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Abstract 

The soluble solid content (SSC) in fruits significantly influences consumers' taste, aroma, and 

flavor preferences. It also plays a crucial role for farmers and wholesalers in determining the 

optimal harvest period for marketing. Dielectric spectroscopy, an innovative and non-invasive 

technique, has shown promise for various applications in the food and agriculture sectors. This 

study introduces an open-ended coaxial line probe measurement system to non-invasively 

determine the SSC of sweet cherries at different radio and microwave frequencies. Key 

parameters such as the dielectric constant (ε′), loss factor (ε′′), loss tangent (tan δ), and SSC of 

sweet cherries were measured across different harvest periods. The dielectric property 

frequency ranges were down-sampled from 300 MHz to 15 MHz. Using dielectric spectroscopy, 

we implemented predictive models: support vector regression (SVR) and multilayer perceptron 

(MLP), that demonstrated extremely low MAE and RMSE, with correlation coefficients (R) 

exceeding 0.97 for SVR and 0.96 for MLP. The down-sampled frequency ranges for dielectric 

                  



properties yielded consistently high performance across all subsets, demonstrating comparable 

results. These findings suggest that a dielectric measurement system designed for SSC 

estimation using fewer frequencies could effectively reduce costs while maintaining accuracy. 

Key words: Sweet cherries; down-sampling; dielectric spectroscopy; soluble solid content; 

machine learning 

Nomenclature 

ANFIS Adaptive neuro-fuzzy inference system 

BAG Bagging 

BP-ANN Backpropagation – artificial neural network 

CARS Competitive adaptive reweighted sampling 

ELM Extreme learning machine 

GP Gaussian processes 

kNN k-nearest neighbors 

LSSVM The least squares support vector machine 

MAE Mean absolute error 

ML Machine learning 

MLP Multilayer perceptron 

MLR Multiple linear regression 

PCA Principal component analysis 

PI-RF-

XGBoost 

Permutation importance based on the random forest 

regression - extreme gradient boosting 

PSO Particle swarm optimization 

PLSR Partial least squares regression 

PTFE Polytetrafluoroethylene 

PUK Pearson VII kernel function 

R Correlation coefficient 

REPTree Reduced-error pruning tree 

RF Random forest 

RMSE Root mean square error 

SMA SubMiniature version A 

SPA Successive projection algorithm 

SSC Soluble solid content, /Brix 

SVM Support vector machine 

SVR Support vector regression 

tan  Loss tangent 

Z0 Impedance of free space,  

Zr Impedance of the material under test,  

ε* Complex relative permittivity 

ε' Dielectric constant 

ε'' Loss factor 

                  



ε0 The permittivity of free space (8.854 × 10-12 F/m) 

𝜀 Absolute permittivity, F/m 

µ Magnetic permeability, H/m 

µ0 The magnetic permeability of free space, H/m 

 Fresnel reflection coefficient 

 

1. Introduction 

Cherries are rich in essential nutrients and bioactive compounds, including fiber, 

polyphenols, carotenoids, vitamin C, potassium, tryptophan, serotonin, and melatonin, while 

being low in calories (Hussain et al., 2021). They are classified into sweet and sour types. 

Sweet cherries are primarily consumed fresh, whereas sour cherries are used in various food 

products and as fruit juice (Li et al., 2018). In 2022, cherries were cultivated worldwide on 

454,664 hectares, yielding an annual production of approximately 2,765,827.4 tons. The five 

leading cherry-producing countries were Türkiye, with the highest production of 656,041 tons, 

followed by Chile (443,067 tons), Uzbekistan (216,867 tons), the United States (210,190 

tons), and Spain (116,070 tons) (FAO, 2024). 

The soluble solid content (SSC) of cherries is a critical indicator of their nutritional value, 

influencing flavor, sweetness, and overall consumer acceptability. SSC primarily comprises 

sugars, acids, vitamins, and other soluble substances that enhance the fruit's nutritional profile 

and taste (Correia et al., 2017). The relationship between SSC and other physicochemical 

properties, such as firmness and acidity, further underscores its importance in determining the 

nutritional and sensory quality of cherries. Firmer cherries often exhibit higher SSC levels and 

appeal more to consumers (Hong et al., 2010). Harvesting fruits at optimal ripeness is crucial 

to ensure good eating quality. Consequently, SSC serves as a standard internal quality 

parameter, particularly for Prunus species (Escribano et al., 2017). 

Hyperspectral imaging and visible near-infrared spectroscopy, often combined with 

advanced chemometric techniques, are the primary non-destructive methods for determining 

                  



fruit SSC (Li et al., 2018; Çetin et al., 2022). These techniques enable rapid and precise 

assessments without causing damage to the fruit. However, their limited penetration depth 

restricts their applicability despite their widespread use in assessing internal quality attributes 

(Cao et al., 2023). The irregular distribution of sugars within fruits, especially in stone fruits, 

and the effects of the peel necessitate greater penetration depth to accurately determine 

internal quality attributes (Cao et al., 2024a). Additionally, weather conditions—particularly 

temperature and humidity during the final month of fruit development—significantly affect 

SSC accumulation in cherries (Ivanova et al., 2021). 

Due to their wide frequency range and substantial penetration depth, dielectric properties 

are frequently employed for non-destructive internal quality measurements in fruits (Nelson, 

2015). Dielectric spectroscopy evaluates how a material stores and dissipates electrical energy 

by analyzing its dielectric properties, which include the dielectric constant ε′, and the dielectric 

loss factor ε″ (Ali et al., 2017). This technique is based on the interaction of an external electric 

field with the sample, with the complex permittivity providing a detailed description of that 

interaction (Sanchez et al., 2020). The complex relative permittivity ε* of a material is 

expressed as follows: 

ε* = ε' - jε'' .................................................................................................... (1) 

and 

ε*= ε / ε0  ...................................................................................................... (2) 

Here, ε is the absolute permittivity, ε0 is the free-space permittivity given as 8.854x10-12 F/m, 

and j= 1− . ε', the real part of ε*, is called the dielectric constant and represents the stored 

energy when the material is exposed to an electric field. In contrast, the dielectric loss factor, 

ε'', which is the imaginary part, influences energy absorption and attenuation (Lleo et al., 2007). 

Loss tangent tanδ is also often used as a factor of power dissipation in a dielectric and can be 

expressed as follows: 
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The most common methods used to determine the dielectric properties of fruits and 

vegetables are the open-ended coaxial probe (Zhu et al., 2016), resonant cavity (Sosa-Morales 

et al., 2010), and transmission line (Navarkhele et al., 2015) techniques. Among these, the open-

ended coaxial probe is widely used for assessing fruit internal quality due to its broad spectral 

range, high precision, and simplicity of sample preparation and analysis (Zadeh et al., 2019; 

Cao et al., 2023). This method is particularly effective for measuring the dielectric properties 

of liquid and semi-solid biological and food materials, owing to its non-destructive nature, 

versatility, and capacity to operate across high-frequency ranges (La Gioia et al., 2018). The 

dielectric properties are determined based on the phase and amplitude of the signal reflected 

from the end of an open-ended coaxial line (Zadeh et al., 2019). 

The open-ended coaxial probe technique has been successfully applied to predict the internal 

quality of various fruits (Shivamurthy et al., 2018; Zadeh et al., 2019; Cao et al., 2024b). 

Different mathematical models, such as those by Debye or Misra, convert the measured 

reflection coefficient into permittivity. Currently, this operation is automated using software 

embedded in measurement equipment like vector network analyzers or impedance analyzers. 

To improve prediction accuracy, studies are increasingly focusing on developing non-linear 

models for predicting internal fruit qualities from dielectric properties (Guo et al., 2015a). 

While linear regression models are commonly used for this purpose, their assumption of 

probabilistic data generation limits their ability to capture complex phenomena. As a result, 

machine learning (ML) algorithms have emerged as more suitable alternatives (Cavalcanti et 

al., 2024). 

Dielectric spectroscopy, when combined with ML models, offers several advantages, 

including rapid, non-destructive, real-time monitoring and feasibility (Wang et al., 2024). Over 

recent years, researchers have applied ML techniques to predict the soluble solid content (SSC) 

                  



of fruits using dielectric properties. For instance, Guo et al. (2015b) measured dielectric 

constants and loss factors at 51 frequencies between 10 and 1800 MHz for apples and found 

that the extreme learning machine (ELM) combined with the successive projection algorithm 

(SPA) achieved the best SSC prediction performance, with R-values of 0.908 and 0.898 for 

prediction and calibration, respectively. 

Similarly, Zhu et al. (2016) used a vector network analyzer and an open-ended coaxial probe 

to measure dielectric properties from 20 to 4,500 MHz, finding that ELM combined with 

principal component analysis (PCA) yielded the best SSC prediction performance, with an R-

value of 0.6986 and RMSE of 0.7763. Liu and Guo (2017) demonstrated the feasibility of 

dielectric spectroscopy for SSC prediction by measuring dielectric loss factors and constants 

between 20 MHz and 4500 MHz. They found that least squares support vector machine 

(LSSVM) models outperformed partial least squares (PLS) models, with the competitive 

adaptive reweighted sampling-least squares support vector machine (CARS-LSSVM) 

achieving R and RMSE values of 0.970 and 0.494, respectively. 

In further studies, Cao et al. (2024a) utilized backpropagation artificial neural networks (BP-

ANN) and support vector machine (SVM) models to predict SSC in pears. Their findings 

revealed R²p values of 0.83 and 0.79 for the BP-ANN and SVM models, respectively. Cao et 

al. (2023) also explored the dielectric properties of peaches during storage, showing positive 

correlations between ε′, ε″, and SSC content. They achieved the highest Ri²v value of 0.88 for 

SSC prediction using an LSSVM model. Liu et al. (2021) obtained similar performance 

outcomes for PLS and ELM models when predicting melon SSC from dielectric characteristics. 

Lastly, Tang et al. (2024) investigated internal quality prediction in pears using a vector 

network analyzer and coaxial probe in the frequency range of 0.1 to 26.5 GHz. They calculated 

ε′ and ε″ values and employed particle swarm optimization–least squares support vector 

regression (PSO-LSSVR), SVR, and PLSR algorithms. While SSC and dielectric properties 

                  



under a single frequency showed weak correlations, a PLSR model using ε″ as a variable 

successfully predicted SSC, achieving an R-value of 0.91 and RMSE of 0.09. 

However, little effort has been made to predict the SSC of sweet cherries, considering the 

importance of the crop and its added value worldwide, as stated above. This study presents an 

open-ended coaxial line probe measurement system capable of non-invasively assessing the 

SSC of sweet cherries at different radio frequencies. The dielectric properties (ε′, ε″, and tanδ) 

and SSC of sweet cherries are measured across different harvest periods. Additionally, down-

sampling was applied to the frequency ranges of dielectric properties, reducing them from the 

control group of 15 MHz to a maximum of 300 MHz. Using these dielectric properties and the 

low dimensionality of the data, SSC is predicted with eight classical machine learning 

algorithms: Random Forest (RF), k-nearest neighbors (kNN), Support Vector Regression 

(SVR), Gaussian Processes (GP), Multilayer Perceptron (MLP), Multiple Linear Regression 

(MLR), Bagging (BAG), and Reduced-Error Pruning Tree (REPTree). The predictive 

performance of these models is then analyzed and compared. 

The study innovatively combines down-sampling approaches with dielectric properties and 

machine learning algorithms to predict SSC in sweet cherries across various harvest periods, 

unlike the previous studies reported herein, aiming to reduce implementation costs. The 

remaining part of the article details each of the techniques implemented and their corresponding 

results. 

 

2. Materials and Methods 

An open-ended coaxial line probe measurement system was designed and fabricated based on 

dielectric spectroscopy principles. The process began with creating a dataset by measuring the 

dielectric properties and soluble solid content (SSC) of sweet cherries over 26 days. Using these 

dielectric properties, the SSC of cherries was predicted through machine learning models. 

                  



To ensure accuracy, min-max normalization was applied to the data, preserving the relative 

order and distances of data points while reducing variance and minimizing the influence of 

outliers. Additionally, a k-fold cross-validation technique was employed to enhance the model's 

generalizability by partitioning the dataset into multiple subsets for iterative training and 

testing. The extracted features were used to train various machine learning algorithms, and the 

models were evaluated based on key metrics: the correlation coefficient R, root mean square 

error (RMSE), mean absolute error (MAE), and model building time. 

2.1. Fresh product 

Freshly harvested sweet cherry fruits (Prunus avium L. cv. Starks Gold) were collected from 

the cherry orchard of the Faculty of Agriculture at Ankara University, Ankara Province, Turkey 

(39°57'49.0"N, 32°51'53.9"E). On the day of the experiment, fruits were hand-harvested from 

the same tree at 7:00 AM and immediately transported to a laboratory near the orchard. 

Upon arrival, the cherries were cleaned to remove leaves and stems and sorted by size. 

Dielectric and soluble solid content (SSC) properties were then measured for the sorted cherries. 

The average measurements for key physical attributes of the fruits were as follows: major axis, 

18.84 ± 0.13 mm; minor axis, 16.08 ± 0.15 mm; height, 17.59 ± 0.11 mm; mass, 3.36 ± 0.07 g; 

geometric mean diameter, 17.46 ± 0.11 mm; and sphericity, 0.93 ± 0.01. 

A total of 180 cherries were tested during each daily trial. The trials were conducted at two-day 

intervals, three to four days per week. 

2.2. Determination of soluble solid content 

The soluble solid content (SSC) of sweet cherries used in the study was measured using a digital 

pocket refractometer (Atago PAL-3, Tokyo, Japan) with a 0–93% Brix measurement range. To 

prepare the samples, pitted cherries were crushed in a mortar, and the resulting liquid was 

filtered through filter paper. After calibrating the refractometer with pure water, approximately 

1–2 mL of cherry juice was placed on the refractometer prism using a pipette. The SSC reading 

                  



was then recorded following the procedure described by Queb-González et al. (2020). Each 

experiment was performed with a minimum of five replicates. 

2.3. Determination of dielectric spectroscopy 

The schematic diagram of the dielectric measurement system is shown in Figure 1. The system 

comprises an Agilent E4991A impedance analyzer connected to an open-ended coaxial-line 

probe and a lifting platform. The impedance analyzer, capable of operating in the 1 to 3000 

MHz frequency range, is interfaced with a desktop computer via an IEEE-488 (GPIB-625) 

connection. Custom-designed software installed on the computer controls the impedance 

analyzer and records the measurement data. 

The coaxial probe, which measures the dielectric characteristics of the material, is mounted 

vertically on the stationary platform, as depicted in Figure 1. The probe comprises an SMA 

(SubMiniature version A) probe and a corresponding SMA socket. The SMA probe connector 

is securely screwed into the socket. Both the male and female SMA connectors feature gold-

plated copper inner and outer conductor cylinders, separated by a Teflon (PTFE) insulating 

cylinder. The dielectric constant of the PTFE was considered in the design to ensure the required 

50 Ω impedance between the inner and outer conductors. The dimensions of the inner conductor 

and the inner diameter of the outer conductor were calculated to meet this impedance 

specification. 

A semi-rigid cable connects the probe to the test head of the impedance analyzer. The lifting 

platform is adjustable to accommodate the height of the sample and can hold additional weights 

if needed. The open-ended coaxial-line probe measures the complex relative permittivity (ε*) 

by analyzing the reflection coefficient (Γ) when the probe is placed in contact with the sample 

under test (Hernandez-Gomez et al., 2021). The complex relative permittivity (ε*) is determined 

using the following formula (Qin et al., 2021): 

𝜀∗ = (
1−Γ 

1+ Γ
)

2

 ................................................................................................. (4) 

                  



Here, the material under test is assumed to be nonmagnetic, with its complex relative 

permittivity (ε*) described by Eq. (1). The complex Fresnel reflection coefficient (Γ) at the air-

dielectric material interface is used to determine ε*. Γ is directly related to the material's 

impedance and can be expressed as follows (Pozar, 2011): 

Γ =
𝑍𝑟−𝑍0

𝑍𝑟+𝑍0
 ...................................................................................................... (5) 

Here, Zr represents the impedance of the material under test, while Z0 denotes the free-space 

impedance. For a nonmagnetic material, the impedance can be expressed as:  

𝑍𝑟 = √
𝜇

𝜀
=

𝑍0

√𝜀∗
 .............................................................................................. (6) 

Since 𝑍0 = √
𝜇0

𝜀0
, 𝜀 = 𝜀∗𝜀0, and 𝜇 = 𝜇0, where 𝜇 is the magnetic permeability. Thus, Equation 

(5) is transformed into: 

Γ =
𝑍𝑟(1−√𝜀∗)

𝑍𝑟(1+√𝜀∗)
 .................................................................................................. (7) 

Equation (7) and Equation (4) can be easily obtained. Hence, by measuring the complex 

material impedance 𝑍𝑟, it is possible to get first the reflection coefficient Γ from Equation (5) 

and then apply Equation (4) to extract the complex relative permittivity, from which the 

dielectric constant (ε′) and the loss factor (ε″) are found. 

2.4. Procedures 

Before measurement, the impedance analyzer was powered on and allowed to warm up for at 

least 30 minutes. Calibration was performed sequentially using the standard open, short, and 50 

Ω load procedures. The dielectric properties of the cherry samples were measured in the 

frequency range of 5 to 3005 MHz, with increments of 5 MHz. The coaxial probe was calibrated 

using the open, short, and deionized water at 22 °C. A preliminary test on deionized water and 

methanol was conducted to verify the accuracy of the measured dielectric constant and loss 

factor values. 

                  



Once the system calibration was complete, the dielectric properties of sweet cherries were 

measured non-destructively. Each sweet cherry was positioned on the probe's surface, resting 

on the stationary platform, and a liftable platform was used to ensure the probe maintained close 

contact with the cherry's surface. Measurements were taken at four equidistant points around 

the equatorial region of each cherry, spaced at 90° intervals. 

To ensure accuracy and representative results, a total of 720 dielectric spectroscopy 

measurements were performed on 180 cherries during each one-day trial. After measuring the 

dielectric properties, the soluble solid content (SSC) of fruit juice extracted from six cherries 

was measured five times using a digital refractometer. The average of the five SSC readings 

was calculated as the reference SSC. 

Dielectric and SSC measurements were carried out every two days over 14 trials following the 

initial measurements. Over this period, a total of 10,080 dielectric property measurements and 

2,100 SSC measurements were conducted. 

2.5. Down-sampling methodology 

The high sensitivity of the dielectric measurement system enables the generation of dielectric 

features across a frequency range of 5 MHz increments, resulting in a total of 201 frequencies 

spanning 5 to 3005 MHz. This study focuses on identifying the frequency range that provides 

the highest performance in estimating the SSC based on dielectric properties. To achieve this, 

the frequency ranges of the dielectric properties were progressively reduced. 

Predictions were initially conducted using the full control group range (15 MHz) and then by 

selecting frequencies at intervals of 15 MHz. Subsequently, the experiments were repeated with 

reduced frequency intervals of 30, 60, 90, 120, 150, 180, 210, 240, 270, and 300 MHz. Table 1 

outlines the sampling frequency ranges, the total number of frequencies included in each range, 

and the percentage of information utilized in each sampling interval. 

                  



By applying this down-sampling approach, SSC predictions were carried out using various 

machine learning algorithms. A comparative analysis was then performed to evaluate the 

performance of the different models. 

2.6. Machine learning modelling 

SSC prediction was conducted using the dielectric properties ε', ε'', tan , and their 

combinations across eight machine learning models: Random Forest (RF), k-Nearest Neighbors 

(kNN), Support Vector Regression (SVR), Gaussian Processes (GP), Multilayer Perceptron 

(MLP), Multiple Linear Regression (MLR), Bagging (BAG), and Reduced Error Pruning Tree 

(REPTree). The modeling process utilized WEKA software (Witten & Frank, 2005). Min-max 

normalization was applied to the raw data to ensure uniformity across features.  

A 10-fold cross-validation technique was used to enhance the reliability of the models. This 

method divides the dataset into ten equal parts, maintaining a 9:1 ratio for the training and 

testing sets. During each iteration, nine segments were used for training while one segment was 

reserved for testing, ensuring that all data was used for validation (Ropelewska et al., 2023). 

For the GP and SVR models, the Pearson VII kernel function (PUK) and the polynomial 

kernel were employed, respectively, to predict SSC. In the MLP model, the activation function 

was set to Sigmoid, with 500 epochs for training. The learning rate and momentum coefficient 

were configured at 0.1 and 0.2, respectively. The kNN model utilized a neighborhood size of 

5, with the Euclidean distance rule applied for neighbor selection. The MLR model 

implemented the M5 method for feature selection, incorporating a ridge value of 1x10-8.  In the 

REPTree model, the minimum proportion of variance was set at 0.001, and pruning adjustments 

were carefully evaluated for optimal performance. The BAG and RF models ran with 10 and 

100 iterations, respectively. 

                  



Model evaluation was performed both qualitatively and quantitatively using metrics such as 

the correlation coefficient (R), root mean square error (RMSE), mean absolute error (MAE), 

and model-building time. These metrics facilitated a comprehensive analysis of the 

performance of both the down-sampling strategies and the machine learning models. 

3. Results 

This section demonstrates the outcomes of techniques used to the data to predict soluble solid 

content from dielectric properties. Both machine learning algorithms and down-sampled 

information are analyzed. 

3.1. Soluble solid content analysis 

Figure 2 presents the SSC values of sweet cherry samples measured at two-day intervals over 

a 26-day period. The SSC increased from 14.53% to 21.09% Brix, demonstrating a significant 

rise as the fruit ripened. This progression reflects the natural biochemical changes, such as sugar 

accumulation, that occur during the maturation of cherries, particularly in the later stages of 

ripening (Ivanova et al., 2021). 

Studied cherries were harvested at different ripening periods. Daily temperature and humidity 

changes may have slightly affected SSC accumulation during the trials. It has been reported 

that SSC is sensitive to microclimatic changes, especially during ripening (Ivanova et al., 2021). 

Although cherries were visually standardized in size and ripeness during sample selection, 

natural variation in the physiological ripeness of individual fruits may occur. This may explain 

the slight discrepancies in SSC measurements with a wider interquartile range for trial 4 (6th 

trial days) and trial 9 (16th trial days). In addition, although we used a calibrated refractometer 

in each test for SSC measurements, minimal deviations can also occur during the pre-

measurement filtration process. However, the low standard error bars in Figure 2 show that 

these errors are minimal and do not significantly affect the overall trend. In addition, the cross-

                  



validation processes applied in the study have eliminated the inconsistencies that can arise from 

these minor deviations. 

3.2. Dielectric spectroscopy analysis of sweet cherries 

Figure 3 illustrates the typical results for dielectric properties—dielectric constant, loss factor, 

and loss tangent—measured over 14 runs during a 26-day period for sweet cherries. The data 

highlights distinct trends in dielectric behavior across the frequency spectrum. 

The dielectric constant and loss factor averages decreased sharply up to 20 MHz, while the loss 

tangent (tan δ) averages increased at a comparable rate. Between 20 and 80 MHz, the dielectric 

constant exhibited a more gradual decline, followed by a steady decrease as frequency increased 

beyond 80 MHz. Similarly, the loss factor and tan δ averages continued to decline with 

increasing frequency after 20 MHz. However, the tan δ averages showed a slight upward trend 

beyond 1280 MHz. 

These results are consistent with findings from previous studies on fresh fruits and vegetables 

(Nelson et al., 2007; Guo et al., 2015a; Zhu et al., 2016; Liu & Guo, 2017). The observed 

changes in dielectric properties align with the increasing SSC of sweet cherries over time, 

reflecting the biochemical transformations associated with fruit ripening (Nelson et al., 2007; 

Cao et al., 2023). 

3.3. The results of the machine learning models for SSC prediction 

Figure 4 illustrates the correlation coefficients for the machine learning models, presented as 

rows in the heatmap. For SSC estimation using ε', the SVR algorithm achieved the highest R 

values of 0.93 and 0.92 at 5 and 30 MHz, respectively, followed by the MLP model at 60 MHz 

with an R of 0.91. The SVR model showed a slight decrease in R as the frequency range 

increased. Overall, SVR and MLP outperformed other models, while REPTree delivered the 

lowest R values, with a minimum of 0.83 at 5, 90, 180, and 240 MHz. Using ε'', higher R values 

were observed compared to ε'. MLP performed best, with R values between 0.92 and 0.94, 

                  



followed by SVR at 0.89–0.94. MLR and REPTree produced the lowest results. SSC estimation 

with tanδ yielded the highest R values among all dielectric properties. SVR achieved a 

maximum of 0.97 at 5 MHz, while the lowest value of 0.88 was observed for kNN and REPTree 

at 30 MHz. SVR and MLP were the top-performing models. SVR and MLP again delivered the 

highest R values (0.95–0.97 and 0.95–0.96, respectively), whereas REPTree had the lowest 

(0.88–0.89) for combined dielectric properties. MLR also showed improved performance 

compared to its results with individual properties. Among dielectric properties, tanδ provided 

the best results. 

For ε', the lowest RMSE values occurred at 60–270 MHz, with MLP and SVR performing best. 

The highest RMSE (0.09) was observed for REPTree at 15 MHz. For ε'', RMSE values were 

lowest at 90–120 MHz, with MLP and SVR outperforming other models. SSC estimation with 

tanδ produced the lowest overall RMSE values, with SVR achieving the best result (0.04) at 5 

MHz and REPTree the worst (0.08) at 30 MHz (Figure 5). For ε', MAE ranged from 0.05 (5 

MHz SVR) to 0.07 (240 MHz REPTree). For ε'', MLP and SVR had the lowest values, while 

REPTree had the highest. For tanδ, the lowest MAE was 0.03 (5 and 30 MHz SVR), with the 

highest at 0.06 for REPTree and MLR at 30 and 300 MHz (Figure 6). For ε', the longest time 

(50.37 s) was observed for MLP at 5 MHz, followed by RF and GP. kNN and REPTree were 

the fastest, completing within 0.01 s. Similar trends were observed for ε'' and tanδ, with MLP 

consistently taking the longest time and kNN and REPTree being the most time-efficient. When 

all dielectric properties were used, the highest time (458.6 s) was observed for MLP at 5 MHz 

(Figure 7). 

4. Discussion 

During this research, a number of lessons were learned. The attributes ε', ε'', tan, and SSC 

were measured from different harvests of sweet cherries over 26 days at two-day intervals using 

an open-ended coaxial probe technique. The down-sampling method systematically reduced the 

                  



frequency ranges of the dielectric properties. These properties, recorded across 11 frequency 

ranges, were initially used individually and then combined as inputs for machine learning (ML) 

models to estimate SSC. 

The SSC of sweet cherries generally increased steadily throughout the harvest period (Figure 

2). The mean SSC values rose from 14.53% at the start of the harvest to 21.09% at the final 

harvest. Minor decreases on the 6th, 16th, and 26th days did not significantly alter the overall 

trend. The late-harvest increase in SSC is attributed to a rise in fruit growth rates, while early 

harvests showed slower SSC accumulation due to the rapid growth of fruit mass and starch 

reserves. SSC accumulation peaks as growth slows, with the supply of soluble carbohydrates 

declining due to reduced photosynthetic activity in aging leaves. Two key moments influencing 

SSC accumulation are the decrease in starch concentration and the cessation of starch 

accumulation. 

When examining dielectric properties, ε′ decreased sharply from 5 MHz, levelling off 

between 20 and 40 MHz. Similarly, ε′′ showed a linear decline, with a slower rate of decrease 

beyond 80 MHz. Tanδ initially increased linearly up to ~30 MHz, then decreased linearly up to 

640 MHz, with smaller fluctuations observed between 1280 and 3005 MHz (Figure 3). These 

fluctuations are influenced by electric dipole movement (Skierucha et al., 2012; Zhu et al., 

2019) and variations in water activity, ionic concentration, and ionic mobility (Cao et al., 2023). 

Eight different ML models were fine-tuned for higher predictive accuracy and reduced 

processing time. The SVR and MLP models achieved the best performance, exhibiting high 

correlation coefficients and low error metrics. However, the MLP model required more time 

for training, primarily due to the increased number of epochs. In contrast, the SVR model 

demonstrated a balance between prediction efficiency and processing time, making it more 

practical. The success of SVR in SSC prediction aligns with studies on peaches and pears (Cao 

et al., 2023; Cao et al., 2024a), which highlighted the suitability of dielectric spectroscopy for 

                  



assessing SSC. However, Guo et al. (2015) found that SVR underperformed compared to ELM 

for apple SSC prediction across 51 frequency ranges (10–1800 MHz), potentially due to 

differences in produce type or applied frequencies. 

Ionic conductivity and dipole relaxations have affected lower frequencies (15 MHz and 30 

MHz). Changes in water content, ion concentration, and SSC due to ripening significantly affect 

the dielectric properties. Lower frequencies may penetrate the fruit more effectively. In this 

way, it can interact more intensely with soluble substances (sugars, acids) with free and bound 

water molecules. Due to ripeness, sugar accumulation, starch degradation, and changes in water 

distribution alter the dielectric properties of the fruit. At 15 MHz and 30 MHz frequencies, the 

dielectric properties better reflect changes in the structure and composition of the fruit, resulting 

in more accurate SSC predictions. High frequencies can be subject to increased signal 

attenuation and noise due to bound water dipoles and complex interactions at the molecular 

level. Therefore, low frequencies provide a trade-off between penetration depth and signal 

clarity, minimizing noise and ensuring reliable measurements. 

This study demonstrated that fewer frequencies could sufficiently predict SSC, offering 

insights into fruit internal quality. Combining dielectric properties (ε′, ε′′′, tanδ) yielded superior 

model performance compared to using them individually. Notably, models trained on tanδ alone 

produced results comparable to combined properties. The down-sampled dielectric 

spectroscopy method presents a novel, efficient approach for rapid SSC determination across 

varying harvest times. An open-ended coaxial probe with ML algorithms offers a cost-effective 

and scalable solution for fruit SSC assessment. 

Down-sampling reduced the information value to as little as 5.47% while maintaining 

reliable SSC estimations. Dielectric properties showed a general decline across 5 to 3005 MHz, 

with tan initially increasing up to 30 MHz before decreasing. The most accurate predictions 

                  



were obtained in the 15, 30, and 60 MHz frequency ranges, with 300 MHz results closely 

matching these. Predictions based on tan alone were highly satisfactory, with SVR and MLP 

models achieving the highest correlation coefficients of 0.97 and 0.96, respectively. 

For ε', ε'', and ε'+ε''+tan, the best results were observed at 15 MHz, closely followed by the 

30 MHz range. For tan, frequencies of 60, 90, and 120 MHz provided comparable outcomes. 

The proposed down-sampling method significantly influenced prediction performance, as 

results up to 300 MHz closely resembled those from the entire frequency range. This indicates 

that broader frequency ranges are not necessary for reliable SSC predictions, validating the 

efficacy of the down-sampling approach. 

The highest R values and lowest RMSE and MAE values were obtained using models trained 

on all combined dielectric properties. However, the MLP model's time-intensive training posed 

practical challenges due to its large dataset requirements. This highlights the practical 

advantage of SVR in applications requiring efficient and accurate SSC prediction. 

 

5. Conclusion 

The results of predicting SSC by integrating machine learning models with an open-ended 

coaxial line probe measurement system were promising. For this study, selecting the proper 

machine learning algorithm and frequency values was critically important. Furthermore, the 

dielectric measurement system could perform the dielectric measurements in the 15 MHz 

frequency range. However, it was shown that devices with a less comprehensive measurement 

range may be sufficient for estimating SSC. The performance results of the SVR and MLP 

models were lower than those of the other models. However, the time taken to build the MLP 

model was very high, and the MLP showed remarkable performance in all indexes other than 

time. 

                  



In future studies, Optuna hyperparameter optimization for machine learning and Bayesian 

optimization and early stopping for deep learning can be explored to improve model 

performance. Furthermore, feature selection or elimination methods for SSC prediction can be 

modified to focus on optimizing different frequencies and how they affect different quality 

parameters. In addition, model accuracy can be improved by using spectral reflectance 

properties as input and dielectric properties. 
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Appendix A.: Data tables and figures 

This appendix contains detailed data tables for the down-sampled frequency ranges and 

ML models. As stated in the main text, sampled data at frequency intervals of 15, 30, 60, 90, 

120, 150, 180, 210, 240, 270, and 300 MHz were used to predict SSC using eight machine 

learning algorithms. This analysis resulted in an additional 17 tables and 3 figures, presented 

below. 
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Table captions 

Table 1. Downsampling intervals and the number of frequency 

Table 1. Downsampling intervals and the number of frequency. 

Sampling frequency 

interval (MHz) 

Total frequency Percentage of 

Information 

15 (original) 201 100.00% 

30 101 50.25% 

60 51 25.37% 

90 34 16.92% 

120 26 12.94% 

150 21 10.44% 

180 17 8.45% 

210 15 7.46% 

240 13 6.47% 

270 12 5.97% 

300 11 5.47% 
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Fig 1. A schematic diagram of the dielectric measurement system 

Fig 2. The results of the SSC (%Brix) of sweet cherry samples with means and errors 

                  



Fig 3. Resulting dielectric properties from sweet cherry samples at different frequencies 

Fig 4. The correlation coefficient results on the heat map of the ML models at different 

frequency intervals 

Fig. 5. The RMSE results on the radar chart of the ML models at different frequency intervals 

Fig. 6. The MAE results on the vertical drop line of the ML models at different frequency 

intervals 

Fig. 7. The time taken to build the ML models for combined dielectric properties 

 

Fig 1. A schematic diagram of the dielectric measurement system.

                  



 

Fig 2. The results of the SSC (%Brix) of sweet cherry samples with means and error.

 

 

                  



 

Fig 3. Resulting dielectric properties from sweet cherry samples at different frequencies.

  

  

Fig 4. The correlation coefficient results on the heat map of the ML models at different frequency 

intervals.

                  



  

  

Fig. 5. The RMSE results on the radar chart of the ML models at different frequency intervals.

  

                  



  

Fig. 6. The MAE results on the vertical drop line of the ML models at different frequency intervals.

 

Fig. 7. The time taken to build the ML models for combined dielectric properties. 
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This appendix contains detailed data tables for the down-sampled frequency ranges and 

ML models. As stated in the main text, sampled data at frequency intervals of 15, 30, 60, 90, 

120, 150, 180, 210, 240, 270, and 300 MHz were used to predict SSC using eight machine 

learning algorithms. This analysis resulted in an additional 17 tables and 3 figures, presented 

below.

Table A.1. Statistical analysis of SSC (°Brix) of sweet cherry samples 

Harvest day Mean Standard deviation Standard error Median Minimum Maximum 

Initial 14.53 0.7940 0.1449 14.59 12.90 15.92 

2 14.63 0.7847 0.1432 14.49 13.36 16.50 

4 14.85 0.7559 0.1380 14.92 13.43 15.91 

6 14.41 1.1101 0.2027 14.30 12.00 16.46 

8 15.70 0.9297 0.1697 15.71 14.15 17.67 

10 16.08 0.9581 0.1749 16.09 14.23 18.11 

12 17.24 0.9062 0.1654 17.26 15.72 19.58 

14 18.53 1.1932 0.2178 18.64 16.40 20.70 

16 18.17 0.8320 0.1518 18.10 16.60 19.51 

18 18.95 1.1290 0.2061 19.02 16.90 21.36 

20 19.58 1.3471 0.2459 19.44 17.60 23.00 

22 20.77 1.1475 0.2095 20.89 18.10 22.83 

24 21.34 1.3153 0.2401 21.21 18.90 23.98 

26 21.09 1.4400 0.2629 21.39 18.70 24.60 

                  



Table A.2. The correlation coefficient results of the ML models for dielectric constant (ε') 

Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.8730 0.8766 0.8763 0.8834 0.8845 0.8864 0.8857 0.8859 0.8888 0.8900 0.8869 

kNN 0.8471 0.8609 0.8704 0.8782 0.8732 0.8772 0.8740 0.8840 0.8792 0.8884 0.8838 

SVR 0.9254 0.9151 0.9041 0.8915 0.8843 0.8807 0.8722 0.8772 0.8775 0.8759 0.8778 

GP 0.8626 0.8504 0.9009 0.9010 0.9007 0.9014 0.8971 0.9001 0.9011 0.9015 0.9015 

MLP 0.8785 0.9017 0.9141 0.9003 0.8960 0.8995 0.8893 0.8965 0.8959 0.8908 0.8931 

MLR 0.8768 0.8795 0.8739 0.8736 0.8713 0.8714 0.8682 0.8692 0.8747 0.8778 0.8733 

BAG 0.8802 0.8789 0.8784 0.8751 0.8766 0.8763 0.8790 0.8783 0.8813 0.8817 0.8815 

REPTree 0.8338 0.8367 0.8450 0.8340 0.8476 0.8400 0.8337 0.8379 0.8296 0.8377 0.8362 

 

Table A.3. The correlation coefficient results of the ML models for loss factor (ε'') 

Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.8943 0.8931 0.8932 0.8947 0.8959 0.8970 0.8941 0.8935 0.8961 0.8943 0.8949 

kNN 0.8851 0.8851 0.8796 0.8803 0.8822 0.8806 0.8792 0.8737 0.8766 0.8772 0.8750 

SVR 0.9441 0.9365 0.9316 0.9274 0.9232 0.9144 0.9044 0.8984 0.8916 0.8782 0.8911 

GP 0.8709 0.8509 0.9114 0.9119 0.9113 0.9099 0.9089 0.9066 0.9056 0.9051 0.9042 

MLP 0.9293 0.9346 0.9246 0.9414 0.9427 0.9403 0.9389 0.9327 0.9347 0.9256 0.9315 

MLR 0.8409 0.8435 0.8444 0.8384 0.8407 0.8453 0.8360 0.8294 0.8383 0.8500 0.8332 

BAG 0.8935 0.8960 0.8931 0.8978 0.8922 0.8902 0.8918 0.8929 0.8914 0.8924 0.8867 

REPTree 0.8462 0.8421 0.8516 0.8656 0.8511 0.8782 0.8617 0.8561 0.8469 0.8630 0.8552 

Table A.4. The correlation coefficient results of the ML models for loss tangent (tan) 

Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.9240 0.9240 0.9225 0.9229 0.9232 0.9241 0.9192 0.9198 0.9196 0.9212 0.9158 

kNN 0.9136 0.8793 0.9131 0.9102 0.9095 0.9117 0.9097 0.9094 0.9105 0.9103 0.9110 

SVR 0.9659 0.9649 0.9604 0.9541 0.9518 0.9484 0.9449 0.9442 0.9408 0.9353 0.9367 

                  



GP 0.9262 0.9128 0.9325 0.9336 0.9339 0.9336 0.9323 0.9318 0.9304 0.9302 0.9277 

MLP 0.9548 0.9570 0.9574 0.9559 0.9555 0.9565 0.9516 0.9545 0.9528 0.9469 0.9501 

MLR 0.9089 0.8996 0.9042 0.9087 0.9075 0.8931 0.8885 0.8921 0.8877 0.8974 0.8855 

BAG 0.9182 0.9187 0.9208 0.9179 0.9145 0.9192 0.9159 0.9163 0.9158 0.9198 0.9123 

REPTree 0.8857 0.8771 0.8865 0.8871 0.8953 0.8874 0.8907 0.8952 0.8850 0.8901 0.8896 

 

Table A.5. The correlation coefficient results of the ML models for combined dielectric properties 

Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.9201 0.9209 0.9199 0.9205 0.9187 0.9187 0.9164 0.9189 0.9183 0.9198 0.9176 

kNN 0.9117 0.9113 0.9109 0.9135 0.9113 0.9114 0.9103 0.9089 0.9110 0.9059 0.9059 

SVR 0.9684 0.9677 0.9651 0.9632 0.9627 0.9627 0.9579 0.9586 0.9576 0.9528 0.9507 

GP 0.9523 0.9464 0.9170 0.9220 0.9245 0.9260 0.9268 0.9273 0.9280 0.9281 0.9271 

MLP 0.9529 0.9454 0.9529 0.9557 0.9560 0.9556 0.9565 0.9579 0.9557 0.9542 0.9496 

MLR 0.9450 0.9374 0.9437 0.9412 0.9418 0.9426 0.9273 0.9325 0.9190 0.9190 0.9107 

BAG 0.9132 0.9185 0.9172 0.9158 0.9138 0.9199 0.9142 0.9148 0.9126 0.9174 0.9142 

REPTree 0.8817 0.8759 0.8808 0.8857 0.8909 0.8840 0.8875 0.8869 0.8872 0.8828 0.8837 

Table A.6. The RMSE results of the ML models for dielectric constant (ε') 

Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.0790 0.0778 0.0781 0.0753 0.0750 0.0746 0.0742 0.0745 0.0731 0.0730 0.0739 

kNN 0.0849 0.0812 0.0790 0.0780 0.0776 0.0766 0.0775 0.0747 0.0760 0.0730 0.0739 

SVR 0.0603 0.0637 0.0673 0.0716 0.0746 0.0758 0.0793 0.0772 0.0769 0.0775 0.0769 

GP 0.0875 0.0911 0.0709 0.0705 0.0703 0.0700 0.0716 0.0705 0.0700 0.0697 0.0698 

MLP 0.0829 0.0717 0.0656 0.0702 0.0709 0.0683 0.0720 0.0699 0.0698 0.0715 0.0707 

MLR 0.0749 0.0749 0.0764 0.0772 0.0780 0.0778 0.0792 0.0788 0.0771 0.0759 0.0779 

BAG 0.0749 0.0751 0.0755 0.0768 0.0755 0.0762 0.0757 0.0760 0.0746 0.0747 0.0746 

REPTree 0.0862 0.0851 0.0845 0.0859 0.0834 0.0854 0.0801 0.0856 0.0866 0.0855 0.0860 

 

                  



Table A.7. The RMSE results of the ML models for loss factor (ε'') 

Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.0705 0.0709 0.0709 0.0702 0.0698 0.0695 0.0706 0.0709 0.0698 0.0705 0.0697 

kNN 0.0735 0.0733 0.0747 0.0747 0.0738 0.0743 0.0748 0.0749 0.0762 0.0760 0.0757 

SVR 0.0548 0.0583 0.0606 0.0626 0.0645 0.0670 0.0715 0.0694 0.0756 0.0797 0.0751 

GP 0.0910 0.1012 0.0665 0.0661 0.0663 0.0667 0.0668 0.0676 0.0678 0.0679 0.0682 

MLP 0.0601 0.0568 0.0623 0.0536 0.0532 0.0538 0.0547 0.0573 0.0566 0.0601 0.0579 

MLR 0.0888 0.0879 0.0877 0.0896 0.0825 0.0867 0.0897 0.0934 0.0889 0.0847 0.0901 

BAG 0.0708 0.0699 0.0704 0.0689 0.0705 0.0712 0.0711 0.0711 0.0704 0.0713 0.0717 

REPTree 0.0848 0.0853 0.0823 0.0782 0.0819 0.0755 0.0808 0.0826 0.0836 0.0787 0.0806 

Table A.8. The RMSE results of the ML models for loss tangent (tan) 

Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.0608 0.0606 0.0613 0.0609 0.0611 0.0609 0.0622 0.0622 0.0622 0.0619 0.0636 

kNN 0.0643 0.0757 0.0644 0.0657 0.0659 0.0649 0.0659 0.0662 0.0660 0.0658 0.0656 

SVR 0.0410 0.0419 0.0445 0.0479 0.0492 0.0509 0.0529 0.0532 0.0549 0.0576 0.0570 

GP 0.0682 0.0764 0.0588 0.0582 0.0580 0.0581 0.0584 0.0587 0.0593 0.0592 0.0601 

MLP 0.0480 0.0472 0.0466 0.0472 0.0474 0.0460 0.0489 0.0465 0.0487 0.0511 0.0493 

MLR 0.0671 0.0705 0.0688 0.0667 0.0677 0.0728 0.0746 0.0743 0.0747 0.0711 0.0747 

BAG 0.0633 0.0629 0.0620 0.0634 0.0643 0.0630 0.0638 0.0636 0.0637 0.0627 0.0649 

REPTree 0.0724 0.0754 0.0736 0.0719 0.0694 0.0722 0.0715 0.0695 0.0680 0.0713 0.0712 

 

Table A.9. The RMSE results of the ML models for combined dielectric properties 

Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.0623 0.0574 0.0624 0.0620 0.0627 0.0627 0.0637 0.0627 0.0628 0.0623 0.0628 

kNN 0.0654 0.0654 0.0654 0.0647 0.0652 0.0651 0.0657 0.0661 0.0658 0.0673 0.0669 

SVR 0.0394 0.0371 0.0412 0.0424 0.0427 0.0427 0.0457 0.0451 0.0457 0.0483 0.0496 

                  



GP 0.0502 0.0542 0.0670 0.0642 0.0629 0.0620 0.0614 0.0611 0.0607 0.0605 0.0608 

MLP 0.0521 0.0572 0.0493 0.0472 0.0468 0.0472 0.0472 0.0458 0.0472 0.0487 0.0508 

MLR 0.0517 0.0544 0.0524 0.0538 0.0524 0.0529 0.0600 0.0572 0.0629 0.0631 0.0657 

BAG 0.0650 0.0632 0.0632 0.0638 0.0645 0.0625 0.0643 0.0640 0.0649 0.0636 0.0639 

REPTree 0.0741 0.0764 0.0744 0.0723 0.0712 0.0737 0.0736 0.0724 0.0731 0.0734 0.0725 

Table A.10. The MAE results of the ML models for dielectric constant (ε') 

Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.0599 0.0590 0.0592 0.0575 0.0570 0.0564 0.0567 0.0563 0.0556 0.0556 0.0568 

kNN 0.0783 0.0618 0.0603 0.0591 0.0591 0.0580 0.0586 0.0567 0.0580 0.0561 0.0566 

SVR 0.0463 0.0489 0.0516 0.0552 0.0574 0.0584 0.0605 0.0593 0.0591 0.0597 0.0588 

GP 0.0651 0.0680 0.0543 0.0541 0.0540 0.0537 0.0547 0.0538 0.0535 0.0534 0.0533 

MLP 0.0613 0.0550 0.0515 0.0553 0.0562 0.0544 0.0568 0.0552 0.0551 0.0566 0.0558 

MLR 0.0584 0.0579 0.0592 0.0589 0.0604 0.0604 0.0611 0.0610 0.0606 0.0703 0.0603 

BAG 0.0572 0.0570 0.0576 0.0580 0.0575 0.0578 0.0577 0.0577 0.0571 0.0569 0.0568 

REPTree 0.0671 0.0660 0.0647 0.0668 0.0639 0.0659 0.0663 0.0656 0.0682 0.0665 0.0675 

 

Table A.11. The MAE results of the ML models for loss factor (ε'') 

Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.0549 0.0550 0.0548 0.0546 0.0546 0.0543 0.0547 0.0548 0.0542 0.0550 0.0545 

kNN 0.0578 0.0574 0.0582 0.0547 0.0572 0.0575 0.0577 0.0579 0.0588 0.0591 0.0587 

SVR 0.0400 0.0428 0.0443 0.0461 0.0610 0.0510 0.0536 0.0554 0.0573 0.0610 0.0576 

GP 0.0698 0.0782 0.0515 0.0514 0.0515 0.0519 0.0521 0.0527 0.0531 0.0532 0.0533 

MLP 0.0473 0.0445 0.0488 0.0420 0.0416 0.0420 0.0434 0.0454 0.0445 0.0486 0.0462 

MLR 0.0689 0.0687 0.0678 0.0694 0.0687 0.0676 0.0705 0.0705 0.0692 0.0664 0.0700 

BAG 0.0542 0.0536 0.0548 0.0542 0.0554 0.0557 0.0554 0.0549 0.0553 0.0554 0.0571 

REPTree 0.0652 0.0660 0.0645 0.0609 0.0634 0.0572 0.0616 0.0622 0.0651 0.0599 0.0626 

                  



Table A.12. The MAE results of the ML models for loss tangent (tan) 

Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.0470 0.0442 0.0475 0.0477 0.0477 0.0471 0.0486 0.0485 0.0483 0.0485 0.0494 

kNN 0.0503 0.0600 0.0500 0.0507 0.0510 0.0503 0.0513 0.0518 0.0509 0.0509 0.0512 

SVR 0.0305 0.0313 0.0344 0.0373 0.0384 0.0398 0.0414 0.0417 0.0430 0.0455 0.0450 

GP 0.0498 0.0564 0.0460 0.0450 0.0456 0.0456 0.0458 0.0461 0.0465 0.0466 0.0472 

MLP 0.0375 0.0372 0.0367 0.0372 0.0371 0.0366 0.0388 0.0373 0.0389 0.0406 0.0396 

MLR 0.0527 0.0559 0.0544 0.0527 0.0531 0.0579 0.0595 0.0579 0.0589 0.0567 0.0590 

BAG 0.0497 0.0488 0.0485 0.0492 0.0501 0.0486 0.0499 0.0500 0.0494 0.0497 0.0506 

REPTree 0.0568 0.0597 0.0558 0.0560 0.0536 0.0564 0.0553 0.0549 0.0577 0.0553 0.0558 

 

Table A.13. The MAE results of the ML models for combined dielectric properties 

Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.0477 0.0441 0.0476 0.0477 0.0482 0.0480 0.0485 0.0479 0.0481 0.0475 0.0486 

kNN 0.0508 0.0514 0.0517 0.0509 0.0516 0.0510 0.0516 0.0520 0.0517 0.0524 0.0525 

SVR 0.0281 0.0302 0.0313 0.0324 0.0328 0.0334 0.0362 0.0358 0.0360 0.0386 0.0394 

GP 0.0385 0.0415 0.0514 0.0495 0.0485 0.0479 0.0475 0.0472 0.0470 0.0469 0.0470 

MLP 0.0395 0.0423 0.0372 0.0370 0.0366 0.0370 0.0369 0.0355 0.0365 0.0378 0.0390 

MLR 0.0411 0.0438 0.0418 0.0428 0.0426 0.0421 0.0475 0.0465 0.0496 0.0503 0.0518 

BAG 0.0501 0.0482 0.0487 0.0486 0.0497 0.0477 0.0491 0.0497 0.0500 0.0491 0.0496 

REPTree 0.0568 0.0589 0.0575 0.0560 0.0561 0.0566 0.0564 0.0568 0.0565 0.0567 0.0565 

Table A.14. The time taken to build the ML models for dielectric constant (ε') 

Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.21 0.10 0.09 0.11 0.07 0.08 0.08 0.07 0.07 0.09 0.06 

kNN 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

SVR 0.13 0.05 0.03 0.02 0.03 0.03 0.04 0.04 0.03 0.03 0.03 

GP 0.17 0.07 0.07 0.07 0.06 0.06 0.06 0.08 0.09 0.06 0.06 

                  



MLP 50.37 10.23 2.27 1.12 0.58 0.43 0.29 0.23 0.18 0.18 0.14 

MLR 0.33 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

BAG 0.10 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 

REPTree 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 

Table A.15. The time taken to build the ML models for loss factor (ε'') 

Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.25 0.09 0.12 0.09 0.07 0.07 0.10 0.09 0.08 0.07 0.08 

kNN 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

SVR 0.17 0.07 0.03 0.03 0.03 0.04 0.04 0.05 0.04 0.04 0.04 

GP 0.15 0.04 0.04 0.08 0.04 0.05 0.06 0.05 0.04 0.08 0.04 

MLP 36.24 9.63 2.23 0.96 0.63 0.45 0.33 0.28 0.20 0.16 0.14 

MLR 0.30 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

BAG 0.11 0.07 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 

REPTree 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Table A.16. The time taken to build the ML models for loss tangent (tan) 

Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.14 0.09 0.10 0.10 0.08 0.07 0.07 0.07 0.06 0.06 0.06 

kNN 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

SVR 0.14 0.05 0.03 0.06 0.03 0.03 0.05 0.05 0.04 0.03 0.03 

GP 0.14 0.04 0.07 0.04 0.07 0.06 0.06 0.08 0.04 0.04 0.05 

MLP 48.12 8.59 2.32 0.96 0.64 0.46 0.29 0.29 0.18 0.14 0.13 

MLR 0.34 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

BAG 0.10 0.06 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.01 

REPTree 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 

Table A.17. The time taken to build the ML models for combined dielectric properties 

                  



Models 15 MHz 30 MHz 60 MHz 90 MHz 120 MHz 150 MHz 180 MHz 210 MHz 240 MHz 270 MHz 300 MHz 

RF 0.26 0.34 0.15 0.16 0.11 0.13 0.11 0.10 0.10 0.09 0.10 

kNN 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

SVR 0.38 0.32 0.10 0.09 0.07 0.06 0.06 0.05 0.04 0.05 0.03 

GP 0.15 0.23 0.09 0.06 0.05 0.08 0.05 0.06 0.08 0.09 0.05 

MLP 458.6 87.11 30.2 10.85 5.06 4.18 2.46 1.78 1.35 1.14 1.02 

MLR 8.47 1.04 0.14 0.06 0.03 0.02 0.01 0.01 0.01 0.01 0.01 

BAG 0.29 0.15 0.09 0.07 0.04 0.05 0.04 0.04 0.03 0.03 0.02 

REPTree 0.05 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 

Fig. A.1. The time taken to build the ML models for dielectric constant (ε')

                  



 

Fig. A.2. The time taken to build the ML models for loss factor (ε'')

                  



 

Fig. A.3. The time taken to build the ML models for loss tangent (tan) 
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