of the effort and transparency scores for each
segmentation method examined in the study is reported. Incorporating
these operational aspects into the discussion enriches our understand-
ing of the models’ real-world applicability. It provides information that
goes beyond quantitative metrics analysis, highlighting the importance
of practical aspects, which are critical in precision farming contexts.

The effort and transparency scores, when coupled with the quan-
titative metrics, provide an overall evaluation of each method, as can
be seen in Fig. 19. DepthSeg and SAM-R, despite their high resource
requirements, offer substantial control and adaptability, which could
be useful in complex agricultural scenarios. SAM-S, with its moderate
resource requirements, represents a middle ground. ASD emerges as
the most operationally efficient model, suggesting its potential as a
quick-deployment tool in environments where speed and efficiency are
prioritized over user control.

In conclusion, this integrated view allows for informed decision-
making when selecting and deploying segmentation models. It under-
scores the need for models that not only perform well in terms of
numerical accuracy but also adhere to the real operational conditions
in precision agriculture settings.
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5. Conclusion

In this work, three novel Al-based approaches for in-field grape
instance segmentation were proposed, referred to as SAM-Refine (SAM-
R), SAM-Segmentation (SAM-S), and AutoSAM-Dino (ASD), and com-
pared with a previously proposed method named DepthSeg.

All models integrate the latest zero-shot learning techniques to
boost the detection and segmentation of grape bunches using images
provided by a farmer robot’s on-board RGB-D camera. The ultimate
goal is to provide information for agricultural tasks such as growth
monitoring and yield estimation.

The performance analysis of the different approaches encompassed
several aspects, concerning their efficacy and practical impact on en-
hancing object detection and semantic segmentation.

Experimental results obtained for a dataset acquired in a commer-
cial farm in southern Italy uncovered significant variations in their
performance within the specific realm of precision agriculture.

DepthSeg, the benchmark model developed using conventional deep
learning segmentation networks and computer vision techniques, in
conjunction with depth data for clustering, demonstrated good object
detection capabilities. This is crucial for tasks such as fruit counting,
thereby facilitating applications related to yield estimation and eval-
uation, with a mean Average Precision (mAP) of 0.590. However, its
instance segmentation ability is not optimal, presenting challenges in
applications where accurate fruit shape information is essential for
phenotyping.

In comparison with DepthSeg, SAM-R, integrating the depth-based
segmentation technique with the Meta’s SAM model, showed slight
improvements in counting and a substantial enhancement in segmenta-
tion. Conversely, SAM-S and ASD, despite their innovative approaches
and commendable segmentation values, exhibited a decrease in mAP,
indicating a compromise between object detection accuracy and seg-
mentation quality.

The influence of external factors, such as lighting conditions and
data quality, on model performance was also investigated. Depth data-
based models, like DepthSeg and SAM-R, demonstrated good perfor-
mance under suboptimal lighting conditions, benefiting from the ad-
ditional depth information. This aspect is particularly advantageous
in precision agriculture, where environmental variability is common.
Conversely, models relying exclusively on visual data, such as SAM-S
and ASD, encountered challenges in similar conditions. However, if the
depth data is compromised or excessively noisy, DepthSeg and SAM-R
are significantly affected, leading to errors in cluster detection.

It is noteworthy that the approaches of DepthSeg, SAM-R, and
SAM-S share a common dependency on the quality of prior semantic
segmentation performed on RGB data using deep learning networks.
Hence, they are networks retrained through transfer learning on spe-
cific datasets, which might lack substantial generalization capabilities
under complex conditions. This is in contrast to the strength of SAM,
and thus the ASD approach, which does not rely on prior semantic
segmentation networks but only on SAM and GroundingDino models.

Furthermore, the operational aspects of deploying these models,
including effort and transparency evaluations, were examined. ASD
emerged as a model with low operational effort but low transparency,
indicating its suitability for rapid deployment in scenarios where effi-
ciency is prioritized. In contrast, DepthSeg and SAM-R, while demand-
ing higher operational effort, offered greater control and adaptability,



R.P. Devanna et al.

Computers and Electronics in Agriculture 229 (2025) 109611

General Performance vs. Qualitative Metrics
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Fig. 19. Summary of effort and transparency scores for each segmentation method. The table quantifies the data requirement, training time, and preparation complexity, with a
resulting effort score and transparency level. Lower effort scores denote less resource investment, and higher transparency scores indicate a more user-friendly and controllable

process.

which could be crucial in complex agricultural settings. The consistent
performance of our models across diverse conditions demonstrates their
potential scalability to larger areas and different times or seasons. The
elimination of extensive data labeling and model training requirements
makes our approach highly applicable for operational uses in preci-
sion agriculture. By effectively handling the variability inherent in
uncontrolled environments, our methods can be integrated into existing
agricultural workflows, facilitating tasks such as yield estimation, crop
monitoring, and targeted interventions.

In conclusion, this study has conducted a comprehensive compar-
ative analysis of various Al-based segmentation methods, shedding
light on their applicability, efficiency, and practicality in real-world
precision agriculture scenarios. The results underscore the potential of
optimizing different AI models to address specific agricultural sector
challenges, thereby enhancing crop management, yield optimization,
and contributing to environmental sustainability.
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