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ABSTRACT As the global population increases, so does the number of vehicles on our roads, which makes
maintenance of the road infrastructure critical for safe and efficient transportation. A significant challenge
in road maintenance is to address surface defects, such as potholes, which pose the risk of accidents and
vehicle damage. This work proposes an automated solution to improve the detection and aid in the repair of
potholes, thus reducing the reliance on manual inspections and reducing the overall maintenance time. Our
methodology integrates LiDAR (Light Detection and Ranging) with RGB (Red, Green, and Blue) camera
data to enhance depth information for accurate pothole characterisation. Geo-positioning using the GNSS
(Global Navigation Satellite System) allows for precisemapping of detected potholes. AnRGB image dataset
created by aggregating publicly available pothole image datasets was used to train the object detection
model YOLO (You Only Look Once) implemented in this work. Using this data, the models YOLOv5,
YOLOv6, YOLOv7, and YOLOv8 were trained and their performance analysed. Remarkably, YOLOv5
showed the best implementation performance during the training phase, and it was lately selected for real time
deployment. The data provided by the LiDAR sensor were used to compute the area, volume and depth of the
detected pothole using the Convex Hull approaches. During deployment on Edinburgh City roads, our work
was able to effectively detect and characterise 52 potholes of different volume and area. The implementation
of this technology has the potential to significantly reduce inspection time, and our findings offer promising
directions for future developments in automated road maintenance systems.

INDEX TERMS Machine learning, machine vision, pothole detection, road interpretation.

I. INTRODUCTION
ThE infrastructure of road transportation serves a major role
in connecting various locations and maintaining the mobility
of goods and people [1], [2]. Therefore, maintaining the
infrastructure of the road is essential, as the condition of
the road surfaces directly impacts the effectiveness of the
transportation system. Potholes are a significant challenge,
affecting the quality of the road surface and affecting travel
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safety and comfort [3]. According to the National Accident
Helpline in the UK, 1,766 road accidents in the second
quarter of 2020 were a result of potholes [4]. Between
April 2018 and June 2021, more than 1.5 million potholes
were reported, with 43,947 claims for damages, including
over 7,000 from Scottish councils. Of these, 13,187 claims
were successful in securing compensation [5]. Potholes not
only damage vehicles, but also pose serious risks to cyclists
and pedestrians, with these road defects that cause 15% of
bicycle accidents [5]. In 2016, a cyclist in San Diego suffered
serious injuries from a pothole, resulting in a $1 million
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settlement [6]. This review underscores the need for effective
pothole detection and management strategies to address this
global problem that affects road transport networks.

Contributions from researchers around the world have
significantly advanced and improved the automatic pot-
hole detection method. These methods can be broadly
classified into vibration-based, vision-based, and depth-
based approaches, each with their own advantages and
limitations [7], [8]. In addition to detection and feature
extraction, the geo-positioning of potholes on a map is
essential for understanding the areas affected by potholes
within road transportation networks. The following section
outlines the key contributions made by each three methods.

Vibration-based detection uses sensors such as accelerom-
eters and gyroscopes in vehicles to measure changes in
acceleration, identifying potholes based on variations in road
surface geometry [9]. However, it is often misclassified due
to factors such as speed bumps, terrain transitions, along
others, as these affect the variation in acceleration values [7],
[8]. Although it is cost-effective [7], it lacks detailed
extraction of the features of the pothole. Vision and depth
based methods offer potential solutions by providing more
comprehensive data on pothole characteristics. Integrating
these methods enhances accuracy and informs targeted road
maintenance strategies. In a study [9], researchers used three
different algorithms within a vibration-based approach to
detect potholes, relying on acceleration data as a key metric.
Several factors can impair the accuracy of the acceleration
data, causing false positives in the detection of potholes.
To mitigate this, the authors precisely segmented acceleration
data based on predicted factors such as calls, door slams,
messages, potholes, short humps, and gutters, using advanced
algorithms such as convolutional neural networks (CNN),
reservoir computing (RC) and long-short-term memory
(LSTM) networks to differentiate between terrains based on
specific vibration thresholds. In [10], researchers introduced
an innovative Dynamic Sliding Window (DSW) technique
to analyse accelerometer data for pothole detection. This
method segments sensor data into windows that are dynam-
ically adjusted based on contextual factors such as vehicle
speed, aligning window sizes with expected road anomaly
sizes to improve accuracy while minimising interference
from normal road conditions. To verify their methodology,
the researchers collected data on various road anomalies such
as speed bumps, metal bumps, and potholes across thirty
different virtual road scenarios. They then assessed this data
using seven heuristic algorithms such as Z-Thres, Z-Diff,
STDEV (Z), G-Zero, Swarm, Pothole Patrol, and Nericell
resulting in F1 scores of 0.725, 0.856, 0.853, 0.600, 0.852,
0.728, and 0.715, respectively. Furthermore, the study delved
into the capabilities of machine learning classifiers by exam-
ining the performance of seven algorithms: Decision Trees
(DT), Gradient Boosting (GB), Random Forest (RF), Naive
Bayes (NB), Neural Networks (NN), k-Nearest Neighbor
(kNN), and Support Vector Machine (SVM). The F1 scores

obtained from these classifiers were 0.967, 0.917, 0.922,
0.888, 0.904, 0.973, and 0.922, respectively.

The implementation of vision-based pothole detection
marks a significant advancement in road inspection tech-
niques. These systems use cameras or image data, often
integrated with GNSS for geo-positioning. Object detection
architectures such as YOLO [3], [11], SSD [12], [13],
RetinaNet [14], and ResNet [12] are some techniques used
to detect potholes. Image enhancement improves detection
under varying light conditions. In post-detection, image seg-
mentation canmeasure pothole dimensions, aiding in damage
severity categorisation for repair prioritisation. However,
vision-based systems lack depth data, which highlights the
need for advancements such as LiDAR [2]. The authors
of [3] evaluated custom trained neural networks, YOLOv4,
YOLOv4-tiny, and YOLOv5s, for real-time pothole detec-
tion. They used a dataset of 655 images that was split
into 70 training, 20 validation, and 10 testing subsets.
Then, they compared these models using the mean average
precision (mAP) at 50% intersection over union. The results
show mAP@0.5 values of 74.8% for YOLOv5S, 77.7% for
YOLOv4, and 78.4% for YOLOv4-tiny, making YOLOv4-
tiny the preferred model due to its balance of accuracy
and computational efficiency. The study in [11] compared
YOLO-v3, YOLO-v3 with Spatial Pyramid Pooling (SPP)
and Sparse R-CNN. The models were tested under various
lighting conditions, revealing that larger image input sizes
improve detection accuracy in low light but increase inference
time. YOLOv3’s mAP@0.5 dropped from 74.7% on a clear
day to 7.01% at night, while YOLO-v3 with SPP achieved
79.1% on clear days. Sparse R-CNN performed best in low
light and rainy conditions. In [15], the authors used Mask
R-CNN for pothole detection and risk assessment, achieving
over 95% accuracy after 2000 training iterations. Their model
segmented potholes within images, calculating the area in
pixel values, and assessing risk based on the percentage of
the pavement affected.

Depth-based pothole detection methods provide critical
depth information, allowing precise estimations of volume,
area, and shape. These methods use sensors like LiDAR,
kinetic sensors, and stereo vision cameras, and some
researchers used custom multi-camera setups. LiDAR-based
methods less affected by lighting conditions that offer an
advantage over vision-based methods, but can struggle with
depth estimation when potholes are filled with water [16].
In [16], researchers used a Mobile Mapping System (MMS)
with a SICK LMS 511 laser scanner, panoramic camera, GPS
(Global Positioning System), and IMU (Inertial measurement
unit). Their system used DeepLabv3+ for the initial detection
of potholes, achieving 81.2% accuracy. The laser scanner
then collected point cloud data to capture geometric features
such as depth, area, and number of potholes, which were
geographically positioned on a map. In [17], the HiPRoSS
(High Performance Road Survey System) from theUniversity
of Messina used 3D cameras and linear lasers emitting
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810nm infrared light to capture 3D data. After converting
the data into 2D images, they were subjected to semantic
segmentation, thresholding, and post-processing to remove
false positives and refine pothole contours. This system
achieved a precision of 89.75% on a dataset with 44 pothole
images out of 50, calculating depth, perimeter, and area.
In [18], researchers combined data from a 3D LiDAR
(Velodyne VLP32) and a camera (Alvium 1800 U-158) to
obtain accurate depth data. Through extrinsic calibration,
a transformationmatrix integrated the data from both devices.
Using YOLOv7 for pothole detection, the system transferred
bounding box coordinates to LiDAR data for point cloud
analysis. The pothole area and volume were calculated
using the k-means clustering and the convex hull algorithm,
while depth was determined by comparing pavement and
pothole point cloud data. This system, tested at vehicle
speeds of 30, 40, and 50 mph, showed a deviation less
than 8% in depth estimation and an error margin less than
20% compared to manual inspections. Each detected pothole
was geo-positioned, providing valuable information for road
maintenance.

To improve road safety, maintaining the health of the road
network is a key element. Systematic inspections, necessary
for detailed damage assessments, traditionally rely onmanual
labour, which is time-consuming and labour intensive [3].
Potholes, if not immediately addressed, escalate into more
significant problems, increasing repair costs, and disrupting
transportation [19]. To overcome these limitations, modern
technologies such as cameras, LiDAR, and GNSS can
automate the inspection process, allowing for precise pothole
detection and 3D reconstruction. This enables accurate
volume and area estimation, optimising repair material
calculations, and reducing manpower requirements [13].
These advances offer a rapid, efficient, and cost-effective
solution for road maintenance. In our system the LiDAR
and camera has been calibrated after mounting on a custom
made 3D printed mount, which keeps the relative position
of the camera and LiDAR fixed. By this, it can be used as
a standalone device in various inspection vehicles without
the need for a recalibration. This helps ensure consistent
performance and easy adaptability across different platforms.

II. SYSTEM OVERVIEW
Figure 1 outlines the system architecture designed for
pothole detection, showcasing an inspection vehicle equipped
with a modern range of data collection technologies. This
setup includes an onboard computer for data recording
and processing, accompanied by a camera for visual data
capture, LiDAR to collect 3D point cloud data, and a
GNSS module for geo-positioning the pothole location. The
core objective of this experiment is to detect and extract
detailed geometric data about the pothole along with its
geographic coordinates. The process begins with the camera,
which collects visual data to detect potholes. Although the
camera provides valuable 2D data, it lacks the ability to
capture depth data. To overcome this limitation and gain

FIGURE 1. System architecture illustrating the processing cycle from
capturing input image to feature extraction. The input image is processed
through various stages, including pre-processing, detection,
3D reconstruction, and feature extraction, where key pothole
attributes such as area, volume, and depth are computed.

a comprehensive understanding of the depth, volume, and
area of each pothole, the camera and 3D LiDAR data were
fused. This sensor fusion technique enriches the 2D pixel
coordinate system with depth information, creating a more
detailed representation of the pothole’s geometry.

Upon activation of the system, the camera starts collecting
2D data. This visual information was fed into the YOLO
(You Only Look Once) object detection algorithm. This
cutting-edge algorithm detects potholes and locates them
with bounding boxes. The coordinates of these bounding
boxes are then passed to the LiDAR data processing
algorithm to extract point cloud data that lies within the
detected pothole’s area. The point cloud data are further
analysed using the Convex Hull algorithm, which calculates
the pothole’s area, volume, and depth. By combining the
data with the GNSS coordinates, the system can accurately
map each pothole. Additionally, the geometric characteristics
of the pothole can be visualised on the map, alongside the
location. This integrated approach improves the efficiency of
feature extraction and pothole detection. By this, the system
can provide comprehensive data that can be useful in road
maintenance and repair strategies, potentially revolutionising
the way infrastructure is monitored and maintained.

III. DATA ACQUISITION
This section outlines the process of collecting pothole images
from online resources and preparing the data to train the
custom pothole detection model using YOLO. In this section,
we discuss the calibration of the camera and LiDAR.

A. TRAINING DATA ACQUISITION FOR POTHOLE
DETECTION
In terms of performing custom object detection such as
pothole detection, one of the initial steps is to find a dataset
of pothole images. For this project, the pothole data were
collected from various publicly available online datasets [20],
[21], [22]. As the images were collected from different
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FIGURE 2. Pictorial representation of the process of collecting and
preparing pothole images for training. The top left part shows how the
images were collected from online datasets and classified. The upper
right part illustrates how the classified images were annotated using
Grounding Dino. The bottom left part shows how the annotated images
were manually validated. Finally, the bottom right part displays the
dataset with annotated images, ready for training.

datasets, their sizes varied. Therefore, they were resized to
640 × 480 pixels. This step also helps in testing various
object detection architectures, as some require images of the
same size for training. After analysing the dataset, high-
quality images were selected to create a custom dataset
for training and testing the object detection architecture.
This custom made datasets were passed to the Grounding
Dino [23] for automatic annotation of the images. The result
from Grounding Dino was not highly reliable for detecting
potholes. Therefore, after the completion of the annotation,
a manual validation was performed and the annotations
were edited to meet the standards. However, using automatic
labelling saves a huge amount of time spent on the manual
annotation method. The YOLO labelling data were made in
the COCO (Common Objects in Context) format as it is the
accepted input format for the YOLO training architecture.
By this process, a dataset was created with 800 images for
training, 200 images for validation, and 80 images for testing.
Figure 2 shows the visual representation of the whole process
of making the custom dataset for training the object detection
model.

B. CAMERA LiDAR CALIBRATION
Extraction of the geometric features of the pothole is one
of the primary objectives of this project. To achieve this,
LiDAR technology plays an essential role. LiDAR provides
detailed point cloud data surrounding the robot environment,
which is essential for depth determination. For effective depth
extraction of potholes, it is critical to synchronise the data
captured by both the camera and the LiDAR. This involves
aligning the camera’s visual detection of potholes with the
depth data collected by LiDAR. The key to this integration
is establishing a common field of view between the camera
and the LiDAR system. Once this common field of view
is achieved, the depth information from the LiDAR can
be precisely aligned with the pixel data from the camera.

By fusing these two data sources, the system can improve
the accuracy of the depth information associated with each
detected pothole. This integrated approach ensures that the
geometric features of the potholes are captured, facilitating
better assessments and actions for road maintenance. For
the purposes of our work, we have followed the guidelines
previously published in [24].

To perform camera and LiDAR calibration, the camera
calibration matrix was first calculated using the ROS (Robot
Operating System) camera calibration package [25]. The
calibration of the camera and LiDAR was performed using
the ROS package developed by [26]. The authors introduced
a method to enhance camera LiDAR calibration, focusing on
reducing user errors and overfitting through a new metric, the
Variable of Quality (VOQ). This approach highlights the role
of quality sample selection in ensuring accurate and reliable
calibration. By performing the LiDAR camera calibration, the
rotation matrix (R) and the translation matrix (T) between the
camera and LiDAR were obtained.

IV. DATA PROCESSING
This part of this article will talk about object detection
models, camera and LiDAR data sensor fusion, feature
extraction techniques, pothole classification approaches, and
geo-positioning techniques for mapping the potholes. These
components form an integrated system that enables efficient
and reliable detection, classification, and localisation of
potholes.

A. YOLO
YOLO (YouOnly Look Once) follows single-stage detection,
because of this it has a higher detection speed [27]. For
custom training a class outside the coco dataset or to create
a new custom detection model, the image training is done
using the pre-trained weight to create a new weight file.
That is, by using transfer learning. The pre-trained weights
are used for training. The selection of weights depends
on the application. The YOLO architecture generally starts
with a backbone responsible for extracting features from
the input image. This is complemented by the neck, which
enhances the image and facilitates further feature fusion. The
output from the head of the YOLO architecture includes
essential information such as a bounding box, bounding
box coordinates, detected object class, confidence value, and
more. In this experiment, the YOLOv5, YOLOv6, YOLOv7,
YOLOv8 models have been chosen to test the custom dataset
created to find a suitable model to deploy on field trails.
Performance evaluation in this project involves the analysis
of precision, recall and mAP@0.5. The mAP@0.5 indicates
the mean average precision at a 50% IoU threshold. These
adjustments and evaluations provide information on the
accuracy and effectiveness of themodel in detecting potholes.

B. SENSOR FUSION
From the camera and LiDAR calibration, the relative position
of the camera and LiDAR in the real world was calculated.
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As a result of this, the values of t (translational matrix),
roll, pitch, and yaw were obtained. The R (rotation matrix)
was calculated by multiplying row, pitch, and roll matrices
respectively from the calibration results obtained. Using these
results, depth values that correspond to the pixel value of the
camera can be computed.

C. GEOMETRIC FEATURE EXTRACTION
From the YOLO output, a bounding box is created around
the detected pothole. Using the pixel coordinates of this
bounding box, the corresponding point cloud data inside
the bounding box is extracted from the rest of the point
cloud data from LiDAR. This data is then passed on to
the Convex Hull algorithm. The convex hull algorithm
calculates the volume, area, and depth of the pothole.
The resulting geometric data, along with the GNSS coor-
dinates captured during the process, are saved on the
computer.

D. GEO-POSITIONING
Using the latitude and longitude data collected during
detection, the pothole is mapped with its calculated vol-
ume, area, and depth. This comprehensive geometric and
location data is saved on the computer. The mapping is
performed using the Folium package in Python, which
facilitates the visualisation of the data on an interactive
map. The saved data are in HTML (HyperText Markup
Language) format and the results can be viewed using a web
browser.

V. EXPERIMENTAL RESULTS
This section covers the equipment used for the experiment
and the results obtained from training, validation and
that geo-positioning of the detected pothole with features
obtained.

A. EXPERIMENTAL SETUP
The figure 3 shows the experimental setup used to perform the
experiment. For performing the field testing of the pothole
detection, the Agile X Hunter 2.0 mobile robot, equipped
with a camera, LiDAR, and GNSS, was used. The 3D
printed mounted camera lidar can be seen in fig. 3 which
makes the camera and lidar work as a standalone device
keeping their relative position fixed. Sensor communication
and data collection were performed using ROS Noetic. The
data processing onboard system is using an Intel i7 12th
generation CPU, and postprocessing system having Intel i7
11th generation CPU an Nvidia RTX 3060 graphics card,
and 16GB RAM. The LiDAR used for data collection was
the Ouster OS1-32 having a resolution of 2048 × 32, and
the camera was the Logitech 505e. The GNSS system used
were made by Swift Navigation, which runs on a frequency
of 10Hz. The experiment was carried out on the E Her-
miston Road (55.91888133259224, -3.3134189608152917),
Edinburgh, United Kingdom.

FIGURE 3. Agile X Hunter 2.0 mobile robot car mounted with LIDAR for
depth data, camera for vision, GNSS for geo-positioning and onbord
computer for sensor communication and ROS bag recording.

TABLE 1. YOLO architectures training performance comparison.

B. YOLO TRAINING RESULTS
To better examine how well four YOLO models work in
finding potholes, a custom dataset was used to train the four
networks (YOLOv5, YOLOv6, YOLOv7, and YOLOv8).
These models have been evaluated across several metrics
to determine their efficiency. In the table 1 shows the
YOLO architecture used for training and the result of the
training, such as precision, recall, mAP@0.5 and training
time. All four models operate with the same input resolution
of 640 × 480 pixels, a batch size of 8 and undergone
250 epochs of training. In terms of detection accuracy,
it is evaluated through precision, recall, and mean average
precision. Precision measures the accuracy of the positive
predictions, and YOLOv5 leads with 86.0%, indicating
fewer false positives and higher reliability in its detections.
YOLOv8 follows with a precision of with 77.2%, YOLOv7
with 75.7% and YOLOv6 with 72.4%. The YOLOv7 shows
highest recall of 73.2% and YOLOv6 with the lowest 56.2%.
The mAP@0.5 evaluates the overall accuracy when IoU
(intersection over union) thresholds are at 50% between the
ground truth and the prediction, balancing both precision and
recall. YOLOv5 and YOLOv7 shares higher mAP@0.5 with
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76.0% followed by YOLOv8 and YOLOv6 with 72.5% and
72.0% respectively. In the following subsection shows the
trained architectures performance in the test set and why it
is important.

C. YOLO VALIDATION RESULT ON TEST SET
Table 2 shows the results of the performance evaluation
metrics in the test dataset with 80 images. Upon evaluating
the precision, YOLOv5 leads with a precision of 76.8%.
YOLOv7 and YOLOv8 closely followed each other with a
precision of 73.7% and 72.3% and lowest with YOLOv6
with 69.1%. Similarly to precision, YOLOv5 has the highest
recall with 73.1% which was then followed by YOLOv6,
YOLOv7, YOLOv8 with 71%, 70.9% and 68.3% respec-
tively. Analysing the mAP metric provides a comprehensive
overview of overall model performance, which shows that
YOLOv5 stands out with the highest mAP@0.5 at 75.3%.
By comparing both the training and the testing phases,
YOLOv5 is the one with the highest mAP.

TABLE 2. YOLO architectures performance comparison on test dataset.

D. RESULTS FROM FIELD TESTING
Analysis of pothole data collected from the field trial reveals
a significant variation in pothole dimensions, which is useful
for developing effective road maintenance strategies. From
this experiment 52 potholes were extracted from the inspected
road. The average volume of the potholes is 0.0033 cubic
metres, inferring potholes are of small sizes, with volumes
ranging from 0.0001 cubic metres to 0.0244 cubic metres.
This suggests the presence of very small and significantly
larger potholes within the inspected area. The surface area of
the potholes also varies widely, from 0.0103 square metres to
0.6853 square metres. In terms of depth, the potholes have
an average depth of 0.0270 metres, with the shallowest at
0.0104 metres and the deepest at 0.1549 metres. The smaller
potholes are more frequent and the less impact to vehicles,
whereas larger and deeper potholes require more extensive
maintenance. In general, this detailed analysis highlights the
diverse impact of potholes on road surfaces and the potential
of modern measurement techniques in road management
practices.

The pie chart in Fig. 4 represents the classification of
potholes based on their volume into three categories, small,
medium and large. From the pie chart, it is evident that the
inspected road has a higher number of potholes having a
smaller volume, which is 51.9.% indicating that almost half
of the potholes have a volume of 0.001 m3 or less. The
medium-sized potholes account for around 32.7%. Finally,

FIGURE 4. Pothole classification based on volume which is calculated
from 3D reconstructed model.

FIGURE 5. Pothole classification based on area which is calculated from
3D reconstructed model.

TABLE 3. Automated v/s manual inspection results.

the large potholes amount to about 15.4%., being the least
frequent but larger in volume, exceeding 0.005m3 and require
quicker repairs. Similarly in Fig. 5 shows the classification
of potholes based on their surface area. The results reveal a
significant dominance of pothole with smaller area which is
42.3% of the total. The potholes with a medium and smaller
area were 30.8% and 26.9% respectively. This data shows
that most of the potholes in the dataset are small and could
require less extensive repairs. By time these smaller potholes
will become larger potholes that may pose more significant
repair challenges if road maintenance was not performed in
the initial stage and it will cost more to repair these road
defects.
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FIGURE 6. Map displaying detected potholes. Selecting a pothole opens a
pop-up window that shows its unique ID, along with the area, volume,
and maximum depth, as determined from 3D reconstructed models.

Figure 6 presents a geo-positioned map of the detected
potholes, allowing a visual differentiation between individual
potholes according to their unique IDs. In addition, the map
displays the volume, depth, and area of each pothole. This
comprehensive visualisation aids in assessing the intensity
and potential impact of each pothole on the road. By pro-
viding detailed information on the size and severity of each
pothole, this map enables a more informed understanding
of the specific challenges posed by different potholes,
facilitating targeted maintenance efforts and more efficient
resource allocation to address the most critical areas first.
The spatial distribution and the varying characteristics of the
potholes highlighted in the map underscore the importance of
a strategic approach to road maintenance, taking into account
the specific dimensions and locations of each pothole to
effectively mitigate its impact.

E. SENSOR FUSION AND GEOMETRIC FEATURE
EXTRACTION
The feature extraction process is a major step after the
detection of potholes. Figure 7 displays this entire process
result, from pothole detection to point cloud data extraction.
The ROS visualisation tool RVIZ illustrates the results of
the process in a single window, combining all the data.
In this figure, the video feed from the camera, which
serves as the system’s input, is displayed in the top image
window. Simultaneously, the centre window visualises the
point cloud data collected from the LiDAR, illustrated
as red dots, which occur simultaneously with the camera
feed. This camera feed is subsequently processed through
the YOLO architecture, where potholes are detected. The
results from the YOLO architecture are presented in the
leftmost window of the figure, where each detected pothole
is encased within a bounding box. These bounding boxes
have an ID that makes it possible to distinguish between
variously detected potholes, and they also show a confidence

FIGURE 7. RVIZ (Robot Visualization tool) visualisation of the pothole
detection and sensor fusion process. The top sub-window displays the
input image, while the left sub-window shows the detected pothole using
the YOLO algorithm. The central sub-window visualises the LIDAR data in
red, and the LiDAR points corresponding to the detected pothole are
highlighted in white. The right sub-window presents the sensor-fused
data, including the depth information of the detected pothole.

value that denotes how certain each detection is. The
coordinates of these bounding boxes, derived from YOLO,
provide the base line for further calculations. Utilising these
coordinates, the pixel coordinates inside the bounding boxes
are accurately determined. These bounding box coordinates
are then communicated to the LiDAR data processing node,
where the integration of data from both the camera and
LiDAR occurs. This sensor fusion is conducted using the
calibration matrices to enhance the precision of the data. It’s
not necessary to look at the full depth data from the whole
camera frame in order to evaluate the depth data of potholes.
Instead, by focusing only on the pixel coordinates within the
bounding box, the relevant depth data associated specifically
with the detected pothole is isolated and analysed. In the
image window on the right side of Fig. 7, the output from the
LiDAR node showcases the reprojected depth data beneath
the bounding boxes, marked in red dots. This visualisation
also includes the calculated distance to the pothole, which is
specifically measured by considering the depth data located
at the centre of the bounding box. Given that the LiDAR
utilised possesses 32 rings and not all individual pixels may
have corresponding depth data due to gaps between these
rings, interpolation is necessary to estimate the depth more
accurately. The interpolated point nearest to the centre of the
bounding box is highlighted with a yellow dot, representing
the most accurate estimation of the distance to the centre
of the pothole. Additionally, the middle section of Fig. 7
features the reprojected LiDAR point cloud data, displayed
as white points, providing the data inside the bounding box,
and the whole point cloud data before the extraction is in
red dots, as discussed above. As from the sensor fusion,
the point cloud data belonging to the pothole is extracted.
As the next step, by analysing the point cloud data, feature
extraction needs to be done. To perform the feature extraction,
the convex hull algorithm was used. From the reconstructed
model of the pothole, the geometric features such as area,
volume, and depth were estimated. Figure 8 demonstrates the
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FIGURE 8. Examples of various detected potholes and their 3D reconstructed models using the Convex Hull approach. The corresponding
positions of the potholes are mapped using GNSS data, illustrating their locations on the map.

results from our experiment and it shows various potholes
detected. In this figure the detected pothole with its unique
ID and confidence value of detection can be seen and the
corresponding 3D reconstructed model and the extracted
feature has been plotted on the map. This examples shows
how our system handles potholes detection to geo-positioning
process.

VI. CONCLUSION
Automatic pothole inspection methods offer a promising
solution by providing real-time health status updates of
road networks to relevant authorities with minimal labour
requirements. Our system, utilising the YOLOv5 object
detection architecture combined with LiDAR data, suc-
cessfully detected the potholes on Edinburgh City roads
and estimated both area, volume, and depth from the
3D reconstructed Convex Hull model. The integration of 2D
and 3D data with geo-positioning information facilitates a
comprehensive analysis and view of potholes on roads.
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