
Varghese, F., Auat Cheein, F. and Koskinopoulou, M. (2025) 'Finite element optimization of a flexible 

fin-ray-based soft robotic gripper for scalable fruit harvesting and manipulation', Smart Agricultural 

Technology, 11, article number 100899. 

Finite element optimization of a 
flexible fin-ray-based soft robotic 
gripper for scalable fruit harvesting 
and manipulation  

by Varghese, F., Auat Cheein, F. and Koskinopoulou, M. 

Copyright, publisher and additional information: Publishers’ version distributed under the 

terms of the Creative Commons Attribution License  

DOI link to the version of record on the publisher’s site

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.atech.2025.100899


Contents lists available at ScienceDirect

Smart Agricultural Technology

journal homepage: www.journals.elsevier.com/smart-agricultural-technology

Finite element optimization of a flexible fin-ray-based soft robotic gripper 

for scalable fruit harvesting and manipulation ✩

Finny Varghese a,b, Fernando Auat Cheein c, Maria Koskinopoulou a,b, ,∗

a School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK 
b The National Robotarium, Boundary Rd N, Third Gait, Edinburgh, EH14 4AS, Scotland, UK
c Department of Engineering, Harper Adams University, Edgmond, Newport TF10 8NB, England, UK

A R T I C L E I N F O A B S T R A C T 

Keywords:

Autonomous harvesting

Flexible gripper

On the path to achieving fully autonomous farming, the use of grasping devices for fruit picking and handling 
remains an open challenge. Current solutions are designed for specific fruits and robot manipulators, often 
without considering the intrinsic interaction between the gripper’s fingers and the fruit. This work explores the 
use of fin-ray-based flexible grippers, which mimic human fruit-picking movements, for harvesting and pick-and-

place operations involving medium-sized fruits. Optimal gripper characteristics were determined through a Finite 
Element Analysis methodology. To achieve the harvesting objective, the grippers were integrated into a vision-

based system and a robotic manipulator, with testing conducted under laboratory conditions. The harvesting 
study focused on apples, while the manipulation task was tested with apples, oranges, and lemons. The findings 
indicate that while all grippers demonstrated a suitable performance, one particular design emerged as the most 
effective, meeting all criteria and outperforming the others in experiments and performance metrics.

1. Introduction

The field of robotics is increasingly vital in addressing real-world 
challenges at an unprecedented pace. The global population, estimated 
at 7.8 billion in 2020, is projected to reach 9.7 billion by 2050 [1]. This 
growth necessitates a significant increase in food production to ensure 
global food security, with studies indicating that global food demand 
will double by 2050 compared to 2009 levels [2]. To meet this rising 
demand, advancements in agricultural practices, such as precision agri-

culture, are being explored to ensure sustainable food production [3]. 
Within precision agriculture, automation and robotics have emerged as 
key technologies for reducing environmental impact while optimizing 
agricultural yield [4]. However, the application of robotics in agricul-

ture, particularly in managing arboreal crops where robots must handle 
fruits, remains a significant challenge.

Several prior studies have explored the use of robotics and au-

tonomous systems in agricultural applications, including seed planting 
and crop harvesting [5–8]. For example, [9] introduced a smartphone-

controlled robot capable of automated seed planting in designated lo-

cations while authors in [10] designed an autonomous drone for seed 
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sowing in paddy fields, with an incorporated autopilot and a global 
positioning system (GPS) for navigation. Additionally, Jia et al. [11]

implemented an apple harvester prototype based on a machine learning 
approach using an RGBD camera for accurate fruit detection and locali-

sation. The authors used a custom-built three degrees of freedom manip-

ulator for fruit picking supported by a vacuum end-effector for gentle 
apple removal from the tree. Additionally, a nonlinear control scheme 
ensures accurate and agile manipulator movements. A similar approach 
for harvesting citrus fruits like oranges is presented in Yin et al. [12]. 
Their system employs a fully autonomous solution that leverages fused 
simultaneous localization and mapping (SLAM) algorithms from vari-

ous sensors, achieving precise localization and navigation within the 
orchard. For fruit picking, the authors developed a custom-built end ef-

fector, which achieved high success rates during field testing.

Most existing robotic grippers for agricultural applications are de-

signed for specific fruits, with solutions tailored to strawberries [13], 
oranges Yin et al. [12], and apples [14]. While these designs demon-

strate effectiveness for their target produce, they lack adaptability for 
handling fruits of varying sizes, shapes, and textures, highlighting the 
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Fig. 1. Mechanical design of the proposed robot end-effector for fruit harvesting. 

need for a more scalable solution capable of accommodating diverse 
harvesting scenarios.

As the agricultural sector increasingly relies on technology, soft 
robotic grippers have gained traction in agriculture, specifically for del-

icate tasks such as fruit harvesting, where fragility and variability of 
the produce are key challenges. However, most solutions lack scalabil-

ity and adaptability. Current research has introduced various designs 
with limited applicability beyond specific tasks or fruit types [15,16].

Finite Element Analysis (FEA) has proven to be a powerful tool in 
optimizing soft robotic designs [17]. For instance, Wang and Hirai [18]

applied FEA to soft pneumatic actuators, showing how mathematical 
modelling can improve deformation predictability and material perfor-

mance under varying conditions. Similarly, Prasad et al. [19] used FEA 
to optimize the stiffness of soft grippers, providing key insights into the 
influence of material properties and geometry on grasp performance. 
These studies highlight the utility of FEA in enhancing the adaptability 
and efficiency of soft grippers in real-world scenarios.

The use of flexible materials in soft robotics has grown significantly, 
especially with the advent of advanced manufacturing techniques. Grip-

pers based on flexible materials, like silicone or soft polymers, are partic-

ularly suited for tasks requiring adaptability and gentle handling [20], 
as demonstrated by Chen et al. [21] in their study on fin-ray grippers 
for apple harvesting. However, scalability across different types of fruits 
(e.g., varying sizes, textures) remains underexplored. Recent advance-

ments in flexible materials and 3D printing techniques have opened new 
possibilities for designing grippers that can handle a wide variety of 
fruits with consistent performance [22,23]. Nevertheless, current stud-

ies often focus on single fruit types, and the flexibility of designs across 
multiple fruit handling tasks and operations are yet to be fully validated 
Elfferich et al. [24].

While prior research has demonstrated the effectiveness of soft grip-

pers, significant limitations persist. Many existing designs focus on 
active systems (e.g., pneumatic actuators), which add complexity and 
cost, making them less suitable for scalable agricultural solutions [25]. 
In contrast, passive designs, such as those based on the fin-ray effect, 
offer simpler and potentially more scalable solutions. Pfaff et al. [26]

explored the fin-ray design in robotic gripping, emphasizing its poten-

tial for handling delicate objects with minimal damage. However, this 
approach remains underexplored for diverse fruit types and varying 
conditions, underscoring a gap in scalability across different agricul-

tural environments.

To address these challenges, the presented work focuses on the de-

sign and development of an adaptive gripper for harvesting and manip-

ulation medium-sized fruits, such as apples, oranges, and lemons, and 
its integration with a robotic arm to establish a vision-based control sys-

tem. This work advances beyond the state of the art by addressing key 
limitations in existing soft gripper designs and focusing on a scalable so-

lution through FEA. Unlike prior research that primarily targets specific 
fruits or task-specific grippers, our approach employs FEA to systemati-

cally optimize the gripper design, considering both material properties 
and geometric configurations. This ensures adaptability across various 
fruit types and harvesting conditions.

The optimized fin-ray grippers are integrated into a vision-based 
robotic system, enhancing automation by enabling precise control dur-

ing both harvesting and pick-and-place operations. We demonstrate the 
gripper’s effectiveness not only in harvesting apples but also in handling 
oranges and lemons, overcoming scalability limitations noted in ear-

lier studies such as Chen et al. [21]. Moreover, this research provides a 
quantitative evaluation of the gripper’s performance in laboratory con-

ditions, verified through numerical methods and experimental testing 
with real-world fruit samples. These advances lay the groundwork for 
future real-world testing and potential field deployment.

This work is organised as follows. The tools and methodology used to 
develop the system, as well as the architecture and control mechanism 
for the robot and electronics parts are discussed in Section 2. Following 
that, Section 3 mentions the testing protocol together with experimental 
results and observations. Finally, Section 4 concludes the paper by sum-

marizing the findings and outlining potential future research directions.

2. Materials and methods

This study proposes the development of a novel robotic 3-finger 
gripper for fruit harvesting. The gripper design incorporates flexible ma-

terials aimed at minimising fruit damage. More specifically, the gripper 
mechanism utilizes 3D-printed components controlled by an Arduino-

based electronic system. This combination allows for precise control and 
integration of sensing capabilities. Manufacture of the grippers utilizes 
Thermoplastic Polyurethanes (TPU). Furthermore, the system is inter-

faced with a robot and employs vision-based control for fruit detection 
and harvesting, significantly improving its accuracy and efficiency.

2.1. Mechanical design of the robot end-effector

The mechanical design of the robot end-effector, as shown in Fig. 1, 
features three fin-ray fingers mounted on a fixed base, forming the grip-

per. This base also houses the gripper motor, responsible for opening 
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Fig. 2. Nine gripper designs. 

and closing the gripper. In this design, the gripper motor coupling trans-

lates the motor’s rotational motion into linear motion via a linear screw 
mechanism. As the motor spindle rotates, the linear screw follows suit. 
A dedicated gripper motion link connects to the linear screw, convert-

ing the rotary motion from the motor into the linear motion required for 
the grippers. Gripper links connect the movable support of each finger 
via the connectors. The fingers open when the motion link moves away 
from the motor base. Conversely, when the motion link moves towards 
the base, the grippers engage. The gripper motor is securely bolted to 
the base to prevent any unwanted movement.

This gripping mechanism is attached to the backplate, which con-

nects it to the rotation motor using a rotation motor coupling. The rota-

tion motor is secured in its position using the back motor holder, which 
is attached to the holder. This additional motor serves to mimic human 
fruit-picking movement during harvesting. The holder couples the de-

veloped system with that of the robot using the end-effector coupling.

To implement the vision-based autonomous control of the robot, a 
Realsense RGBD D435 camera is attached to the robot’s end-effector, 
forming an eye-in-hand topology. This setup eliminates the need to 
recalibrate the camera-robot system whenever the robot arm position 
changes. The overall dimension of the gripper structure from the tool 
centre of the robot to the base end is 272 mm and the maximum width 
of the structure including the camera is 165 mm.

2.2. Various gripper designs for comparison

Building on the work of Chen et al. [21], a new gripper design was 
developed. This design closely follows the specifications of the reference 
gripper from the cited work, with minor modifications to facilitate ac-

tuation. Shown in Fig. 2 as Gripper 1, the design features nine evenly 
spaced cross-beams (webs) connecting two bone structures, each with 
a thickness of 3.5 mm and a width of 16 mm. Additionally, the gripper 
includes a base area for connection to both the system’s base and the 
connectors.

In this study, Gripper 1 serves as the baseline design, against which 
the performance of other grippers is evaluated. In the following, vari-

ous configurations of the cross-beams were explored to create different 
gripper variations:

• Spacing: Gripper 2 features decreasing cross-beam spacing towards 
the tip. The decreased spacing towards the end of the gripper can 
help the gripper to have a firm grip on the fruit and could reduce 
the chance of slipping during the operation.

• Inclination: Gripper 3 has beams inclined at 15.66 degrees towards 
the horizontal, while Gripper 4 has the opposite inclination. This 
design enables the cross beams to be equally inclined to the base 
while maintaining a fixed gap between the beams. The gripper 4’s 
inclination could increase the flexibility of the gripper and could 
result in a lower slip, while for the gripper 3, the increased effect 
of sturdiness is studied

• Number of Cross-Beams: Gripper 5 is a variation of Gripper 1 
with five beams (reduced from nine). Gripper 6 doubles the num-

ber of beams to eighteen. These designs intend to study the effect of 
varying cross-beams on the gripper. An increased number of cross-

beams could allow the gripper to adjust better to the asymmetric 
surface of the fruit while reducing the structural integrity of the 
gripper during grasping.

• Combination: Gripper 7 combines the inclined beams of Gripper 
3 with the opposing inclination of Gripper 4. This design is in-

dented to combine the key advantages of inclined beams, however 
the increased number of cross beams could significantly reduce the 
flexibility of the gripper.

• Modified Inclined Designs: Gripper 8 reduces the number of 
beams in the inclined Gripper 4 design to five. Similarly, Gripper 9 
reduces the beams in the inclined Gripper 3 design to five. These 
designs target to combine the effect of inclination with the number 
of cross-beams that were considered in the previous designs.

Each gripper design possesses unique characteristics, providing valuable 
insights for optimizing the gripper for fruit harvesting and manipula-

tion tasks. FEA methods were then employed to analyze these designs, 
guiding the selection of grippers for further testing in various real-world 
scenarios. Fig. 2 illustrates the nine gripper designs studied in this work.

2.3. Manufacturing and assembly

Rapid roboting is one of the key technologies in robotics where fast 
prototyping of robotic components is performed using rapid manufac-

turing technologies, light programming language, and modular open 
electronic hardware [27]. In this work, a similar methodology is fol-

lowed to develop the components mentioned in the design into reality.

This work utilizes two main manufacturing methods: 3D printing and 
laser cutting. For 3D printing, Fused Deposition Modelling (FDM) is used 
to create 3D parts by sequentially printing layers of plastic material. For 
the grippers requiring flexibility, 95A TPU is the chosen material. The 
backplate which supports the motor is developed using laser cutting of 
5 mm acrylic sheets.

The components are assembled to form a functional gripper. Me-

chanical fasteners secure the connection between the rapidly prototyped 
components. Additionally, original equipment manufacturer (OEM) 
components, including the linear screw, gripper motor coupling, and 
rotation motor coupling, are integrated into the assembly. The elec-

tric motors as well as the force sensors are also integrated during this 
assembly. Force sensing resistor (FSR) are placed on the inner side of 
the gripper as shown in Fig. 3(a), ensuring contact with the fruit and 
enabling precise force detection during grasping. Fig. 3(b) depicts the 
complete gripper assembly, highlighting its mechanical complexity and 
design while Fig. 3(c) illustrates the integrated robot system as a whole, 
showcasing the gripper’s functionality within the larger robotic setup.

The electrical components were interconnected according to the 
circuit diagram depicted in Fig. 4. The TB6600 motor drivers were 
controlled via pulse, direction, and enable pins using an Arduino mi-

crocontroller. Due to project constraints, the motors were powered by 
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Fig. 3. Proposed robotic end-effector after component assembly. 

Fig. 4. Circuit diagram for the gripper control. 

a benchtop power supply delivering 12 V and 1.5 A. For future field 
trials, this can be readily replaced with a battery power source. Force-

sensing resistors were connected to the Arduino controller’s analog input 
pins. To optimize sensitivity and provide a bridge for the feedback sig-

nal, a 10 kΩ resistor was utilized in conjunction with each sensor. The 
Arduino microcontroller was interfaced with a computer running the 
Robot Operating System (ROS) for robot control. Logical communica-

tion was established using the Arduino IDE and the rosserial protocol.

2.4. Machine vision for real-time fruit detection

The machine vision system facilitates both fruit identification and 
robotic control for precise positioning for fruit picking. The system is 
designed to handle medium-size fruits and was tested on three different 
fruits for pick-and-place operation – apples, oranges, and lemons. How-

ever, for the initial harvesting experiment, the apple is chosen as the 
target object. In the current implementation, an Intel RealSense Depth 

Camera D435 is used for fruit detection and position estimation. The 
camera is mounted on the robot as discussed in the mechanical design 
section, achieving an eye-in-hand configuration for the robotic arm.

To enable fruit detection, the vision algorithm utilizes YOLO-v5, im-

plemented on ROS Noetic using the ROS Wrapper for the D435 camera. 
When triggered by the controller, the camera topic publishes both depth 
and RGB data for processing. The object detection model identifies the 
fruit’s position and send this information to the robot controller for tra-

jectory planning and manipulation.

The YOLOv5 model, pre-trained on the MS COCO dataset [28], was 
further enhanced through custom training using data collected from our 
lab setup. Fig. 5 shows three sample images from the custom training 
dataset. The custom dataset was carefully designed to simulate oper-

ational scenarios, consisting of 160 training, 120 validation, and 50 
testing images. This approach ensures that the model is finely tuned 
to detect specific types of fruits encountered during the examined real-

world operations. This training has enabled the robot to detect different 
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Fig. 5. Sample images from the augmented training dataset of YOLOv5 model. 

Fig. 6. Autonomous fruit gripping system control workflow pipeline. 

fruits for the pick and place operation, which is also used for transfer 
learning in the detection of apples in laboratory experiments replicating 
a fruit harvesting task.

2.5. Robot planning and control

The robotic system leverages a combination of software tools to 
achieve precise control and motion planning. Libfranka functions1 as 
the low-level controller, directly managing the Franka Panda robot’s 
joints for high-precision movement. Franka ROS acts as an intermediary 
layer, enabling the integration of various Robot Operating System (ROS) 
packages with the robot. The MoveIt package [29] serves as the motion 
planner, guiding the robot’s arm to reach designated points within its 
workspace. Finally, the ROS framework facilitates the seamless integra-

tion of additional ROS-compatible packages for enhanced functionality. 
The motion planner used in the system is the MoveIt Pilz Industrial Mo-

tion Planner, which plans and implements linear motion to reach the 
goal position. In addition to these packages, the Franka controller mod-

ule is updated with the moment of inertia and centre of mass values of 
the gripper obtained from the 3D modelling software. These values are 
then used by the MoveIt packages to plan the path during manipulation.

To implement the vision-based manipulation system, the camera 
module integrated with the robot needs to be calibrated with the cus-

tom robotic end-effector. The MoveIt hand-eye calibration package is 
utilized for camera calibration. This package generates a calibration file 
specific to the setup, which aids the vision system in coordinating with 
the robot. In this process, checkerboards are used as markers and placed 
within the robot’s workspace and field of view. Images are taken from 
different camera positions for these markers, which are then used by the 
calibration package to generate the calibration file.

1 https://frankaemika.github.io/docs/libfranka.html.

The gripper control workflow pipeline, illustrated in Fig. 6, follows 
a coordinated sequence of actions. First, the robot transitions to a des-

ignated home position. Here, the machine vision module (YoloV52) 
actively detects the target fruit. Upon successful detection, the target 
position is transmitted to the robot’s ROS framework, triggering path 
planning through the MoveIt. Once a feasible path is established, the 
robot executes the plan to reach the desired location for picking the 
fruit. Visualization tools like Rviz allow for monitoring the planned 
trajectory and the robot’s real-world movement. Additionally, Rviz dis-

plays the machine vision output, including the bounding box around 
the identified fruit.

Following the execution of the motion plan, the robot communicates 
with the Arduino controller. This communication facilitates gripper and 
rotation motor control via the stepper motor drivers, while also enabling 
the retrieval of force sensor data. Once the fruit is grasped and removed, 
feedback travels back to the robot through the same serial connection. 
The robot then requests a new path from MoveIt, guiding the robot 
end-effector towards a fruit placing location to deliver the fruit. Upon 
reaching the destination, the gripper opens via Arduino control, and the 
robot returns to the home position, ready to repeat the cycle.

3. Experimental results

The developed gripper is designed to adaptively handle fruits dur-

ing harvesting as well as in fruit pick-and-place movements, mimicking 
human behaviour in the fruit-picking task. To assess their validity and 
repeatability in relevant setups, the nine grippers were initially evalu-

ated through simulation with stress analysis. The three best performers 
from the FEA were then manufactured and tested in two real-world ex-

2 https://github.com/ultralytics/yolov5.
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Fig. 7. Indicative results of FEA for Gripper 1. 

periments. The conducted experiments and their results are discussed in 
the following subsections.

3.1. Stress analysis of the grasping ability

The key factor influencing optimal gripper characteristics is its be-

haviour during interaction with the fruit. To investigate these character-

istics, the gripper designs were subjected to FEA using Ansys Mechanical 
software.3 FEA results simulate the fruit-picking task, providing theoret-

ical validation for the established design criteria.

In the analysis conducted, a scenario where the gripper interact with 
the apple is replicated in the simulation environment. For the study, a 
mean fruit size of 70.3 mm [30] is used to model the apple, and the 
mechanical properties such as elastic modulus of 5.0 MPa and Pois-

son’s ratio of 0.35 [31] were used. The gripper was modelled with the 
mechanical properties of TPU-95A material with an elastic modulus of 
29 MPa and poisson’s ratio of 0.36 as indicated by the manufacturer. 
The connectors are designed with PLA material, as per the specifica-

tions given by the manufacturer. The position of the fruit is constrained 
for the study and the connector is linked with the gripper using revo-

lute joints. The connection point opposite to the connector joint is fixed 
using a revolute joint, replicating the actual fixture to the base. Then 
a structural analysis is performed by moving the connector joint to the 
linear screw in the vertical direction opposite to the fruit, which is the 
motion resulting in the engagement of the gripper with the fruit.

FEA simulation examines three crucial factors influencing gripper 
performance: deformation, equivalent stress, and strain energy density. 
The deformation signify how the gripper creates contact with the fruit, a 
relatively large end-point deformation indicates the end is bending more 
towards the fruit, increasing the area of contact and reducing the chance 
of slip. The equivalent stresses indicate the structural integrity of the 
gripper, it should be within the maximum permissible limit indicated by 
the manufacturer. The strain energy density is an indication of damage 
caused by the gripper on the fruit. Strain energy is targeted to be kept 
below 12 mJ to keep the developed stresses per square millimetre area 
below 12 MPa [32] to avoid permanent damage to the fruit by gripper. 
Along with the FEA, other factors such as time taken for the 3D print-

ing and the material used are considered to choose the best-performing 
gripper. An indicative example of the results of the deformation and 
equivalent stress analysis plot is illustrated in Fig. 7.

Table 1 summarizes the results of finite element analysis and other 
manufacturing factors considered for all nine grippers. The observed 
values of stress, deformation, and strain energy vary significantly across 
the grippers, which are crucial factors in selecting the gripper with the 
optimum characteristics.

3 https://www.ansys.com/463 products/structures/ansys-mechanical.

More specifically, as shown in the table, Gripper 8 exhibits the maxi-

mum deformation, while Gripper 7 experiences the minimum. Notably, 
grippers 1, 4, and 8, despite having the highest deformation values, 
also demonstrate equivalent von-Mises stresses below 29 MPa, indicat-

ing structural stability. Grippers 5 and 9 exhibit stresses exceeding the 
allowable limit of 29 MPa for TPU material, suggesting these designs 
may experience permanent deformation under the loading conditions 
of this study. In contrast, Gripper 7 demonstrates the lowest stress level 
alongside a negligible strain energy of 1.3793 mJ. This behaviour sug-

gests that Gripper 7 functions almost like a rigid body despite being 
constructed from a flexible material. Similar to the previous analysis, 
grippers 1, 4, and 8 exhibit stable structural integrity based on their 
equivalent stress values. Among these, Gripper 4 experiences the lowest 
stress, reaching 18.493 MPa.

Strain energy exhibits significant variations across the gripper de-

signs. Gripper 7 demonstrates the minimum value, while Gripper 9 
exhibits the maximum. As highlighted in Table 1, Grippers 1, 4, and 8 
possess strain energy values ranging from 7 mJ to 12 mJ. This range is 
considered sufficient to create a stable grasp on the fruit without caus-

ing damage. Conversely, Grippers 5, 6, and 9 exhibit very high strain 
energy values, rendering them unsuitable for fruit picking due to the 
potential for fruit damage.

The material used for the grippers varies from 18.96 g to 24.99 g per 
gripper. The minimum material usage is beneficial for production and 
reduces the cost. Gripper 5, 8 and Gripper 9 use the minimum amount of 
material, while Gripper 7 uses the maximum. This can be attributed to 
the smaller number of cross beams for the former ones and the maximum 
number of cross beams for the latter.

Accordingly, based on the FEA results, Grippers 1, 4, and 8 emerged 
as potential candidates for the adaptable gripper for fruit handling. 
These designs exhibited favourable characteristics across all the met-

rics evaluated in the study: deformation, stress, strain energy, as well as 
print time and quantity of material needed. Consequently, these three 
grippers were selected for further evaluation through real-world lab test-

ing integrated with robot vision-based control.

3.2. Experimental setup

The gripper’s capability to harvest and safely handle different fruits 
was evaluated in a constrained lab environment. Fruit harvesting capa-

bilities were analyzed by experimenting with a replica of the harvesting 
scenario (Fig. 8), while fruit handling capabilities were tested for pick 
and place operations on a flat surface with a variety of fruits. The setup 
included the robot affixed to a table, fruits attached to a board to sim-

ulate harvesting, and green vegetation to constrain visibility. Pick and 
place operations were tested on the table shown in the experimental 
setup. The controller and power supply units were connected to the grip-

per through the wires routed along the robot’s surface.
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Table 1
FEA results for the studied grippers. The rows highlighted in grey indicate 
the grippers that performed the best during the analysis. These grippers 
were selected for further testing to evaluate their accuracy in lab experi-

ments.

Gripper Deformation 
(mm)

Equivalent 
Stresses 
(MPa)

Strain 
Energy 
(mJ)

Print 
Time 
(mins)

Material 
used (g)

Gripper 1 21.47 21.183 9.238 220 20.69

Gripper 2 20.884 14.027 6.8915 205 19.36

Gripper 3 20.116 12.828 8.2132 225 21.18

Gripper 4 21.375 18.493 7.8612 223 21.14

Gripper 5 13.715 29.382 21.464 197 18.96

Gripper 6 12.753 16.045 21.368 271 24.99

Gripper 7 10.658 10.163 1.3793 309 25.12

Gripper 8 21.965 28.262 11.051 200 19.13

Gripper 9 14.851 30.878 37.018 200 19.19

Fig. 8. Experimental setup. 

Table 2
Experiment I - Slip behaviour.

FSR1 FSR2 FSR3 Slip (3/3) Success 
Gripper 1 554.67 870.17 3.58 1 Yes 
Gripper 4 720.46 919.77 0.69 1 Yes 
Gripper 8 798.67 688.13 793.63 0 Yes 

3.3. Experiment I: fruit harvesting

In this experiment, the robot detects the position of the fruit and 
move to a picking position, where the gripper is engaged and a rota-

tion motion is applied to the fruit, mimicking human picking behaviour 
(Fig. 9). According to Li et al. [33], the mean grasping force to detach 
the stem of the apple from the branch is about 5.05 N and the grasp-

ing pressure using the three-finger grasping method is 0.24 MPa for the 
harvesting of the fruit without any significant damage. Once the fruit 
is detached, the harvested fruit is transferred to a placement position, 
where it is released by disengaging the gripper.

The slip behaviour of the grippers during fruit harvesting was evalu-

ated by analyzing the FSR data presented in Table 2. Physical validation 
of slip was also conducted, assigning a score of 0 (no slip) to 3 (all fingers 
slipped) for each attempt. Additionally, the success rate of the harvesting 
task was recorded. Apple was used as the targeted fruit in this experi-

ment and for all the physical properties of the fruit remained at 113 
grams and a diameter of 68.25 mm.

The data collected during the experiment 1 is summarised in Table 2. 
Results of this experiment indicate that the drop in FSR readings can be 
correlated to the observed slip in the fingers and the Grippers 1 and 4 
experienced slip on one finger during specific trials. In contrast, Grip-

per 8 demonstrated no instances of slipping throughout the experiment 
making it most suitable for fruit harvesting operations.

3.4. Experiment II: fruit manipulation

The second set of experiments evaluates the pick and place capabil-

ities of the grippers during the handling of apples, oranges and lemons, 
tested in a lab environment. These fruits vary in size as well as tex-

ture. In this experiment, the fruits are arranged on the table as shown 
in Fig. 10. At the beginning of the experiment, the robot control is ac-

tivated and the robot moves to a home position above the fruits on the 
table. Based on the fruit selection made by the user, the robot navigates 
to the picking position above the desired fruit, where the gripper is ac-

tivated to grasp the fruit. Then, the robot grasps the fruit and places it 
to a pre-defined position on the table, where the gripper eventually re-

leases the fruit. The experiment utilized fruits with varying diameters: 
apples (69.07 mm - 77.56 mm), oranges (66.61 mm - 73.5 mm), and 
lemons (55.44 mm - 58.40 mm).

Fig. 11 presents data on the slip behaviour of the grippers during 
Experiment 2, a total of nine finger slips were considered during this 
study which involved three fingers per trial of fruit and three trials were 
conducted per fruit, to obtain more data for the validation of results. 
The results indicate that Gripper 1 experienced significant slip events, 
particularly when handling apples and lemons. In the case of lemons, 
two fingers of Gripper 1 exhibited slip conditions in all trials.

It is worth noting here that in both experimental cases the mod-

el’s precision in detecting target fruits, achieves prediction accuracy 
exceeding 0.8 consistently and ensures robustness in detection in every 
iteration of the trials. The real-time detection demonstration together 
with indicative results from the conducted experiments of both experi-

ments are showcased in the supplementary video.

4. Discussion

The findings from this study highlight the promising potential of the 
optimized flexible fin-ray-based soft gripper for scalable fruit harvest-

ing and manipulation. The rigorous finite element optimization process 
not only refined the mechanical design but also validated the gripper’s 
capabilities across a range of fruit shapes and sizes, making it suitable 
for commercial applications. The adaptability of the gripper to handle 
diverse fruit types under varying conditions is crucial for its commer-

cial viability, ensuring effective performance in real-world agricultural 
environments.

The selected three grippers were tested for their capabilities in fruit 
harvesting and fruit manipulation tasks. Experiment I focused on har-

vesting reveals that Gripper 8 showed no signs of slippage during the 
experiment. In contrast, both Gripper 1 and Gripper 4 exhibited sliding 
movements on at least one finger. This observation is further supported 
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Fig. 9. Experiment I - Snapshots from the experimental procedure. 

Fig. 10. Experiment II - Snapshots from the experimental procedure. 

Fig. 11. Slip variation during Experiment II. 

by the data presented in Table 2, where abnormal drops in FSR3 values 
are evident for both handles.

Experiment II revealed a more pronounced distinction in terms of 
slip behaviour. The plot in Fig. 11 demonstrates a significantly high 
slip value for Gripper 1 when handling lemons. Notably, all grippers 
experienced at least one slip event when manipulating apples and 
lemons, while none encountered any slippage during orange manipula-

tion. These results indicate that while all grippers can handle a variety 
of fruits, their performance may vary depending on the fruit type, em-

phasizing the importance of comprehensive testing to ensure reliability 
across different agricultural contexts. This suggests that Gripper 1 may 
not be suitable for handling fruits like lemons, while Grippers 4 and 8 
remain potential candidates.

Based on the combined insights from real-world testing and produc-

tion considerations, the studied grippers can be ranked as follows:

1. Gripper 8: This gripper exhibited exceptional performance in both 
FEA simulations and real-world testing, with minimal slip observed 
during fruit handling. Its capacity to maintain grip without slip-

page under varying conditions positions it as a robust solution for 
large-scale agricultural operations. Furthermore, Gripper 8 boasts 
the lowest material consumption and production time, among the 
three, leading to significant material and cost savings during pro-

duction.

2. Gripper 4: Gripper 4 exhibited slip during real-world testing how-

ever it was capable of handling small citrus fruits like lemons mak-

ing it better than gripper 1, while the slip observations in experi-

ment 1 ranks the gripper below Gripper 8.

3. Gripper 1: Gripper 1 indicated higher slip values in both exper-

iments 1 and 2. The very high slip observations in Experiment II 
indicates the limitation of this gripper in handling small fruits.
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Overall, Gripper 8 emerges as the most favourable option due to its 
exceptional performance, minimal slip, and production efficiency. The 
conducted results from both simulations and real-world tests position 
it as a noteworthy advancement in flexible gripping solutions, paving 
the way for further exploration and development in the field. The low 
slip characteristics observed in both experiments, along with its efficient 
print time and material usage, highlight its potential as a promising can-

didate for advancing agricultural technology. The gripper’s scalability 
and adaptability across different fruit types further enhance its appli-

cability to various agricultural tasks. These qualities not only boost its 
functionality but also make it a practical choice for a wide range of 
fruit handling scenarios. With minor modifications, the design princi-

ples outlined in this project could be adapted for smaller fruit types, 
such as berries and other delicate produce.

5. Conclusion

This study successfully developed a versatile robotic gripper that ef-

fectively mimics the dexterity and efficiency of human fruit harvesting. 
Through a systematic exploration of nine innovative design concepts, 
we employed finite element analysis (FEA) as a crucial tool in refining 
the gripper designs, allowing us to evaluate their mechanical perfor-

mance and predict operational effectiveness under various conditions. 
The combination of FEA simulations and real-world testing led to the 
identification of Gripper 8 as the optimal solution, showcasing superior 
stability and minimal fruit slippage during grasping and manipulation 
tasks. The complete robotic system, equipped with Gripper 8 and vision-

based fruit detection, achieved autonomous fruit picking and harvesting, 
successfully replicating human harvesting behaviour.

Our research advances existing work by comprehensively compar-

ing multiple gripper designs and testing the top contenders in controlled 
settings with real fruits. The findings from the experimental evaluations 
indicate that Gripper 8 significantly outperformed other prototypes, un-

derscoring its potential for reliable fruit handling. The rigorous metrics 
derived from both FEA and empirical testing provided valuable insights 
into the performance characteristics of each gripper, emphasizing the 
critical importance of aligning FEA results with experimental outcomes 
to ensure the reliability of our models.

Despite the achievements of our system, there are avenues for further 
exploration and improvement. Future work could involve enhancing 
the system’s robustness by testing a wider range of fruits and vegeta-

bles. Additionally, testing should transition from the lab to real-field 
orchards for a more realistic evaluation. Future investigations could 
further improve the predictive accuracy of our models by integrating en-

vironmental variables into FEA simulations. Factors such as wind forces, 
temperature fluctuations, humidity, and branch interference could be 
modelled to better reflect real-world conditions, offering a more com-

prehensive understanding of their impact on gripper performance. This 
could be used to scale the presented model into other delicate fruits be-

yond the ones considered in the current study. Lastly, the application of 
machine learning techniques to the analysis of sensor data offers the po-

tential to enhance gripper adaptability and enable the implementation 
of dynamic, real-time gripping strategies. This approach has the poten-

tial to improve picking efficiency and reduce fruit damage.
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