
Clifford, C., Bieroza, M., Clarke, S.J., Pickard, A., Stratigos, M.J., Hill, M.J., Raheem, N., Tatariw, C., 
Wood, P.J., Arismendi, I., Audet, J., Aviles, D., Bergman, J.N., Brown, A.G., Burns, R.E., Connolly, J., 
Cook, S., Crabot, J., Cross, W.F., Dean, J.F., Evans, C.D., Fenton, O., Friday, L., Gething, K.J., Giannico, 
G., Habib, W., Maher Hasselquist, E., Heili, N.M., van der Knaap, J., Kosten, S., Law, A., van der Lee, 
G.H., Mathers, K.L., Morgan, J.E., Rahimi, H., Sayer, C.D., Schepers, M., Shaw, R.F., Smiley Jr, P.C., 
Speir, S.L., Strock, J.S., Struik, Q., Tank, J.L., Wang, H., Webb, J.R., Webster, A.J., Yan, Z., Zivec, P. and 
Peacock, M. (2025) ‘Lines in the landscape’ Communications earth & environment, 6, Article number 
693. 
 

Lines in the landscape 
by Clifford, C., Bieroza, M., Clarke, S.J., Pickard, A., 
Stratigos, M.J., Hill, M.J., Raheem, N., Tatariw, C., 
Wood, P.J., Arismendi, I., Audet, J., Aviles, D., 
Bergman, J.N., Brown, A.G., Burns, R.E., Connolly, J., 
Cook, S., Crabot, J., Cross, W.F., Dean, J.F., Evans, 
C.D., Fenton, O., Friday, L., Gething, K.J., Giannico, G., 
Habib, W., Maher Hasselquist, E., Heili, N.M., van der 
Knaap, J., Kosten, S., Law, A., van der Lee, G.H., 
Mathers, K.L., Morgan, J.E., Rahimi, H., Sayer, C.D., 
Schepers, M., Shaw, R.F., Smiley Jr, P.C., Speir, S.L., 
Strock, J.S., Struik, Q., Tank, J.L., Wang, H., Webb, 
J.R., Webster, A.J., Yan, Z., Zivec, P. and Peacock, M. 

Copyright, publisher and additional information: Publishers’ version distributed under the 
terms of the Creative Commons Attribution License  

DOI link to the version of record on the publisher’s site 
 

 

 

 

 

 

 

 

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s43247-025-02699-y


communications earth & environment Perspective
A Nature Portfolio journal

https://doi.org/10.1038/s43247-025-02699-y

Lines in the landscape
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Ditches (linear constructions which store and/or move water where humans prefer it to go), via
irrigation, drainage, and power, have helped drive the development of human societies. Now, ditches
and other linear channels, typically carrying water, are numerous and found on every continent. Their
form varies widely with use, which includes land drainage, irrigation, transportation, and boundary
marking. Ditches support and shape biogeochemical cycles, biotic communities, and human
societies, at multiple spatiotemporal scales. However, ditches are frequently overlooked by
researchers in many disciplines. Here, we review the largely unrecognized role that ditches play in
environmental processes and human societies. The effects of ditches can be both positive (e.g.,
biodiversity refuges, water for food production, nutrient retention) and negative (e.g., greenhouse gas
emissions, dispersal of pollutants). We call for future management to consider and enhance the
multifunctional role that ditches can deliver at the landscape-scale.

Human societies, globally, have enacted control of hydrological systems
throughdrainage and irrigation, with evidence of linearwaterways dating as
far back as 8000 years1. Ditches enabled the expansion of agriculture and
settlements, by both supplying and excluding water, and allowed early
humans to produce a surplus of food, which allowed part of society to be
freed from agricultural labor. Thus, ditches provided the opportunities for
societies to focus time and resources oncultural and commercial endeavors2.
Today, ~40% of global food production relies on irrigation and ~15% on
drainage, and these dependencies are expected to increase3. Although dit-
ches arewidely distributedand foundon every continent (evenAntarctica4),
their global extent is poorly quantified, with drained and irrigated cropland
estimates varying between 130–200 Mha and 270–300 Mha3,5. In the
Northern Hemisphere, forestry drainage occupies an additional 15 Mha6

(Fig. 1C). The extent of ditch networks at the national scale can be extremely
large (e.g., 300,000 km in the Netherlands7; 800,000 km in Sweden8) and a
rough estimate of the global surface area of drainage ditches alone is
1.4–10.7 Mha9.

As ditch and irrigation networks have grown globally, so have their
effects on natural hydrological cycles; they have drained and degraded
wetlands10 and alteredwaterflows through ecosystems at the landscape scale
and beyond11. At the same time, the existence of non-human life has also
become increasingly interconnected with these channels12–14. Ditches are
palimpsests, echoes of past landscapes overwritten by human actions and
naturalized again, embodyingboth creationanddestruction.They challenge
the human-nature dichotomy15, both of, and not of, natural waters.
Simultaneously, ditches constitute an integral part of the hydrological net-
work supporting remnants of aquatic ecosystems16 and exemplifying novel
ecosystems17. Ditches often mimic natural waterways, whether by design or
inadvertently, andyet sometimes surprise scientists bybehavingdifferently9.
In turn, they have the potential to serve as models for experimentation,
which can provide insights into how natural ecosystems may respond to
global change18,19. Ditch networks can vary widely in their characteristics
across space and time, both among and within individual channels20, which
can switch between terrestrial and aquatic states. This range, coupled with a
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michael.peacock@slu.se

Communications Earth & Environment |           (2025) 6:693 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-025-02699-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-025-02699-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43247-025-02699-y&domain=pdf
http://orcid.org/0000-0002-9204-6940
http://orcid.org/0000-0002-9204-6940
http://orcid.org/0000-0002-9204-6940
http://orcid.org/0000-0002-9204-6940
http://orcid.org/0000-0002-9204-6940
http://orcid.org/0000-0002-3520-4375
http://orcid.org/0000-0002-3520-4375
http://orcid.org/0000-0002-3520-4375
http://orcid.org/0000-0002-3520-4375
http://orcid.org/0000-0002-3520-4375
http://orcid.org/0009-0001-0281-381X
http://orcid.org/0009-0001-0281-381X
http://orcid.org/0009-0001-0281-381X
http://orcid.org/0009-0001-0281-381X
http://orcid.org/0009-0001-0281-381X
http://orcid.org/0000-0001-9284-9041
http://orcid.org/0000-0001-9284-9041
http://orcid.org/0000-0001-9284-9041
http://orcid.org/0000-0001-9284-9041
http://orcid.org/0000-0001-9284-9041
http://orcid.org/0000-0002-9573-7528
http://orcid.org/0000-0002-9573-7528
http://orcid.org/0000-0002-9573-7528
http://orcid.org/0000-0002-9573-7528
http://orcid.org/0000-0002-9573-7528
http://orcid.org/0000-0002-8774-9350
http://orcid.org/0000-0002-8774-9350
http://orcid.org/0000-0002-8774-9350
http://orcid.org/0000-0002-8774-9350
http://orcid.org/0000-0002-8774-9350
http://orcid.org/0000-0002-8282-6476
http://orcid.org/0000-0002-8282-6476
http://orcid.org/0000-0002-8282-6476
http://orcid.org/0000-0002-8282-6476
http://orcid.org/0000-0002-8282-6476
http://orcid.org/0000-0002-7864-993X
http://orcid.org/0000-0002-7864-993X
http://orcid.org/0000-0002-7864-993X
http://orcid.org/0000-0002-7864-993X
http://orcid.org/0000-0002-7864-993X
http://orcid.org/0000-0001-9058-7076
http://orcid.org/0000-0001-9058-7076
http://orcid.org/0000-0001-9058-7076
http://orcid.org/0000-0001-9058-7076
http://orcid.org/0000-0001-9058-7076
http://orcid.org/0000-0002-7052-354X
http://orcid.org/0000-0002-7052-354X
http://orcid.org/0000-0002-7052-354X
http://orcid.org/0000-0002-7052-354X
http://orcid.org/0000-0002-7052-354X
http://orcid.org/0000-0002-4997-0249
http://orcid.org/0000-0002-4997-0249
http://orcid.org/0000-0002-4997-0249
http://orcid.org/0000-0002-4997-0249
http://orcid.org/0000-0002-4997-0249
http://orcid.org/0000-0001-7236-2148
http://orcid.org/0000-0001-7236-2148
http://orcid.org/0000-0001-7236-2148
http://orcid.org/0000-0001-7236-2148
http://orcid.org/0000-0001-7236-2148
http://orcid.org/0009-0000-7129-805X
http://orcid.org/0009-0000-7129-805X
http://orcid.org/0009-0000-7129-805X
http://orcid.org/0009-0000-7129-805X
http://orcid.org/0009-0000-7129-805X
http://orcid.org/0000-0003-1211-0779
http://orcid.org/0000-0003-1211-0779
http://orcid.org/0000-0003-1211-0779
http://orcid.org/0000-0003-1211-0779
http://orcid.org/0000-0003-1211-0779
http://orcid.org/0000-0002-5468-786X
http://orcid.org/0000-0002-5468-786X
http://orcid.org/0000-0002-5468-786X
http://orcid.org/0000-0002-5468-786X
http://orcid.org/0000-0002-5468-786X
http://orcid.org/0000-0003-1274-363X
http://orcid.org/0000-0003-1274-363X
http://orcid.org/0000-0003-1274-363X
http://orcid.org/0000-0003-1274-363X
http://orcid.org/0000-0003-1274-363X
http://orcid.org/0000-0002-6930-3128
http://orcid.org/0000-0002-6930-3128
http://orcid.org/0000-0002-6930-3128
http://orcid.org/0000-0002-6930-3128
http://orcid.org/0000-0002-6930-3128
http://orcid.org/0000-0002-8633-4831
http://orcid.org/0000-0002-8633-4831
http://orcid.org/0000-0002-8633-4831
http://orcid.org/0000-0002-8633-4831
http://orcid.org/0000-0002-8633-4831
http://orcid.org/0000-0002-3086-2854
http://orcid.org/0000-0002-3086-2854
http://orcid.org/0000-0002-3086-2854
http://orcid.org/0000-0002-3086-2854
http://orcid.org/0000-0002-3086-2854
mailto:ccclifford@vims.edu
mailto:chelseaclifford@gmail.com
mailto:m.peacock@liverpool.ac.uk
mailto:michael.peacock@slu.se
www.nature.com/commsenv


high degree of human control, makes ditches ideal systems for adaptively
responding to global environmental change and to shifting human needs
and wants18. Yet the diverse ecosystem services from ditches often conflict
when they sometimes could synergize to deliver multifunctionality (i.e.,
multiple ecosystem services simultaneously)20,21. Maximizing positive
synergies requires collaboration between disciplines and stakeholders to
optimize ditch potential and avoid pitfalls18. Unfortunately, despite their
fundamental importance to society and potential to supplement ecosystem
services, ditches remain understudied and undervalued21,22.

For the purposes of this paper, we define “ditch” as a narrow linear
channel on Earth’s surface constructed to store and/or convey water where
humans prefer it to go. However, the vague boundaries of this definition are
somewhat arbitrary; defining ditches is surprisingly non-trivial. Typically,
theyarenarrow, but somecanbewider than25m23, and individual channels
may run for just a few metres or for hundreds of kilometres in length.
Although “ditch” is an English word, other languages classify what English-
speakers might call ditches differently (see Table 1 for collated definitions).
Therefore, even though ditches exist globally, the word “ditch” may not
translate well across cultures. Even the English languagemight use different
words for ditches depending on their dominant functions including: irri-
gation and drainage (e.g., rhyne, gripe, catchwater, gutter, dyke, conduit),
water storage, power (e.g., leat), burial, bioreaction, transport (e.g., canal,
waterway), defense (e.g., moat), livestock control, and boundary-marking,
including as barriers (e.g., ha-ha) to encroachment. The purposes of ditches,
the way they have been constructed and managed, and their resultant
characteristics and classification vary over time and space (Fig. 1, Supple-
mentary Table 1). Furthermore, the perception and value of ditches may
influence how we classify them. The word “ditch” itself has a negative
connotationwithin the English language both as the verb to ‘ditch’,meaning
get rid of, and as exemplifiedby idioms like “ditching” somethingunwanted,
and “dull as ditchwater.” This perspective may lead humans to avoid
defining features we value as ditches, reaching instead for more positively
associated terms such as “canal,” “stream,”or “blue infrastructure.”Froman
environmental perspective, ditches’ inherent artificiality can devalue them13

,24. That said, even artifice can bemurkily non-dichotomous, as in the case of

channelized streams. Naturalization away from constructed form often
occurs over time, especially in the absence of repeated dredging13, and
ultimately ditches can become archaeological features25. Similarly, ditches
and their subtypes fall somewherewithin gradients inmanyof their physical
characteristics, including size, network position, composition of bed
material, connectivity to other waterbodies and floodplains, flow direction
and speed, and even ability to hold water. The precise boundary around all
ditch-like systems within these gradients and categories is, as we found,
nearly impossible to agree upon, and ultimately arbitrary. That observation
itself points towards ditches’ actual status as indivisible component of socio-
ecosystems (an ecosystem and its associated human actors). So, for the
purposes of this article, we shall not endeavor to precisely corral “ditches”
from “not ditches.”We acknowledge that even our working definition will
vary somewhat over the course of this article, in part as it crossesdisciplinary
lines and corresponding definitions.

In this paper, we present a multi-disciplinary perspective on how and
whyditches are important.Wereview the stateof knowledgepertaining to the
different aspects of ditches including physical, biotic (excluding humans),
chemical, and human dimensions. We also recommend future research and
management considerations and outline knowledge gaps. Many of these
future considerations presentedwill be opportunities, for ditches are rife with
these; the potential for ditches to be adaptively managed for greater diversity
of ecosystem services13,18,21. Given that people will continue to construct and
maintain ditches, we as researchers have an opportunity to positively influ-
ence theirdesign, use, andmanagement26.At the same time,wecangainmore
broadly applicable knowledge from these distinctive, but common socio-
ecosystems19. If we only let them, ditches can serve as a multi-tool for both
humans and other species to survive and thrive under global environmental
change18, helping to achieve sustainable development goals27, and addressing
a myriad future challenges. We hereby invite researchers who have not yet
done so to meet the multitudes of the ditch.

Human dimension
Our working definition of ditches necessitates human conception,
execution, and embodiment. In other words, without people playing

Fig. 1 | Ditches vary in form and function. A an urban drainage ditch in Venice,
Florida, USA. B the Oudegracht (“old canal”, dating from 1100 s) in urban Utrecht,
the Netherlands, C an intermittent ditch in forestry, Sweden,D a ditch in a drained
peatland converted to grassland, Iceland, E a roadside drainage in Ames, Iowa, USA,

F a drainage ditch in intensively-managed arable peatland, UK,Gmonastic (latrine)
drain at the medieval Norton Priory, UK, H water management canal in an Acacia
plantation, Indonesia. Photo credits: Chelsea Clifford (A,E),Mike Peacock (B,F,G),
Eliza Maher Hasselquist (C), Chris Evans (D, H).
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a vital role at some point in their life history, a ditch is not a ditch.
This fact may in great part be responsible for the lack of attention
ditches have received in the natural sciences—they are not ‘natural’
when natural is understood as lacking human influence. In contrast,
ditches have been a major topic of historical and archaeological
inquiry (Fig. 1G), which traces ditches through time for at least the

past 8000 years in different places around the globe precisely because
they are clear signs of human activity. A range of social sciences have
also addressed governance processes, how ditches affect human well-
being, and a suite of ditch-related legal issues28,29. Ditches are thus
prime examples of socio-ecosystems; complex and integrated systems
that include both the ecological and sociological environments, and

Table 1 | Summary of ditch definitions collated from published work

Type Definition Reference

Agricultural “Man-made channels created primarily for agricultural purposes, and which
usually: (i) have a linear planform, (ii) follow linear field boundaries, often
turning at right angles, and (iii) show little relationship with natural landscape
contours.”

Williams et al.237. Brown et al.238. Davies et al.239. Davies et al.240. Clarke203.
Shaw et al.241. Hill et al.187. Biggs et al.16. Bubíkova and Hrivnak242. Nakano
and Morii243. Williams et al.244

Agricultural “Ditches are defined as artificial, linear channels < 3m wide which follow
anthropogenic boundaries (e.g., field margins). Drains are larger features
(> 5 m wide) which display otherwise similar characteristics.”

Gething and Little245

Agricultural “Dutch ditches are linear water bodies typically several metres wide and up to
1m deep.”

Verdonschot al.7

Agricultural “Drainage ditches are small, stagnant, line-shaped water bodies, dug to
improve rainwater run off and regulate the groundwater level of surrounding
agricultural areas.”

Verdonschot et al.246

Agricultural “Ditches are linear elements with a high edge ratio that are subjected to an
intensive exchange of matter and organisms from the surrounding terrestrial
matrix. Most of the ditches are likely to be relatively shallow with marked
fluctuations in water levels and a higher probability of drying out during
summer. Finally, ditches are regularly managed for efficient drainage.”

Herzon and Helenius21

Agricultural “Drainage ditches are limited to those structures created to drain production
acreage.”

Cooper et al.247

Agricultural “Farm ditches are human-made linear elements that constitute the upstream
parts of the permanent hydrographic networks in agricultural landscapes.
Primarily implanted within farmed landscape to collect surface and
subsurface water in order to drain excess water and/or to prevent soil
erosion…”

Dollinger et al.20

Agricultural “Agricultural drainage ditches are essentially headwater streams, which, like
capillaries, act as direct links between agricultural fields and naturally
occurring streams and rivers.”

Fu et al.248

Agricultural “Ditches were defined as open field drains which flow into streams and are
generally unmapped.”

Shore et al.249

Agricultural ““Ditch” is used to describe systems either created or maintained by human
activities in order to increase water conveyance; whereas “drainage” refers to
the practice water removal, or, when used in conjunction with “network” or
“system,” describes the entirety of streams and ditches modified for water
conveyance.”

Pierce et al.250

Agricultural “Ditches… artificial linearwater bodieswhose depth and floware regulatedby
sluice gates and pumping stations for the purposes of water-level
management.”

Watson & Ormerod208

Agricultural “Artificial channels built for agriculture irrigation purposes, generally have a
regular U-shape and are approximately 0.5–3m wide and 0.5–1m deep
distributed around farmland in agricultural regions.”

Sun et al.195

Forest “Headwater streams were classified as ditches if they were perfectly straight,
if theymade unnaturally sharp turns (e.g., 90° turns), or if theywere clearly part
of ditch networks (i.e., numerous parallel watercourses, geometric drainage
networks).”

Peacock et al.165

Roadside “Grassed roadside drainage ditches are shallow, open vegetated channels
that are designed to convey stormwater runoff to storm sewers or receiving
water bodies.”

Ahmed et al.251

General “Drainage ditches are small, linear water bodies, usually <1.5 m deep and
several metres wide, situated both in lowland and in highland zones.”

Nsenga Kumwimba et al.252

General “A long, narrow excavation artificially dug in the ground; especially an open
and usually unpaved waterway, channel, or trench for conveying water for
drainage or irrigation, and usually smaller than a canal. Some ditches may be
natural watercourses.”

European Protection Agency253

General “Ditches, irrigation channels and water supply canals, are constructed linear
waterways, although their physical characteristics and function may vary
widely.”

Peacock et al.9

Note: this is not intended to be fully comprehensive. In the text, we mention the problems that arise when considering the English word “ditch” and other languages. For example, in Dutch, “ditch” best
translates as “sloot”. A sloot is defined as anartificial permanent linearwater body, exhibiting amaximumwidth of 8meters andusually notmore than1.5 mdeepwith negligible flow (<5 cm/s).Meanwhile, a
greppel, is usually smaller than a sloot, with only artificial and intermittent or ephemeral flow, butwould also translate to English as “ditch.”We lump the two terms, sloot andgreppel, alongwith several other
independent Dutch words like (urban) wadi and goot, together as ditches in English.
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the interactions between them30. Given this, the human part of the
equation is essential to understand the whole.

Within our broad definition of ditches, irrigation (i.e., applying water
to land for agriculture) is well-established in archaeological and historical
scholarship and has been implicated as a key driver of state formation (i.e.,
the creation of states) and economic/social stratification in early agri-
cultural societies31,32. Evidence for ditch-based irrigation systems are found
in Mesopotamia from as early as the 6th millennium BC33–36. Early and
indigenous ditch-based irrigation systems have also been examined across
Asia37,38 and North29,39,40, Central41 and South America42. Irrigation ditches
of the past few centuries are somewhat less prominently studied archae-
ologically than older ones (but see DeMeulemeester43). However, they are
the subject of more substantial documentary research44. It should be noted
that ditches and other hydrological controls are not exclusive to agri-
cultural societies; fisher-hunter-gather societies have also constructed
ditches to facilitate fishing45. Ditches are often complex archaeological
features due to burial and preservation processes related to long-use his-
tories, especially in prehistoric contexts46. There are also strong scholarly
traditions in the theoretical underpinning of archaeological and historical
interpretation of irrigation ditches, sometimes borrowing ecological con-
cepts, for example viewing ditches through the lens of niche construction
theory47 or coevolution48. Canals (Fig. 1B) and leats (ditches which speci-
fically servemills as either in- or outflows) have also been studied as part of
power, transport, and urbanhistories49. Indeed, in Europemill streams and
their associated leats and sluices can be considered an example of coevo-
lutionary socio-ecohydrological systems (sensu Sivapalan & Blöschl48),
whereby over hundreds of years natural streams were modified to drive
mills, which were later closed, leaving behind a hydrological legacy of
remnant constructed channels50.

Globally, 21% of wetlands have been anthropogenically drained10,
largely via drainage ditches (i.e., ditches that remove excess water from the
land) (Fig. 1D, F, H), resulting in amassive loss of natural wetlands. Despite
this, drainage ditches have been less often archaeologically or historically
studied than irrigation ditches, although this is changingwith the global rise
in the importance and value placed on peatland landscapes for biodiversity
and carbon sequestration51. While historical attention to drainage is
common52, research usually occurs at broader scales than examining or
mapping the ditches themselves,with a view tounderstandingwider society,
institutions, and worldviews. For example, the 17th century drainage of the
Fens in eastern England has been the subject of extensive research, exam-
ining its economic impact53, the politics of wetland drainage54, and its public
health implications55. Taking drainage ditches’ relational and land parcel-
formation into account also makes it possible to identify former hydro-
logical conditions. For example, drainage ditches in now fully leveled
reclaimed bog polder in the Netherlands sometimes still show a wedge-
shaped structure, revealing their original orientation towards the top of the
now missing domes of raised bogs56 (Fig. 2). The drainage of wetlands,
particularly over the last 1000 years for agriculture created both ditches and
hedges which preserved relicts of past woodland cover and now form key
havens of biodiversity in such environments57,58.

Drainage ditches are usually understood archaeologically as threa-
teningwetland archaeology throughdesiccation and other changes to burial
environments59. This threat has prompted numerous regional assessments
of drainage ditch-driven wetland loss as a way to estimate where and what
wetland archaeology remains well preserved in-situ60. The archaeological
and palaeoecological value of wetlands and ditches (a cultural ecosystem
service in its own right) often comes primarily through anoxic conditions
allowing for the survival of materials that in drier contexts would decom-
pose; e.g., wood or soft tissue as well as macro and microscopic ecofactual
(i.e., organic without human workmanship, yet culturally relevant)
material61, and now even ancient molecules including DNA62,63. Thus,
efficient drainage via ditches represents a direct threat to the survival of that
material, including in some cases, the ditch itself. Similarly, palaeoecologists
have usually understooddrainage ditches to have generally negative impacts
on the preservation of palaeoecological records although, if abandoned and

silted-up, they can provide excellent ecological records spanning centuries
to millennia64–66.

Ditches have left an archaeological and historic legacy of past humans
and their relationships to the wider environment, as well as a paper archive
where ditches have been mapped and described. These records attest to the
fact that many regions’ wetland environments can be more a product of
ditches (irrigation and drainage), and thus human agency, rather than of
geology and climate. In drained contexts, the outcome has beendescribed as
a ‘reclamation landscape’67. Key challenges moving forward will be to
understand how these histories of reclamation or irrigation have impacted
an array of different ecosystem services, and how this combined origin then
frames and directly impacts drives for wetland restoration. There is a pos-
sibility that without a full understanding of the deeper history of ditches in
any given location restoration activities (blocking ditches or reducing irri-
gation)might have perverse outcomes. For example, the draining of swamp
andmarshlandhas generally been associatedwith the historical reduction in
mosquito-borne diseases (such as malaria and Dengue Fever). Here, a clear
understanding of vector ecology, as well as educational efforts, may be
required to balance the pros and cons of wetland restoration in the public
imagination68. Given the overlapping, multi-directional, and complex net-
work of ecosystem services that are underpinned by ditches, holistic inter-
and transdisciplinary approaches will be required when making decisions
relating to the tradeoffs involved regarding changes to ditch hydrological
regimes. Recognition of the importance of ditches as socio-ecosystems is an
important first step.

Generally, active ditches contribute to human wellbeing through
ecosystem services across all categories: cultural, regulating, and provi-
sioning (supporting ecosystem services are often left out of current
frameworks69,70) (see Supplementary Table 1). Traditional ditch systems—
generally gravity-fed, not lined or covered—often supply water to relatively
small-scale agriculture, and as such are sometimes seen as low-value or
somewhat primitive. Fernald et al.71 examined hydrological ecosystem ser-
vices in irrigation systems in NewMexico, USA, traditionally referred to as

Fig. 2 | Drainage ditches can give clues to lost landscapes. Ditches in the Neth-
erlands (52.20°N 5.12°E) show a wedge-shaped structure, and point towards the top
of the (now missing) dome of a destroyed raised bog. Maps data: Google Earth,
Maxar Technologies.
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“acequias”. Depending on soil type and gradient, these traditional irrigation
systems can yield later-season return flows to mainstem rivers. This service
is crucial in arid environments with flashy hydrographs. Raheem et al.72

examined a comprehensive suite of ditch-related ecosystem services for
traditional irrigating communities in northern New Mexico, USA. A sig-
nificant contribution of that work is to use the traditional Spanish termi-
nology from those communities to describe a range of landforms usually
described inEnglish in the ecological literature.This sort of translation, from
conventional scientific or planning terminology to local usage, is crucial in
ascertaining the extent of cultural ecosystem services73. Others have looked
at ditches through an ecosystem services lens; for example, when con-
sidering sediment retention and bird habitat in northern Mexico74, inves-
tigating the ‘multifunctionality’ of agricultural water use75, and the “nature-
based solutions” provided by subak irrigation systems in Bali76.

Many ditches, and particularly irrigation channels, are designed to
provide provisioning ecosystem services. Ditches carry water to farm fields,
to orchards, to arbors, and tofish ponds to support foodproduction systems
for human use. Ditches are used to produce power, by driving mills of
various sorts77, which in turn help to produce food and goods. Sometimes
fish, crustaceans78,79, and other species that inhabit ditches provide nour-
ishment for humans. Humans and animals drink water from ditches,
althoughmany ditches carry away waste and sewage80. This latter function,
bothhistorically and to thepresent day, canhavenegative impacts onpeople
who livewithin ditched landscapes or urban spaces. Indeed, ditches can and
do often deliver an array of ecosystem disservices many of which (e.g.,
pollutantdispersal, greenhouse gas emission, facilitationof themovementof
invasive species) are discussed later. Furthermore, even when ditch con-
struction creates certain beneficial ecosystem services, other ecosystem
services can be lost due to the associated land drainage (e.g., loss of wetlands
and their carbon sink capacity10) or degradation of natural stream channels
(e.g., straightening of channels and removal of riparian zones which would
otherwise reduce peak flows and lead to less flashy systems11).

There are also many examples of cultural ecosystem services arising
from ditches, including traditional practices around the governance of
irrigation systems around theworld77,81–83. Festivals andother occasionsmay
be timed around irrigation calendars, and annual ditch cleanings, blessings
of irrigation waters, and harvest festivals often play a large role in many
communities72. These services can also include traditions that arise in irri-
gation systems and communities that are not directly related to governance,
such as the Matachines dances in northern New Mexico, USA, or stories
about mythical beings (e.g., La Llorona in Mexico, a ghost that resides near
waterbodies). These cultural ecosystem services often have a deep history
and are related to many of the systems previously described with regard to
archaeology.

Ditches can bring people together in some of the best and some of the
worst ways. Beyond celebrations, the need for neighbourly cooperation in
ditch maintenance has been common throughout history and was
addressed in Swedish medieval provincial laws (landskapslag)84, practiced
among villagers in Tokugawa Japan85 and continues today in many
countries86,87. In theUSA, such cooperationmay take the formof authorities
known as drainage districts or water management districts, whilst the UK
has Internal Drainage Boards. Contrastingly, in contemporary legislation,
ditches may be mostly ignored, e.g., in the USA Clean Water Act88, and in
New Zealand regulations where livestock do not have to be fenced out of
agricultural ditches and streams <1m wide and <30 cm deep89. When this
lack of regulation is combined with their capacity to carry harmful pollu-
tants and pathogens, whose load is typically elevated, often deliberately
concentrated, in areas of high poverty90, then artificial channels become
hotspots for environmental injustice and exploitation13,91,92. Historically,
drainage and irrigation have even served as tools of colonization, impinging
upon the swampy refuges of indigenous and enslaved communities93, and
“reclaiming” arid environments forWestern-style agriculture94. Ditches can
exist not just as public/communal or private/individual infrastructure, but
often at the nexus of the two, which can be pushed in either direction along
the ditch continuum in exercises of power. In underserved communities

today, if there is stormwater infrastructure at all, privately maintained dit-
chesmay take the place of public, more expensive subsurface infrastructure.
Ditches’ very existence can become a symbol of neglect and
disempowerment95–97. Yet, local understanding of what standard public
maintenance would achieve socially and environmentally (e.g., improved
downstream water quality98,99) may fall short of the science. A better
understanding, and regulatory acknowledgement, of ditches could
empower others to help redesign ditches to best suit their priorities.

Physical and hydrological
Ditches are found in diverse catchments, spanning natural (forests and
wetlands)100,101 to intensivelymanaged(urbanandagricultural) landuses18,102,103

(Fig. 1).Themorphologyofditchesdependson the surrounding landscapeand
required function: drainage, irrigation, hydropower, transportation or
boundary delineation (see Supplementary Table 1). Ditches often have rela-
tively straight, narrow and deep channels (Fig. 1A, F). Floodplains may be
disconnected, or absent entirely, and there is reduced lateral hydrological
connectivitywith the riparian zone.As such, ditches are recipients of terrestrial
fluxes, often from intensively managed environments104,105. Because gullying
processes rapidly degrade ditcheswith steep bed slopes, ditches are primarily a
featureof lowelevationgradient environments.Dependingon their position in
the hydrological network, ditches generally drain catchments to lower the
groundwater table (e.g., to enable food andfiber production, including forestry
andpeat extraction), redirectwater (e.g., in polder systems or fenland), serve as
distributive irrigation systems, or serve as temporary water storage locations
which can help mitigate impacts of peak flows and downstream flooding.
Regardless of function, ditches alter the original water balance of a catchment
and the downstream hydrological regime11.

Similar to natural streams, ditch hydrological connectivity with sur-
rounding terrestrial environments, and thus biogeochemical exchange,
depends primarily on their local geography and geomorphology, i.e., posi-
tion within the landscape, length, width, presence and density of subsurface
drainage, and channel substrate whichmay be permeable (sand, loam, peat,
Fig. 1C, D, F, H) or impermeable (clay, concrete)106,107 (Fig. 1B, E, G).
Regardless of channel substrate, many ditches are subject to gradual sedi-
ment and organic matter accumulation both in the form of alluvium from
upstream reaches, fine sediments brought in by the tide in coastal areas, in-
situ degradation of plants, and via bank erosion108,109, necessitating occa-
sional dredging to maintain original hydraulic function110,111. By providing
alternative flow paths, ditches can help moderate erosion elsewhere in the
landscape72.

Dependingon thehydraulic gradient betweenditches and surrounding
land, through riparian and hyporheic zones, ditches can either gain or lose
water, with consequences for their water balances and flow102,112. Depending
on the flow, ditches can include dry channels (Fig. 1C) that flow inter-
mittently for irrigation or drainage, still or slow-moving waters, to fast-
moving and flashy environments108,113. Their hydrology is determined by
their topographical position11,111), being generally more dynamic in ditches
positioned along existing flow pathways or running downslope, and more
static in ditches positioned in lowlands between flow pathways or following
contours. Ditches that follow existing flow pathways may be difficult to
distinguish from straightened or modified streams, whereas ditches that do
not follow existing flow pathways are artificially constructed waterways.
Thus, the hydrological connectivity of ditches to the stream network and
downstream aquatic ecosystems depends largely on their topographic set-
ting anddesign, but can bemodified by their specific purpose,management,
and age (as abandoned ditches may become disconnected from the stream
network). Whether a ditch is connected to a stream network has important
implications for flow direction, the transport and magnitude of lateral
chemical fluxes, and pollution risks for downstream ecosystems109.

In addition to connecting to and often replacing portions of natural
hydrological networks, ditches themselves are often installed in geometric
networks that expand the hydrological network structurally and function-
ally (Fig. 3). Frequently these networks are associated with subsurface pipes,
sluices, weirs, and pumps114–116. These structures are used to control the

https://doi.org/10.1038/s43247-025-02699-y Perspective

Communications Earth & Environment |           (2025) 6:693 5

www.nature.com/commsenv


direction and volume of water flow, and can shunt flows between ditches
and their inlets and outlets, thus bypassing buffering effects of soils, riparian
habitats, and other natural ecosystem components. Ditches often receive
water and pollutant fluxes from artificial drainage, such as urban storm-
water or agricultural subsurface drains18,104,117, or through direct water
pumping into ditches112. With human pumping, with or without pipe net-
works, ditches can also convey water uphill. Thus, ditches are much more
likely than non-tidal natural linear channels to flow in both directions at
least occasionally, even if designed primarily for either irrigation or drai-
nage. Due to the ability of ditches to defy natural watershed boundaries, the
land areas with which ditches interact hydrologically can prove challenging
to delineate, which can hinder the upscaling of aquatic fluxes of carbon and
other solutes118.

Another important aspect determining the hydrological regime of dit-
ches and their connectivity to terrestrial and other aquatic ecosystems, is their
management20. At the most basic level a distinction can be made between
drainage ditches, which lower the adjacent terrestrial water table, and irriga-
tion channels, which can contribute significantly to groundwater recharge via
irrigation return flow119. Management can include channelization, dredging,
vegetation removal, flow and water-level regulation111,118,120, or riparian zone
management (e.g., vegetation removal, establishing trees, widening flood-
plains, fencing out livestock104,121), all of which have the potential to affect in-
situ hydrological processes as well as the eco-hydrology of the surrounding
landscape. For example, the removal of vegetation and accumulated sediment
fromboreal forest ditches is periodically done to lowerwater tables to improve
productivity, but it also results in increased concentrations of suspended
sediment and nutrients122. Conversely, fencing out livestock from agricultural
ditcheshasbeenshownto reducebankerosionand thusdecreasedownstream
nutrient and sediment loads121. Many types of management are deployed in
combination, and integrated studies are needed to fully understand their
cumulative impacts on ecohydrology.

As flow regimes in ditches change seasonally following either natural
hydrological cycles or humanactivities123, water retention time inditches can

vary dramatically, with consequences for biogeochemical function11,109,124.
Due to their small size and volume, ditches are usually very sensitive to
changes inflow, and can periodically be dry or overflowing. Thus, withmore
extreme hydrological events and changing global climate, many existing
ditchesmay require adjustments in size, design,management, spatial density
and/or expectations of function. The ultimate physical challenge of climate
change will require careful consideration and balancing of multiple eco-
system services moving forward.

Biogeochemical
Ditches play a unique biogeochemical role due to their high connectivity
with the surrounding landscape, processing inputs of nutrients, sediments,
and pollutants from the wider environment103. Ditches, like other aquatic
systems, are not passive pipes but active components of global biogeo-
chemical cycles125, and the biogeochemical fingerprint of water leaving a
ditch system can be substantially altered relative to incoming flow. The
degree of biogeochemical processing is controlled mainly by residence time
(the amount of time water spends in the ditch before flowing elsewhere), as
observed in other inland waters126,127. Residence time is itself determined by
size, hydrologicalflow conditions, vegetation, landscape setting (e.g., upland
versus lowland, effective catchment area), andmanagement regime.Despite
the global prevalence of ditches, they remain neglected in contemporary
syntheses of the role of aquatic environments in biogeochemical cycles128–130.
Omitting ditch processes from large-scale biogeochemical assessments,
including global carbon models, could lead to significant errors. Here, we
propose that ditches are best viewed as ubiquitous reactive surfaces; as lines
that bind across and beyond catchments.

Ditches can act as nutrient sinks or sources within the landscape, and
this dual functionality is dependent on multiple factors including nutrient
load, flow direction, vegetation cover and type, and climate. Therefore, sink
or sourcebehaviour can vary significantly over space and time117.As in other
aquatic ecosystems, high nutrient loading can cause a wide range of pro-
blems, including excess phytoplankton growth, declines of aquatic

Fig. 3 | Ditch networks can be extensive, vary in form/arrangement, and occur in
different land covers. A Oil palm plantation on drained peatlands in Sarawak,
Indonesia (2.66°N, 112.45°E), B agricultural land in The Netherlands (51.89°N
4.83°E), C drainage and irrigation canals in the Mesopotamian Marshes, Iraq

(30.96°N, 46.94°E),D urban canals in Xochimilco, Mexico City (19.27°N 99.09°W).
Maps data: Google Earth, Airbus, Maxar Technologies (A), Google Earth, Airbus
(B, D), Google Earth, Airbus, Maxar Technologies, CNES / Airbus.
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macrophytes, loss of biodiversity, and oxygen depletion131. These eutro-
phication effects are especially common in drainage ditches132 because they
often serve as headwaters that receive anthropogenic terrestrial nutrient
loads first before transferring them to receiving waters, including, rivers,
wetlands, lakes, seas133, and groundwater134. Similarly, irrigation ditches can
convey nutrients up gradient to land and municipal water systems135.

Similar to other freshwater environments, vegetation and water resi-
dence time are important drivers of nutrient removal capacity124,136,137.
Longer residence times (which may be facilitated by water control struc-
tures), contribute to the creation of anaerobic conditions, promote organic
matter accumulation, and encourage microbial denitrification104,138. Reac-
tive nitrogen (N) can also be removed by plant uptake137,139,140. Thus, ditches
can mitigate N-loading from both agricultural activity136 and urban runoff,
often at rates comparable to or exceeding those of natural systems141,142.
Vegetative uptake and sediment storage are also important pathways for
phosphorus (P) removal in ditches and these processes, given time, can
sometimes reverse even intense eutrophication143. Recovery timescales from
nutrient and other forms of pollution are often difficult to predict because of
legacy effects,wherebynutrients stored in sediments canbemobilizedunder
certain physical and chemical conditions144–146 or stored long-term, resulting
in slow response times to changed nutrient loads132,147. For example, prac-
tices such as dredging can destabilize banks and reduce P sorption capacity,
resulting in ditches becoming a P source rather than sink148.

Besides nutrients, ditches also receive runoff and groundwater com-
prising a complex mixture of chemical compounds. These mixtures may
include microplastics149, pathogens150, antimicrobial resistant genes151,
animal-borne hormones152, pharmaceuticals153, trace metals154, pesticides155,
and salts156, whichmay, alone or in combination, have unintended and as yet
largely unknown effects on ditch ecosystems. Roadside (Fig. 1E) and urban
ditches (Fig. 1A), inparticular,may receive a toxicmixof runoff that includes
heavy metals, PAHs (polycyclic aromatic hydrocarbons), tire materials,
pesticides, exhaust emissions, nutrients, road salt, and Per- and PFAS
(polyfluoroalkyl substances- so called “forever chemicals”)157–159. Despite
this, ditch networks can be managed to retain pollutants in runoff 160–162.
Indeed, because ditches often disproportionately contribute to catchment
nutrient, sediment and pathogen loads89 they could be prime candidates for
pollutant removal and mitigation. Given the high degree of hydrological
connectivity of ditches, water qualitymonitoring in these environmentsmay
yield important insights into emergent pollutant and contaminant pressures
before they propagate to downstream environments.

The biogeochemistry of ditches extends beyond water quality, into
landscape and global carbon and greenhouse gas (GHG) balances. The
creation of ditches, especially in organic soils (Fig. 1D, F,H), causes adjacent
terrestrial soils to dry out, which leads to extensive soil subsidence, oxida-
tion, and carbon dioxide emissions163. This drainage also affects con-
centrations of organic carbon, in particulate (POC) and dissolved organic
carbon (DOC) forms, often leading to increases in the overall aquatic carbon
flux164. Increasing DOC concentrations may also pose additional problems,
for example by imposing additional costs at drinking water treatment
works165.

An important fate of DOC and sediment organic matter in ditches is
emission to the atmosphere in the form of GHGs. High loading of organic
matter and nutrients, accumulation of organic sediment, fluctuating water
table levels, connection to groundwater, slow water flow, low oxygen con-
centrations, and abundant vegetation (Fig. 1A) can render ditches as
important sites for the production and release of theGHGsmethane (CH4),
nitrous oxide (N2O), and carbon dioxide (CO2). The importance of ditches
in drained organic soils (Fig. 1D, F, H) as landscape-scale hotspots of CH4

emission has been known for decades166. This arises because drainage
effectively stops CH4 emissions from adjacent terrestrial soils, leaving dit-
ches as hotspots of CH4 emission in the landscape. Recent evidence has
shown this hotspot effect can extend to regional and national scales, and
applies to mineral soils too22,167. Ditches contribute significantly to global
CH4 emissions, contributing 3.5 Tg CH4 yr

−1; equivalent to 1% of global
anthropogenicCH4 emissions9. In recognition of the potential for high area-

specific emissions, the Intergovernmental Panel onClimate Change (IPCC)
now has guidelines for reporting of ditch CH4 emissions168.

Ditches can act as sources and sinks for CO2. Carbon uptake by within-
ditch vegetation, or the settling of suspended particulates, can lead to carbon
accumulation in sediments169,170, although this sediment is vulnerable to
management interventions and storms171. There is a lack of knowledge about
whether ditches also act as landscape-scale hotspots of CO2 emission. Some
evidence suggests that the CO2 emissions from ditches may be small relative
to those of the terrestrial ecosystem theydrain164,172 (but seeHendriks et al.173).
Indeed, blocking ditches to restore water tables and thereby reduce CO2

emissions is a key focus for landmanagement in areas dominated by organic
soils, which can lead to either the removal of ditches174, or their modification
to act as (effectively) irrigation rather than drainage systems. By altering
overall water residence times, drainage networks potentially enhance rates of
organic matter processing within freshwater ecosystems, and thereby reduce
the organic carbon flux from land to ocean175. The resulting CO2 emissions
from ditch surfaces are rarely measured, and could represent a missing term
in landscape or catchment-scale carbon budgets176. At the global scale, ditch
CO2 emissions are estimated at 30 Tg C yr−1 177.

Nitrogen-enriched water discharging into ditches is well recognized as a
source of indirect N2O emissions in agricultural landscapes178–180, and IPCC
methodologieshavebeendeveloped to facilitate reportingof these emissions181.
Still, fewer studies have measured N2O emissions from ditches directly. In a
recent review,Webb et al.182 detected significant spatial and temporal variation
in emissions between different types of artificial waters including ditches. This
variability is only partially explained by nitrate loading from surrounding
catchments (e.g., N application to agricultural fields), as assumed in IPCC
reporting, indicating additional drivers183. Although there is continued
uncertainty in the magnitude and timing of ditch N2O emissions, and their
importance at landscape scales (i.e., when compared to terrestrial emissions),
the global ditch emission is 0.03 Tg N yr−1 177.

Floral and faunal
The ecology of ditches has been overlooked from both research and con-
servationperspectives.Manyditches are surroundedbyagriculture (Fig. 1D,
F,H)orurban landscapes (Fig. 1A,B, E, SupplementaryTable 1) andheavily
managed to facilitate a particular hydrological regime, roughness, or vege-
tation cover. Despite this, many ditches represent novel ecosystems with
distinct biotic communities21,184–186, and can support a high biodiversity of
aquatic macroinvertebrates106,187), waterbirds188,189, amphibians190,
macrophytes191,192 and fish193,194. Ditches can also support floral and faunal
assemblages similar to adjacent natural streams123,195, lakes7, andwetlands170,
and can be used by fish, amphibians, turtles, plants, and other taxa for
reproduction12,196,197. At a landscape scale, the unique hydrological char-
acteristics of ditches can provide important ecological niches for many
species, thereby increasing regional biodiversity186,195,198,199. However, habitat
quality and the biodiversity value of ditches is heavily dependent on man-
agement regimes134,200. Ditches with a variety of successional stages (envir-
onmental heterogeneity) and good water quality, that enables diverse
aquatic plant communities to develop, tend to support the most diverse
fauna12,186,198. Conversely, in ditcheswhere riparian vegetation is periodically
removed, steep bank angles maintained via dredging, or nutrient levels
elevated, ditch freshwater biodiversity can be amongst the lowest in the
wider landscape201,202. To maintain a ditch’s original function regular
management is necessary. However, where this can be undertaken with a
consideration for biodiversity (e.g., marginal vegetation managed on one
bank, macrophytes maintained in selected areas or habitat diversity
increased106,187,201), ditches can display a very high conservation value203.

In intensively farmed or urbanized landscapes (Fig. 1A, B, E, F, H,
Supplementary Table 1), ditches often represent the only available refugia for
aquatic and riparian wildlife and can reflect a range of natural habitat ana-
logues that have been lost due to agricultural intensification, land drainage,
and water abstraction123,204. As ditches can possess slow flow, still water, and
highly variable water depths, ditch networks often support species that are
typical of both lotic and lentic habitats187,205. However, the extent and
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importance of this “refugia” function depends on management regimes and
the type of ditch system (e.g., concrete-lined systems will be less desirable for
fish, boat traffic can lower plant biodiversity12), as well as wider catchment
characteristics such as the presence of other waterbodies or set aside land21.
Where ditches are located within and close to ancient wetland habitats, they
may act as a ‘memory’ or palimpsest of lost aquatic habitats, and continue to
support remnant flora and fauna present in lost natural lentic, river, fen and
marshland habitats206. Evidence from the Fens of East Anglia (UK) show a
high degree of correspondence between the freshwater flora of fenland farm
ditches and thatofWickenFen(theUK’soldestnature reserve)207 anda lesser,
but nevertheless strong, representation of the historic fen andmarsh species.
Ditches often support rare species (e.g., gastropods208) and one of the UK’s
rarest plant species, the fen ragwort (Senecio paludosus), survives in one
Fenland ditch209.

Ditches also provide connectivity between natural aquatic habitats
through an often hostile terrestrial matrix (sensu Mazerolle210). Plants,
amphibians, fish, crayfish, and turtles have been shown to use ditches to
disperse across the landscape, highlighting how ditches can act as con-
nectivity corridors and sometimes mitigate negative effects of habitat
fragmentation12,197,211. Ditches in intensively managed landscapes may also
provide habitat and passage for fully terrestrial species212. Inevitably this
connectivity can also aid the dispersal of invasive and exotic species114,213,214,
which is an issuemost ditchmanagers have yet to consider.Ditches not only
provide hydrological connectivity but contribute important aquatic-
terrestrial linkages. For example, ditch invertebrate communities transfer
energy to the riparian zone and provide trophic resources formammals and
birds215, and critical regulating ecosystem services including habitat for a
reservoir of pollinators216. In thiswayditches, comprising an aquatic habitat,
bankside vegetation, and potentially with an uncultivated headland on one
or both sides, offer the potential to establish ‘blue-green corridors’ of bio-
diversity reflecting both wetland and terrestrial biota and providing reser-
voirs of natural predators of crop pests that could provide multiple
environmental services in arable landscapes. Such ‘linear nature hotspots’
with their close juxtaposition of different ecotoneswould require less land to
be taken out of production than area-based conversion of fields for a similar
gain in biodiversity.

Synthesis and conclusions
We have demonstrated that ditches are important socio-ecosystems30

whereby human society and nature are interconnected and co-evolving.
Ditches exert a range of effects upon adjacent environments across scales,
and have done so for at least the past 8000 years. These effects can be both
positive (e.g., support for global crop production and thus the whole of
human society, refuges for biodiversity, processing pollutants, sites of
important cultural ecosystem services) and negative (e.g., GHG emissions,
dispersal of pollutants downstream, degradation of biodiversity, damaging
palaeoecological records, habitats for invasive species). An emerging chal-
lenge is to manage these waterways in a multifunctional manner; that is,
maximizing positive synergies whilst minimizing trade-offs, in order to
delivermultiple ecosystemservices at the same time.This is difficult,withno
“one sizefits all” solution, because of themanydifferent social and ecological
purposes that ditches are managed for (Fig. 1, Supplementary Table 1).
Some opportunities for multifunctionality have been demonstrated; e.g.,
raising ditch water levels in temperate agricultural peatlands during the
winter seasonhas been shown todecrease carbondioxide emissionswithout
any negative effects on crop yield217; carefully designed riparian integrated
buffer zones can reduce ditchnutrient loads, increase biodiversity, and allow
the production of biomass218. Nevertheless, in many cases the primary
function of a human-created channel may be incompatible with secondary
co-benefits13, e.g., irrigationandurban channels built to transportwatermay
be dredged of sediment and vegetation to increase water flows, which
therefore vastly reduces biodiversity and aesthetic value. Further difficulties
in managing for multifunctionality arise because ditches frequently cross
land boundaries and catchments, with different owners/managers being
responsible for consecutive sections of channel. Collaborative thinking is

required between individuals or organizations if amanagement strategy is to
be coherent, effective219, and environmentally just. Finally, global and cli-
matic changewill increasingly stress the functioning of ditches, and inmany
ways human reliance on them for water security will increase as climate
patterns and flow regimes become more unpredictable. Therefore, ditches
will require ongoing adaptive management26. Considering these disparate
and diverse issues, ditch management can clearly be perceived as a “wicked
problem”220.

Despite this complexity, there are opportunities in ditch management,
because ditches are extensive, important, undervalued, and understudied.
Additionally, because ditched landscapes are often intensively managed
makes them excellent candidates for testing novel environmental man-
agement strategies18. Many channels are overbuilt for their intended
purpose221 (e.g., roadside ditchesmay only rarely carrywater during storms)
and therefore slight changes to design or management could provide bonus
ecosystem services. Even lack of regulation can present an opportunity to
innovate. However, questions arise when considering ditches through the
framework of ecological concepts such as conservation and restoration: how
do we apply these concepts to highly managed and artificial ditch ecosys-
tems? The EU’sWater FrameworkDirective (WFD) can perhaps give some
answers. Although ditches are generally overlooked in theWFD16, theWFD
does provide guidance for heavily modified and artificial waterbodies.
Specifically, the WFD acknowledges that these waterbodies may have
important functions (e.g., navigation, land drainage, water regulation, etc)
which may prevent them from achieving “good ecological status”. Instead,
the aim is for these modified waterbodies to reach the lower threshold of
“good ecological potential”222.

Perhaps a creative rethinking of traditional paradigms in environmental
management is necessary to answer such questions of conservation and
restoration. Because of the aforementioned conflicts in management at the
ditch-scale, it may be that the opportunity for multifunctional management
only arises when ditches, in conjunction with their associated connections to
groundwater, wetlands, streams and lakes, are considered as habitat
networks223 ormeta-ecosystems (sensu Loreau et al.224) at the landscape scale;
when entire ditch networks are adaptively managed for multiple social and
environmental gains (as suggested for constructed wetland management225).
Indeed, the necessity of landscape-scale thinking is now reflected in terms
such as hydroscapes226, pondscapes227, riverscapes228, wetlandscapes225, and
wetscapes229, and “ditchscapes” should also be integrated into thinking about,
and managing for, the wider environment. Another consideration is the
temporal scales, which can dramatically alter how traditional biological
conservation view ditches and the resulting’scapes’ they create230. The role of
archaeology, history and allied disciplines is vital to understanding the deeper
historical ditchscape trajectories for both hydrological and biodiversity
management, but also cultural heritage, tangible and intangible.

The success of managing novel ditchscapes for multifunctionality
depends on a variety of factors, but we believe that one of the most sig-
nificant limitations is mapping. Simply put, we do not know where ditches
are. Detailed channel maps, across a range of spatial scales, would help to
solve an array of management questions (e.g., where do we prioritize ditch
management?) and research gaps (e.g., how do we accurately upscale bio-
geochemical processes?). Mapping methods are constantly being refined
and it is now possible to map ditches at local and regional scales using
remote sensing and novel machine learning methods231–235. However,
location alone is only part of the puzzle because most purposes would also
require information on ditch size (width and depth) and flow (perennial,
intermittent, or ephemeral; see Fritz et al.236), atminimum.Channelwidth is
essential to calculate ditch surface area, and is key for someglobal upscalings
of processes and cycles as well as for IPCC reporting168, yet it is frequently
unknown9. We are optimistic that these issues will be resolved in the near
future by the use of remote sensing based mapping aided by artificial
intelligence methods8, provided that mapping efforts use these tools to
include, rather than exclude, ditches170.

A final challenge is the need to widely reframe how individuals, and
society at large, perceive ditches. Assuming that artificial aquatic ecosystems
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lack ecological value promotes neglect13. Environmental decision-makers
assume ditches are low-quality ecosystems, and manage accordingly; sub-
sequently, their assumption becomes a self-fulfilling prophecy. Considering
theprevalenceofEnglish-languageditch idiomswithnegative connotations,
it is clear that changing perceptions will be no easy task.

If the challenges are addressed, and opportunities seized, then multi-
functional management of ditchscapes could be an effective way to boost
ecosystem services and provide nature-based solutions at scale, and across a
gradient of land cover intensities, fromurban, throughagricultural, to forest,
and wetlands. Such successful ditchscapes would link to multiple Sustain-
able Development Goals including “clean water and sanitation”, “climate
action”, and “life on land”27. Ditches have the potential to serve as resilient
waterways on a changing planet; lines in the landscape recording the past,
providing for the present, and directing us onwards to a more sustainable
future.
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