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Vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae), is an economically important pest of soft fruit 
and ornamental crops globally. Its management has historically relied on broad-spectrum synthetic insecticides, 
but this has shifted toward integrated pest management compatible methods such as entomopathogenic 
nematodes and fungi that target soil-dwelling larvae. These methods require reliable pest monitoring tools to 
be practically effective and economically viable. Existing monitoring methods rely on detecting the nocturnal 
adult weevils as a proxy for larval presence, however, these are unreliable and time-consuming to implement. 
This may be addressed by developing an identification algorithm for adult weevils. Here we present results 
that show improved machine learning models can identify adult vine weevils under laboratory and semifield 
conditions. Specifically, we employ a lightweight network model and use ensemble enhancement techniques 
to address potential issues such as color variations, occlusions, and deformations in the data labels. The 
proposed framework strategically integrates a lightweight network model with adaptive ensemble augmentation 
mechanisms to comprehensively address three core data challenges: (1) chromatic variance under varying 
illumination conditions, (2) partial occlusion from pest aggregation, and (3) morphological deformation during 
specimen collection. This is the first report of such technologies specifically developed for a nocturnal insect 
pest. It demonstrates the feasibility of an automated monitoring approach, which could benefit growers as it will 
provide more timely information about pest populations in their crops and better inform management decisions.

1. Introduction

Vine weevil, Otiorhynchus sulcatus Fabricius 1775 (Coleoptera: Cur

culionidae), is an economically important insect pest of soft fruit and 
ornamental crops [1]. Once regarded as a sporadic glasshouse pest in 
Europe and North America [2], this species has emerged as one of the 
most serious horticultural pests across its geographical range over the 
past five decades. Its increased economic impact is largely attributed to 
the expansion of the horticultural sector and the adoption of new grow

ing practices, such as the use of black polythene mulches, that have 
inadvertently favored vine weevil development. These changes reduce 
insecticide efficacy and create protective microhabitats shielded from 
unfavorable climatic conditions [3].

Vine weevil control strategies have increasingly shifted from re

liance on persistent, broad-spectrum insecticides to the use of ento
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mopathogenic nematodes (EPNs) and fungi (EPFs) targeting the soil

dwelling larvae [4]. These biologically based methods represent a key 
advancement toward more sustainable, integrated pest management 
(IPM). As with all IPM programmes, effective pest monitoring is essential 
to reduce dependency on synthetic insecticides [5]. Early detection of 
vine weevil within crops is critical to successful management. Ineffective 
monitoring often results in growers remaining unaware of economically 
damaging populations until substantial crop loss has occurred [6]. Mon

itoring efforts are further complicated by the adults’ nocturnal feeding 
behavior and the larvae and pupae’s subterranean lifestyles [3]. Conse

quently, the development of robust IPM programmes has been hampered 
by inadequate monitoring techniques [1,7].

Monitoring efforts typically focus on adult weevils, as larval moni

toring involves root sampling and this is labor-intensive and potentially 
harmful to crops [8]. The most common adult monitoring techniques 
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Fig. 1. Several snapshots of the two cultures used in this work: vine weevil and earwig. These images are later used for the training of our detection approaches. 

are visual assessments, such as identifying characteristic leaf notching 
or gently shaking plants at night to dislodge individuals [6,9]. While 
leaf notch assessments may be reliable early in the season, newer dam

age becomes increasingly difficult to distinguish from older notches over 
time, and shaking may dislodge fruit or foliage. Moreover, these indi

rect methods can delay detection, allowing oviposition before control 
measures can be implemented [3]. Given the impracticality of night

time inspections, more effective and accessible monitoring methods are 
urgently needed. Although some efforts have focused on acoustic de

tection of larval stages [8], most research has concentrated on artificial 
refuges (which allow entry and exit) or traps (which prevent exit) for 
adult monitoring. In this study, both are collectively referred to as mon

itoring tools.

Monitoring tools exploit the negative phototaxis exhibited by adult 
vine weevils, prompting them to seek shelter during daylight hours 
[10,7]. A variety of designs have been evaluated, including grooved 
wooden boards placed on the ground [9], pitfall traps, corrugated card

board around stems or placed on the ground, traps designed for other 
insect pests [11], and purpose-built vine weevil traps [10]. Despite 
widespread use, debate persists over the efficacy and reliability of these 
tools. Key factors influencing performance may include tool size, color, 
shape, and number of entry points [7]. A semifield assessment of six 
monitoring tool designs demonstrated that although all were capable 
of detecting vine weevil presence, the number of individuals recovered 
from each tool varied greatly [10]. For other weevil species, tool efficacy 
and consistency have been improved through the use of semiochemical 
lures, typically sex or aggregation pheromones, to increase adult attrac

tion (e.g., [12]). However, despite over two decades of research into 
vine weevil chemical ecology, no effective attractants have been identi

fied. Consequently, the development of improved night-time monitoring 
methods that do not require manual inspection or direct trapping re

mains a key objective in advancing vine weevil management.

Monitoring approaches that are fast to deploy and capable of au

tomated pest identification would represent a significant step forward, 
reducing insecticide use and promoting IPM adoption. One promising 
avenue involves integrating computer vision and machine learning to 
recognize and classify pest-related images or video footage. Similar 
methodologies have already been applied to automated pest monitor

ing (e.g., [13,14]), although none have yet been tailored for nocturnal 
beetle pests, to the authors’ knowledge. This study, therefore, focuses 

on implementing contemporary machine learning techniques to address 
the challenges of nocturnal pest detection and classification. In this 
manuscript, we develop and evaluate a machine learning-driven moni

toring approach that addresses these challenges by combining entomo

logical expertise with automated image-based detection systems.

2. Materials and methods

2.1. Insects

2.1.1. Vine weevil culture

Vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) at 
various larval stages were collected from commercial strawberry (Fra

garia × ananassa cv. Duchesne) crops grown in Staffordshire (UK) dur

ing autumn 2021. Larvae were maintained on strawberry (cv. Elsanta) 
plants housed within a 47.5 cm3 white mesh cage (BugDorm-4S4545, 
MegaView Science Co. Ltd., Taichung, Taiwan) in a controlled environ

ment room (20 °C; 60% relative humidity; 16:8 photoperiod) (Fitotron, 
Weiss Technik, Ebbw Vale, Wales, UK). Resultant adults from this larval 
population were maintained under the previously stated environmental 
conditions using a standard method of placing the weevils in plastic 
terrariums (30 × 19.3 × 20.6 cm) containing yew (Taxus baccata) 
branches and moist paper towels that were replaced weekly [10]. All 
adult weevils used in this study were at least one month old and had 
been confirmed to be reproductively active, ensuring that subsequent 
monitoring tool tests used a field-representative pest population (Fig. 1).

2.1.2. Earwig culture

Adult European earwigs, Forficula auricularia Linnaeus 1758 
(Dermaptera: Forficulidae) were collected from an experimental poly

tunnel containing strawberry plants (cv. Elsanta) at Harper Adams 
University (Shropshire, UK) during January 2022. Individuals were 
combined into a single laboratory culture and maintained on strawberry 
leaves infested with potato aphids, Macrosiphum euphorbiae (Hemiptera: 
Aphididae) housed within a 47.5 m3 white mesh cage (BugDorm

4S4545) in a controlled environment room (20 °C; 60% relative humid

ity; 16:8 photoperiod) (Fitotron). This population served as a non-vine 
weevil species for training a machine learning model (Fig. 1).
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Fig. 2. Modified commercial vine weevil trap to add smart features (A) assembled for laboratory dataset collection with (a) Wi-Fi antenna, (b) BH1750FVI lux sensor, 
(c) BME280 temperature/humidity sensor, (d) Raspberry Pi Zero 2W, (e) clear acrylic and (f) entry location, (B) close-up of entry location and 0.5 cm stand-offs and 
(C) internal view of the (g) LED ring light and camera.

2.2. Image data collection and dataset preparation

We utilized a commercially available vine weevil monitoring tool 
retrofitted with imaging hardware to capture nocturnal insect activity. 
The monitoring tool was equipped with a Raspberry Pi camera mod

ule (V2.1; PiHut, Haverhill, Suffolk) and light emitting diode (LED) 
ring light (PiHut) connected to a Raspberry Pi Zero 2W microproces

sor (PiHut) (Fig. 2). It also included sensors to measure environmental 
conditions such as light intensity (BH1750FVI lux sensor) and temper

ature/humidity (BME280) as well as a Wi-Fi antenna for remote data 
transfer. The camera was positioned to view the trap’s interior entry 
platform, and images were automatically captured every ten minutes 
throughout the night. A primary objective of image collection was to 
acquire clear photographs of individual adult weevils entering the trap. 
However, adult vine weevil exhibited thigmotactic behavior, often clus

tering together, which made it challenging to isolate and count individ

uals directly from full-frame images. To address this, we developed an 
automated region-of-interest (ROI) extraction procedure. The software 
compared consecutive images and flagged new objects (insects) appear

ing in the trap by detecting differences between frames. When a newly 
arrived insect was detected, the algorithm cropped a sub-image of size 
100x100 pixels around that ROI for labeling. Additional filtering steps 
were applied to ensure each cropped sub-image contained a single, cen

trally positioned insect: specifically, we computed the image’s moment 
of inertia to confirm the subject was roughly centered (i.e., the image 
was ‘balanced’), and we measured the proportion of white background 
to avoid crops with excessive empty space. Cropped insect images that 
failed these criteria (off-center or mostly background) were discarded. 
The resulting set of processed 100×100 RGB images was saved to a 
GitHub repository for subsequent model development and is the basis 
of the dataset used in this study (Fig. 1). A total of 400 labeled images 

were obtained using this procedure. Each image was annotated with a 
class label: ``vine weevil'' for target pests and ``earwig'' for non-targets. 
For model training and evaluation, the dataset was split into training, 
validation, and test sets. In the baseline (unaugmented) dataset, 314 
images (78%) were randomly assigned for training, 46 (11%) for vali

dation (used to tune hyperparameters), and 47 (11%) for final testing. 
This split ensured that no test images were seen during training and that 
class proportions were maintained across subsets.

2.3. Machine learning implementation

Our approach employs a lightweight deep learning framework aug

mented with an ensemble of data transformations to achieve robust 
pest identification. The task is formulated as an image classification/de

tection problem on the 100×100 ROI images: given a cropped insect 
image, the model must identify whether the insect is a vine weevil or not 
(earwig). We evaluated several compact convolutional neural network 
architectures as candidate backbones for this task, including a custom 
CNN, AlexNet [15], and three variants of the YOLO object detection 
family (YOLOv5, YOLOv8, and a similarly small-footprint YOLOv11 ex

perimental model [16,17]. These models were chosen for their balance 
of accuracy and efficiency, as real-time or infield deployment would re

quire limited computational overhead. Each model was integrated into 
our augmented training framework described below. Preliminary trials 
with standard pretrained architectures (e.g., ResNet [18], Faster R-CNN 
[19] confirmed that even when fine-tuned on our dataset, off-the-shelf 
models could achieve basic classification of weevils vs. non-weevils (Ta

ble 1). However, their accuracy plateaued due to the limited and biased 
training data with many training images suffering from unusual orien

tations or incomplete insect visibility (e.g., only half of a weevil visible 
due to overlap with another insect). Fig. 3 illustrates several represen
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Table 1
mAP and Recall comparison of different models with varying batch sizes and augmentation strategies.

Model
Batch Size 16 w/o Aug Batch Size 16 w/ Aug Batch Size 32 w/o Aug Batch Size 32 w/ Aug 
mAP Recall mAP Recall mAP Recall mAP Recall 

CNN 0.803 0.871 0.844 0.862 0.803 0.895 0.841 0.850 
AlexNet 0.925 0.774 0.940 0.833 0.915 0.922 0.927 0.754 
YOLOv5 0.988 0.947 0.991 0.958 0.991 0.947 0.988 0.960 
YOLOv8 0.976 0.946 0.989 0.981 0.989 0.952 0.992 0.973 
YOLOv11 0.992 0.970 0.993 0.985 0.993 0.973 0.994 0.987 

Fig. 3. Quantify schematic diagram after being affected by occlusion and other factors. 

Fig. 4. Schematic diagram of augmentation operation. 

tative challenging cases: occluded weevils and multiple insects in one 
frame that confounded the classifier. These failure cases highlighted the 
need for an enhanced training strategy to improve generalization.

To address the data limitations, we implemented an ensemble data 
augmentation strategy. The key idea is to artificially diversify the train

ing samples by applying a random transformation to each image every 
time it is used for training. This approach exposes the model to a broader 
range of appearances for the target pest, thereby mitigating overfitting 
to the small original dataset and improving robustness to the issues of 
chromatic variation, occlusion, and deformation. We designed a suite of 
augmentation operations that includes geometric transformations, pho

tometric adjustments, and synthetic occlusion, inspired by the specific 
challenges of our data. In particular, our augmentation pipeline can per

form: (i) Random rotation by rotating the image by a random angle (𝜃) 
uniformly sampled in the range [-30°, 30°] about its center (filling any 
blank areas with the background color); (ii) Random scaling by zooming 
in or out by a scale factor s uniformly sampled from [0.8, 1.2], followed 
by resizing back to 100×100 pixels; (iii) Random half-cropping with 
50% probability, cropping out either the left or right half of the image 
(simulating an insect at the edge or partially out-of-frame), then padding 
the missing region with white to restore the full 100×100 size; (iv) 
Color jitter that adjusts brightness and contrast by small random offsets 
(this was implemented although not explicitly listed in the pseudocode, 
to account for varied lighting); (v) Image inversion by flipping the im

age horizontally (mirror image) or inverting colors (negative image) in 
some cases to further increase appearance diversity. These operations 
were applied in combination: for each training sample, a random sub

set of transformations is chosen and applied in sequence to produce an 
augmented sample. A schematic overview of the augmentation process 
is provided in Fig. 4.

We can formally define the augmentation procedure as follows. Let 
𝑥 ∈  be an input image and 𝑦 ∈  its label (vine weevil or non

weevil), with underlying data distribution 𝑃data(𝑥, 𝑦). We define a family 

of stochastic transformation functions 𝑇𝜃 ∶  →  , parameterized by 𝜃
drawn from a distribution Θ. Here, 𝜃 represents a particular augmenta

tion operation and its random parameters (e.g., a rotation by 17° or a 
brightness increase of 20%), and Θ is the overall distribution of augmen

tation choices (in practice, a mixture of the geometric and photometric 
transformations described above). For each original sample (𝑥, 𝑦), an 
augmented sample is generated by sampling a 𝜃 ∼ Θ and applying the 
transformation:

𝑥′ = 𝑇𝜃(𝑥), 𝜃 ∼Θ (1)

The new augmented data distribution 𝑃aug induced by this process 
can be expressed as:

𝑃augmented(𝑥′, 𝑦) = ∫ 𝑃data(𝑥, 𝑦) ⋅Θ(𝜃) ⋅ 𝛿(𝑥′ − 𝑇𝜃(𝑥)) 𝑑𝑥 𝑑𝜃 (2)

where 𝛿(⋅) is the Dirac delta function ensuring 𝑥′ is exactly the trans

formed version of 𝑥. The learning objective with augmentation is to 
minimize the expected risk over this augmented distribution rather than 
the original:

min
𝜃

𝐸(𝑥,𝑦)∼𝑃data

[
𝐸𝜃∼Θ

[
𝐿(𝑓𝜃(𝑇𝜃(𝑥)), 𝑦)

]]
(3)

where 𝑓 denotes the model’s prediction function (with parameters to 
be learned) and 𝐿 is the loss function (here, cross-entropy for classifi

cation). In essence, training on augmented data 𝑇𝜃(𝑥) encourages the 
model 𝑓 to learn features invariant to the transformations 𝑇 , thus im

proving generalization. We refer to the resulting model as an ensemble

augmented deep learning classification network, since it effectively 
trains on an ensemble of transformed versions of each original im

age. Fig. 5 illustrates the overall framework that consists of two main 
components: (i) the data augmentation module and (ii) the lightweight 
classification network. During each training iteration, an input image is 
stochastically augmented (one of the transformations is applied at ran
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Fig. 5. Schematic diagram of the whole framework. 

dom) and the modified image is fed into the network. The network then 
produces a prediction, which is compared to the true label to compute 
the loss. The model parameters are updated via backpropagation, and 
this process repeats for each epoch. By the end of training, the network 
has seen many altered versions of each insect image, learning to recog

nize vine weevils even when their appearance or context is varied.

For our experiments, we trained each of the five selected mod

els (CNN, AlexNet, YOLOv5, YOLOv8, YOLOv11) under two training 
regimes: with the augmentation pipeline enabled, and with no augmen

tation (for baseline comparison). We also examined two batch sizes (16 
and 32) to assess the effect of batch gradient estimation on performance, 
especially given our small image size and the presence of small object 
features. All models were trained for 500 epochs on an NVIDIA GPU. 
Stochastic gradient descent was used with an initial learning rate of 
0.01, gradually reduced to 1 × 10−5 by the end of training (a cosine de

cay schedule was used). A brief 3-epoch warm-up at the start helped 
stabilize training. We applied a weight decay of 5 × 10−4 to regularize 
the CNN weights. A fixed random seed (4) was used in all training runs to 
ensure reproducibility of the data splitting and augmentation sampling. 
When augmentation was enabled, the effective number of training sam

ples doubled (each original image could yield two distinct augmented 
variants per epoch on average). For instance, starting from 314 orig

inal training images, each epoch’s training set was expanded to 628 
augmented samples; in practice we rounded this to 634 to keep class 
proportions balanced, and similarly increased the validation set from 
46 to 80 and test set from 47 to 79 by augmenting those images for 
consistency in evaluation.

2.4. Evaluation metrics

We evaluated model performance using precision, recall, and mean 
average precision (mAP) computed on the held-out test set. A positive 
prediction was defined as the model correctly identifying a vine weevil. 
In our context (binary classification/detection of weevil vs. earwig), a 
true positive (TP) occurs when a weevil is correctly identified, a false 
positive (FP) when a non-weevil is misclassified as weevil, and a false 
negative (FN) when a weevil is missed (classified as non-target). Preci

sion and Recall are given by:

Precision = 𝑇𝑃 
𝑇𝑃 + 𝐹𝑃

, Recall = 𝑇𝑃 
𝑇𝑃 + 𝐹𝑁

. (4, 5)

Since we are effectively dealing with two classes (weevil vs. non

weevil), we calculate the average precision (AP) for the vine weevil class 
and report mAP as the mean of the AP values across both classes (or 
equivalently, AP of weevil and AP of non-weevil). In general form, if 
𝐴𝑃𝑐 is the average precision for class 𝑐 and 𝐶 is the number of classes, 
then:

mAP = 1 
𝐶

𝐶∑

𝑐=1 
𝐴𝑃𝑐. (6)

3. Results

3.1. Quantitative performance

Overall, the proposed ensemble augmentation strategy yielded con

sistent improvements in detection accuracy across nearly all models 
and settings. When the five compact backbones were trained on our 
insect dataset, augmentation lifted performance in every case in terms 
of mAP and, in most cases, for recall as well (Table 1). For example, 
the YOLOv5 model (batch size 16) achieved an mAP of 0.988 and re

call of 0.947 without augmentation, which increased to 0.991 mAP and 
0.958 recall when trained with our augmentation pipeline. YOLOv11 
saw its already high accuracy further improved to 0.993--0.994 mAP and 
0.985--0.987 recall with augmentation (depending on batch size), mak

ing it the best performing classifier tested. Simpler models also benefited 
from augmentation with the baseline CNN’s mAP rising from 0.803 to 
0.844 (batch 16) while AlexNet saw improvements in mAP from 0.925 
to 0.940 (with a modest recall increase from 0.774 to 0.833). These 
improvements indicate that enriching the training set with diversified 
examples helps the networks generalize better to the test data. Doubling 
the batch size from 16 to 32 had a smaller effect on raw accuracy metrics 
than augmentation, but we observed that it produced more stable train

ing and slightly improved recall in some cases (e.g., CNN recall 0.871 
at batch 16 vs. 0.895 at batch 32, without augmentation) (Fig. 4; Ta

ble 1). The augmented models consistently show higher median mAP 
and recall with reduced variability in performance (Fig. 6).

3.2. Qualitative detection

Beyond the numerical gains, we inspected the detection outputs from 
each model to qualitatively assess how augmentation and model choice 
impacted the quality of pest localization and identification. Table 2

presents representative detection outcomes for each model under dif

ferent training scenarios (with/without augmentation and batch size 16 
vs 32). Several clear trends can be identified from these visual compar

isons. First, the YOLO-based detectors (v5, v8, v11) produced markedly 
more precise bounding boxes around the weevils than the simpler CNN 
or AlexNet. In cases with no augmentation, the CNN and AlexNet often 
struggled and their output images show either incomplete localization 
(e.g., bounding boxes that do not tightly fit the insect) or false-positive 
highlights on background elements that resemble insect texture. In con

trast, the YOLO models, even without augmented training, delineated 
the weevil bodies much more sharply and rarely confused background 
patterns for insects (see Fig. 6).

Training with the ensemble augmentation framework significantly 
improved each model’s ability to handle difficult cases. Augmented 
models robustly detected partially occluded or oddly illuminated wee

vils that their unaugmented counterparts missed or misclassified. For 
instance, in Table 2 we include scenarios where a vine weevil is half

obscured by another insect or only faintly lit; the augmented YOLOv8 
and YOLOv11 still successfully identify the weevil (drawing a correct 
box around the visible part of the insect), whereas the non-augmented 
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Table 2
Qualitative results in the visual aspect.

Model Batch Size 16 w/o Aug Batch Size 16 w/ Aug Batch Size 32 w/o Aug Batch Size 32 w/ Aug 

CNN 

AlexNet 

YOLOv5 

YOLOv8 

YOLOv11 

versions either failed to detect it at all or placed an incorrect box. Sim

ilarly, augmentation helped reduce false negatives for the simpler net

works. AlexNet with augmentation identified some weevils in images 
containing several overlapping vine weevils that it overlooked without 
augmentation. These qualitative improvements align with the earlier 
metric gains in recall: the augmented models have learned to recog

nize vine weevils, even when the input deviates from ‘ideal’ images, 
by focusing on key morphological features such as portions of the dis

tinctive snout or leg shape present even in partial views. Increasing 
the batch size from 16 to 32 further enhanced the detection stability. 
In the augmented models, a larger batch yielded slightly tighter and 
more confident bounding boxes in the qualitative results. We observed 
fewer misaligned boxes when multiple weevils were present, indicating 
that batch=32 training helped the network better distinguish individ

ual insects in groups (Table 2). Among all the model configurations, the 
YOLOv11 model trained with augmentation and a batch size of 32 de

livered the best overall performance. It consistently detected all vine 
weevils in the test images, even under the most challenging conditions 
(such as multiple overlapping weevils, or individuals touching the trap 
edge). Its bounding boxes were also the most accurate, tightly fitting 
the insect outlines with minimal background included, and it produced 
virtually no false positives on blank areas.

4. Discussion

Recent advances in machine learning have facilitated the develop

ment of automated pest detection and identification tools with numer

ous studies applying deep learning to this problem, but these are largely 
focused on flying lepidopteran and dipteran pests. The present study 
demonstrates that a lightweight-network detector augmented with an 

ensemble-augmentation pipeline can identify a nocturnal beetle pest 
with accuracy in line with the best single-species models published to 
date. When five compact backbones were trained on our dataset, aug

mentation lifted performance in every case: for YOLOv5, mAP went 
from 0.988 to 0.991 and recall from 0.947 to 0.958 at batch-size 16, 
while YOLOv11 reached 0.994 mAP and 0.987 recall under the same 
conditions. Doubling the batch size to 32 produced qualitatively tighter 
bounding boxes by stabilizing gradient estimates for small objects. These 
gains confirm the value of our augmentation strategy, which (1) applies 
targeted geometric and color perturbations, (2) injects synthetic occlu

sions/overlaps, and (3) purposefully simulates partial visibility so that 
the network learns to focus on local, discriminative cues rather than 
complete outlines. The efficacy of the proposed ensemble-augmented 
technique is empirically validated through systematic experimentation 
and the data in Table 1, demonstrating consistent performance gains 
when applied to five prevalent categories of lightweight deep learning

based image classification models compared to their baseline counter

parts without ensemble-augmented integration. This improvement pri

marily stems from the technique’s capacity to enhance data diversity in 
training databases, enabling classification networks to effectively learn 
critical patterns from challenging scenarios inadequately addressed in 
standard preprocessing pipelines, particularly partial insect visibility 
due to localization inaccuracies or overlapping specimens. Table 2 also 
demonstrates that implementing increased batch sizes coupled with our 
proposed augmentation framework enables classification networks to 
achieve enhanced bounding box localization accuracy across diverse 
insect imagery, consistently performing robustly irrespective of speci

men integrity. As illustrated in Table 2, our augmented network model 
demonstrates superior performance in identifying occluded or cropped 
insects, cases where traditional recognition methods typically fail. This 
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Fig. 6. Boxplot comparison of mean Average Precision (mAP) and Recall for the five models under two training conditions: without augmentation (brown) and with 
the proposed augmentation (blue). For each classifier (CNN, AlexNet, YOLOv5, YOLOv8, YOLOv11), the median performance with augmentation is equal or higher 
than without, and the spread (interquartile range) is generally reduced.

improvement is evident both in higher recognition probabilities and 
more accurate selection rates. The performance improvement stems 
from our augmentation techniques, which enhance the model’s ability 
to learn from challenging cases including occluded, partially visible, and 
rotationally distorted insect specimens, ultimately yielding more robust 
recognition capabilities.

The proposed ensemble-augmented deep learning classification 
framework demonstrates significant advantages in pest recognition sce

narios by dynamically combining diverse augmentation operations tai

lored to dataset characteristics. This approach enhances data diversity 
for deep image classification models through three key mechanisms as 
follows. Firstly, the system intelligently ensembles geometric transfor

mations and occlusion simulations based on target pest morphology 
and occlusion patterns, optimizing feature representation learning. Sec

ondly, by synthetically generating realistic pest variations (partial oc

clusion, overlapping specimens), it reduces dependency on large-scale 
manual annotations while maintaining model accuracy. Thirdly, the 
augmentation pipeline specifically addresses pest overlap challenges 
by simulating partial visibility scenarios, forcing the model to focus 
on discriminative local features rather than complete specimen shapes. 
When compared to the current state of automated pest monitoring, our 
study results are at the upper end of what has been reported for single

species detectors. The CNN pipeline used by Ding and Taylor [13] for 
codling-moth pheromone traps achieved around 87% mAP on trap im

ages captured under mixed field lighting, whereas TPest-RCNN used by 
Li et al. [20], optimized for whiteflies and thrips on yellow sticky traps, 
reached 95.2% mAP on a two-class greenhouse dataset. Once the class 
count rises, performance falls steeply: the Pest24 benchmark, which 
spans 24 taxa and more than 190,000 labeled insects, reports 69.59% 
mAP and 77.71% recall even after architectural tuning with the Pest

YOLO variant [21]; the IP102 dataset, with 102 classes and a natural 
long-tailed distribution, remains a severe challenge for deep classifiers 
despite its 75,000 images. Against this landscape the present detector’s 

≈ 99% mAP illustrates that, for a well-defined nocturnal beetle, ac

curacy comparable with the best lepidopteran and whitefly systems is 
attainable on a much smaller training dataset.

High recall has direct agronomic value. Adult vine-weevils typically 
begin oviposition three to four weeks after emergence [1]; missing that 
early window compromises the efficacy of larval biocontrols such as 
entomopathogenic nematodes. With recall approaching 0.96, the system 
is expected to miss fewer than one adult in twenty, enabling just-in-time 
interventions instead of prophylactic treatments. Because the Raspberry 
Pi camera records images every ten minutes, growers could receive a 
quantitative time-series of nightly activity that is impossible to obtain 
through manual scouting [22]. Such data can not only guide treatment 
scheduling but also allow the efficacy of control measures to be audited, 
a key requirement for certification schemes that reward evidence-based 
IPM.

Several limitations nevertheless remain. Augmented images, while 
diverse, cannot reproduce every real visual contingency, leaving the 
model vulnerable to subtle domain shifts. Because the detector is binary, 
non-target beetles, earwigs or large leaf fragments sometimes trigger 
false positives; an explicit ``unknown'' channel coupled with hard neg

ative mining will be required before broad deployment. The principal 
sources of error are heavy occlusion and specular glare, which occasion

ally suppress detections or distort boxes despite augmentation efforts. 
Practical deployment also raises additional engineering questions. Illu

mination must be bright enough for the camera yet benign to the insect; 
diffuse near-infra-red LEDs or filtered yellow wavelengths are the most 
promising options, but long runs in humid glasshouses mandate lens 
heaters and hydrophobic coatings. Edge inference on the current proto

type draws less than three watts, suggesting that a solar-battery package 
similar to those described for light-trap systems powered entirely by 
photovoltaic modules is feasible. Component costs of approximately US 
$200--300 per trap should be offset in high-value horticulture by re

duced labor and the avoidance of whole-crop losses; moreover, the rich 
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digital audit trail offers an intangible asset that conventional monitoring 
lacks. Analysis of failure cases indicates three opportunities for immedi

ate improvement. First, a lightweight verification classifier that focuses 
on the beetle’s distinctive rostrum would suppress false positives from 
elongate debris. Second, temporal smoothing over successive frames can 
recover individuals missed in a single image owing to occlusion. Third, 
an out-of-distribution filter based on predictive entropy would allow the 
camera to flag unfamiliar objects, an essential safeguard once additional 
pest classes are introduced.

Future research should pursue three converging paths. Season-long 
validation in multiple protected cropping environments to determine 
monitoring tool performance under variable humidity, crop architecture 
and lighting; incremental inclusion of new taxa using hierarchical detec

tors and datasets such as Pest24 will broaden utility; and model pruning 
plus quantization will deliver sub-50 ms inference on microcontrollers, 
enabling full video analysis for behavioral classification as well as detec

tion. Parallel advances in non-visual sensing using acoustic monitoring 
could support multimodal smart tools where vision, pheromones and 
sound are combined into a single, low-maintenance IPM tool [8].

5. Conclusion

This study presents the first automated identification method for 
nocturnal vine weevils using a lightweight neural network enhanced 
with ensemble augmentation techniques. The framework specifically 
addresses three critical challenges in field-collected pest imagery: (1) 
chromatic variations under uneven lighting, (2) occlusion from clus

tered specimens, and (3) morphological deformations. Laboratory val

idation confirms the model’s effectiveness in overcoming traditional 
limitations, achieving 99% mAP and 0.987 recall—performance com

parable to the best single-species detectors while using substantially 
fewer training images. The implications of this technology extend far 
beyond technical metrics. For IPM, automated monitoring addresses 
a fundamental challenge: implementing threshold-based decisions for 
nocturnal pests. With a recall approaching 96%, the system reliably 
detects adult vine weevil presence to facilitate the timely deployment 
of biological control agents like entomopathogenic nematodes. A con

tinuous, quantitative data stream allows growers to evaluate control 
efficacy and adjust strategies based on evidence rather than calendar 
dates, as would be traditionally the case in pest management. Ecolog

ically, the shift from prophylactic to targeted interventions preserves 
beneficial arthropod communities and pollinators typically impacted 
by broad-spectrum insecticides. This aligns with global sustainability 
goals, including pesticide reduction targets and biodiversity conserva

tion mandates. The technology directly supports certification schemes 
that reward evidence-based IPM, as the digital audit trail provides verifi

able proof of monitoring-based decisions. For growers, this translates to 
premium market access and compliance with increasingly stringent en

vironmental regulations. Economic viability underpins practical adop

tion. While component costs of $200-300 per unit represent initial in

vestment, returns manifest through multiple channels: reduced labor 
for night-time scouting, optimized biocontrol timing, decreased crop 
losses, and lower input costs from eliminating unnecessary treatments. 
For high-value protected horticulture, where vine weevil damage can 
devastate entire crops, the economic case is evident. The lightweight 
neural network’s success with limited training data suggests that it 
could be rapidly adapted to other pest species, potentially revolution

izing monitoring across diverse agricultural systems. Integration with 
emerging technologies—acoustic sensors, pheromone detection, envi

ronmental modeling—points toward comprehensive surveillance net

works providing both landscape-scale insights and field-level precision. 
By demonstrating that accurate, affordable monitoring of challenging 
nocturnal pests is achievable, this work catalyzes a fundamental shift in 
pest management capability.
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