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Abstract

Conservation Agriculture (CA) is an agricultural system designed to manage agroe-
cosystems for improved and sustained productivity by conserving and enhancing soil
quality and biota (FAO, 2014; Page et al., 2020). This thesis presents the results of a
three-year case study that evaluated the effects of the transition to CA in comparison
to Conventional Agriculture (CON), conducted using a systems-level methodology in
Shropshire, UK.

Throughout the experiment, the agronomic plan varied considerably between the
experimental treatments, with the CON treatment using significantly higher quanti-
ties of fungicide and insecticide active ingredients (kg ha−1), and the CA treatment
using significantly higher quantities of herbicide active ingredients (kg ha−1). De-
spite this, the total quantity of pesticide active ingredients applied did not differ
significantly between systems. Regarding nutrient inputs, the CA treatment applied
significantly less nitrogen (N) fertiliser (kg ha−1), aided by both crop rotation choices
and the use of foliar N. Although crop yield variability was high in both systems, no
statistically significant differences were found between the treatments in overall crop
yield (t ha−1).

Soil nutrient availability (phosphorus (P), potassium (K), magnesium (Mg), and
total N) increased under CA, suggesting improved nutrient cycling and retention.
However, CA significantly increased soil bulk density and led to a significant decline
in soil microarthropod diversity; however, no significant differences were identified in
individual ecotypes or total earthworm abundance between the treatments.

In terms of farm management operations, CA required significantly less machin-
ery operational passes ha−1, machinery operational time ha−1, and fuel usage ha−1,
identifying clear operational benefits to farmers from CA adoption in terms of labour
and machinery expenditure. This resulted in significantly reduced expenditure on
machinery operations and crop applications, whilst not statistically compromising
revenue or gross margin compared to CON.

Agronomic risk assessment using the Danish Pesticide Load Index identified sig-
nificantly higher potential environmental risks in CA. The main driver of this was a
significantly higher environmental fate load in the CA treatment, due to higher usage
of herbicide active ingredients. No significant treatment differences were observed for
the ecotoxicity or human health risks of the pesticide agronomic plans.

The findings of this study demonstrate that the transition period of CA presents
both opportunities and challenges for farmers. While it can reduce inputs and oper-
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ational costs, it may increase reliance on herbicides and require careful management
of soil health to achieve the best outcomes. As a knowledge-intensive and context-
specific system, CA demands a high degree of local adaptation. Therefore, future re-
search should focus on multi-disciplinary and multi-stakeholder methodologies, such
as Farming Systems Research, to support farmers and agronomists in managing and
adapting CA to suit local conditions.
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Chapter 1

General Introduction

1.1 Background and Context

Modern agriculture faces a fundamental challenge: how to meet the growing demand
for food, fibre, and fuel while maintaining the natural resource base and ecosystem
functions on which agriculture itself depends. Intensification of agricultural systems
over the past century has increased productivity dramatically, but often at the cost
of environmental degradation, soil health decline (FAO and ITPS, 2015), biodiversity
loss (Cardinale et al., 2012), and increased greenhouse gas emissions (Ponce et al.,
2022). In response, there has been growing interest in sustainable intensification to
achieve higher productivity with reduced environmental impact (Xie et al., 2019).

Conservation Agriculture (CA) has emerged as a widely advocated approach
within sustainable intensification frameworks (FAO, 2014; Page et al., 2020). De-
fined by its three core principles: minimum soil disturbance, permanent soil cover,
and crop diversification, CA aims to enhance soil structure and fertility, reduce ero-
sion, improve water retention, and support ecological functions in agroecosystems.
While it has been promoted globally, especially in the Global South (Giller et al.,
2009, 2015), adoption in temperate regions such as the United Kingdom has been
slower and more variable (Basch et al., 2015; Kassam et al., 2009).

This thesis is motivated by the need to evaluate how CA performs in the UK
context, not just in terms of individual agronomic outcomes, but as a system. A
systems-level perspective is necessary because CA influences and is influenced by com-
plex interactions between agronomic practices, soil processes, climate, biodiversity,
economics, and farmer decision-making. Understanding these interactions requires
an interdisciplinary, case-study-based approach that integrates ecological, economic,
and management data in a real-world scenario.
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1.2 The UK Agricultural Context

The UK agricultural sector is currently undergoing significant transformation. Drivers
of this change include the transition to post-Brexit agricultural policy (Vigani et al.,
2021), the UK’s net-zero greenhouse gas emissions target (NFU, 2023; HM Govern-
ment, 2023), concerns over food security (Prosekov and Ivanova, 2018), and increasing
public scrutiny of farming’s environmental impacts (Potter, 2009). These changes cre-
ate both challenges and opportunities for more sustainable systems like CA.

Soil degradation has been identified as a national concern in the UK, with over half
of agricultural soils showing signs of deterioration (DEFRA, 2019). Compaction, loss
of organic matter, and erosion are among the key issues (Dragović and Vulević, 2021).
These problems are often linked to conventional agricultural practices (CON) such
as repeated tillage, monoculture cropping, and high reliance on external inputs (Lal,
2015). In this context, CA has the potential to address multiple goals simultaneously:
improving soil health (Cárceles Rodŕıguez et al., 2022), enhancing resilience to climate
variability (Michler et al., 2019), reducing input dependency (Parihar et al., 2018; Das
et al., 2021), and contributing to ecosystem services (Kassam et al., 2014a).

Yet, empirical evidence for these benefits in the UK, particularly from real-world
farm systems, remains limited. Many existing studies are plot-based and short-term,
or based solely on the individual principles of CA (Brown et al., 2021; Drinkwater
et al., 2016). There is a need for more comprehensive, system-level assessments that
consider the performance of CA over time, across multiple dimensions (e.g. soil, yield,
biodiversity, economics), and under practical farm conditions that are representative
of the practices used by farmers in the UK.

1.3 Systems Thinking in Agricultural Research

Adopting a systems-level approach means recognising that agricultural systems are
built from interactions between many components and not just individual systems
(Drinkwater et al., 2016). For example, the effect of NT on soil structure may de-
pend on crop rotations, residue management, or climate (Triplett and Dick, 2008).
Similarly, economic outcomes of CA adoption are influenced not only by yield and in-
put costs, but also by broader policy, market dynamics, and farmers’ risk preferences
(Schiere et al., 2004; Francaviglia et al., 2023; Kassam et al., 2014b).

This thesis adopts such an approach by using a multi-year, on-farm case study
of CA in the UK. The research design integrates soil, ecological, agronomic, and
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economic data to evaluate the system as a whole. The case-study methodology adopts
a systems-level design in which crop management decisions are made independently
for each treatment and each year by industry experts. This allows management to
vary substantially between systems, reflecting the tailored and adaptive approaches
typical of real-world commercial farming.

1.4 Thesis Plan, Research Aims, and Hypotheses

The thesis structure is detailed in the following section. The research aims and the
hypotheses to be tested are specified for each chapter.

Chapter 2: Literature review

This chapter reviews both historical and current literature on CA, including a brief
overview of its origins, the context of its application, and a summary of its core com-
ponents. The review places particular emphasis on large-scale systematic reviews and
meta-analyses, where available, to highlight general trends in the effects of CA across
diverse soil types and climatic conditions.

The research aims (A) of this chapter are:

• A1: Assess existing research and literature on the benefits and drawbacks of
conservation agriculture systems.

• A2: Assess the methodologies available for on-farm experimental systems re-
search.

• A3: Assess the applicability of a single-site system-level methodology for re-
search on Conservation Agriculture.

Chapter 3: Application of Soil Proximal Sensors to Guide the
Transition to Conservation Agriculture

This chapter investigates the potential of commercially available soil proximal sensing
technologies: specifically gamma-ray spectrometry (GRS) and electrical conductivity
(EC) scanning, as precision agriculture tools for characterising field-scale soil texture
to support the transition to Conservation Agriculture. As soil texture strongly in-
fluences both the outcomes of reduced tillage practices (Rochette et al., 2008; Zhao
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et al., 2020; Pannell et al., 2014; Ren et al., 2023) and equipment performance (Baker
et al., 2006; Stengel et al., 1984; Agrii, 2021), the ability to map its spatial variability
is critical for informed management. Traditional laboratory-based methods for soil
texture analysis are costly and time-consuming, limiting their practicality at high res-
olutions (Rhymes et al., 2023). Therefore, this chapter evaluates the accuracy of EC
and GRS in predicting soil texture using spatial correlation analysis and a Random
Forest machine learning model. It tests whether these technologies, individually or
in combination, can provide sufficiently accurate texture maps to guide agronomic
decision-making, and explores the potential benefits of a multi-sensor ”soil sensor
fusion” approach for improving prediction reliability.

The research aims (A) of this chapter are:

• A1: Assess the accuracy of gamma-ray spectrometry (GRS) and electrical con-
ductivity (EC) scanning in predicting field-scale soil texture in a UK agricultural
context.

• A2: Evaluate the potential of a multi-sensor (GRS + EC) “soil sensor fusion”
approach for improving the spatial resolution and reliability of soil texture maps.

This chapter tests the following hypotheses (H ):

• H1: Commercially available soil scanning technologies are effective estimators
of soil textural variation to aid farmers in the transition to CA.

• H2: A soil texture prediction model which combines data derived from several
soil proximal sensors will exceed the accuracy of a model with data from a single
source.

Chapter 3: Soil Health and Function Under Conservation
Agriculture

This chapter assesses the performance of CA on soil health metrics and soil function
in comparison to conventional agriculture (CON). This is done by monitoring various
soil physical, chemical, and biological indicators throughout the three-year experiment
and evaluating the performance of CA in comparison to CON.

The research aims (A) of this chapter are:

• A1: Analyse the effects of the transition to CA on the soil chemical environment
in comparison to a CON system.
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• A2: Analyse the effects of the transition to CA on the soil physical environment
in comparison to a CON system.

• A3: Analyse the effects of the transition to CA on the soil biological environment
in comparison to a CON system.

This chapter tests the following hypotheses (H ):

• H1: CA results in significantly higher diversity and abundance of soil micro
arthropods and earthworms compared to CON practices.

• H2: CA increases soil organic carbon content over time compared to CON.

• H3: Soil bulk density and compaction are lower under CA, than CON, due to
reduced mechanical disturbance.

Chapter 4: Agronomy and Crop Productivity Under Conser-
vation Agriculture

This chapter assesses the agronomic performance of CA in comparison to conven-
tional agriculture (CON). This is done by monitoring the agronomic crop protection
regimes devised by industry professionals during the experiment, and evaluating crop
performance and productivity.

The research aims (A) of this chapter are:

• A1: Monitor variability of crop responses during the transition to CA in com-
parison to CON.

• A2: Monitor variability of crop inputs during the transition to CA in comparison
to CON.

This chapter tests the following hypotheses (H ):

• H1: CA will result in a significant reduction in crop establishment compared to
CON.

• H2: CA will result in significant alterations to the total quantity of pesticide
and fertiliser used compared to CON.

• H3: CA will result in a significantly lower yield than the CON treatment.

• H4: CA agronomy will result in a reduced risk to the environment and human
health compared to CON.
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Chapter 5: Soil Greenhouse Gas Emissions Under Conserva-
tion Agriculture

This chapter aims to quantify the soil-derived greenhouse gas emissions (GHG) from
CA in comparison to CON. This is done by using the static chamber method (Collier
et al., 2014; Pumpanen et al., 2004; Clough et al., 2020) in a crop of winter wheat
during the second year of the experiment.

The research aims (A) of this chapter are:

• Monitor in-field greenhouse gas emissions during the transition to CA in com-
parison to a CON and evaluate the effectiveness of CA as a methodology to
reduce soil-derived GHG emissions.

This chapter tests the following hypotheses (H ):

• H1: CA is an effective methodology for reductions of soil CO2 emissions in
comparison to CON.

• H2: CA is an effective methodology for reductions of soil N2O emissions in
comparison to CON.

• H3: CA is an effective methodology for reductions of soil CH4 emissions in
comparison to CON.

• H4: CA reduces the overall Global Warming Potential (GWP) compared to
CON.

Chapter 5: Economic Analysis of Conservation Agriculture

This chapter details the economic analysis of the three-year systems-level field exper-
iment. It compares both experimental treatments in terms of economic performance
and models future performance of the systems using a Markov Chain Monte Carlo
simulation.

The research aims (A) of this chapter are:

• Assess the economic performance of CA during the experimental duration in
comparison to CON.

• Model the economic performance of both experimental treatment systems in a
variety of different scenarios.
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This chapter tests the following hypotheses (H ):

• H1: CA reduces crop production expenditure in comparison to CON.

• H2: CA reduces the quantity of machinery operation passes ha−1 required.

• H3: CA has no significant effect on the gross margin of the system compared to
conventional practices.
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Chapter 2

Literature Review

2.1 Introduction

Soils are fundamental to life on Earth, but anthropogenic pressures on global soil re-
sources are reaching critical limits (FAO and ITPS, 2015). Currently, it is estimated
that over 75% of global soils are classed as substantially degraded (Scholes et al.,
2018). Soil degradation is estimated to result in an economic loss in the order of 10%
of annual global gross product due to loss of biodiversity and ecosystem services, neg-
atively impacting the food security of at least 3.2 billion people globally, and is linked
to mass migrations, violence, and armed conflict (Scholes et al., 2018; Kraamwinkel
et al., 2021). Without action, it is predicted that by 2050 the combination of climate
change and soil degradation will reduce global crop yields in the region of 10%, ex-
tending to up to 50% in certain at-risk regions (Scholes et al., 2018). This will affect
the world during a period when it is predicted that the global population will increase
by two billion over 30 years, from 7.7 billion in 2019 to 9.7 billion in 2050 (United
Nations, 2019; Kraamwinkel et al., 2021).

Global agriculture stands to be greatly affected by climate change, as severe
weather and global warming will affect ecosystems, which will have a significantly
degraded function due to soil degradation. This will lead to a higher incidence of
drought due to decreased soil water holding capacity and a higher incidence of flood-
ing due to decreased soil infiltration rate. Significant reductions in food availability
and land productivity have been linked with widespread societal vulnerability and
socioeconomic instability (Kraamwinkel et al., 2021). Thus, by 2050, it is estimated
that land degradation and climate change are likely to force 50 to 700 million people
to migrate if no actions are taken to reduce their severity (Scholes et al., 2018).

During the Green Revolution in the 1960s, substantial increases were made to
global food production with the introduction of modern cultivars grown with heavy
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usage of tillage, synthetic fertilisers and pesticides (Mulvaney et al., 2009). This
approach is primarily focused on maximising grain yield with little regard for the
longevity of the soil and environmental resources, which is crucial for sustained crop
growth (Mulvaney et al., 2009). Cultivated soils cover around 35% of the terrestrial
land area of the planet, and contain a large carbon pool which is sensitive to land-use
change and agricultural management practices (Betts et al., 2007; Haddaway et al.,
2017). Many practices in conventional agriculture (CON), such as tillage, have been
strongly linked with substantial degradation of the soil resource base (Farooq and
Siddique, 2015; Jeffery and Verheijen, 2020). In England and Wales, the total eco-
nomic cost of soil degradation is estimated to be £1.2 bn per year, linked to the loss
of soil organic matter, erosion and compaction (Graves et al., 2015). Considering
the time scale of soil formation, soils are considered a finite non-renewable resource
(Gadermaier et al., 2012; Graves et al., 2015). Therefore, it is of imperative impor-
tance to implement productive agricultural systems which conserve and enhance soil
quality and health (Doran, 2002).

Conservation Agriculture (CA) is proposed as a means of reducing soil degradation
associated with food production (FAO, 2014; Page et al., 2020). CA is predicated on
no-tillage (NT) management practice with direct drilling of seeds to achieve minimal
disturbance of the soil, combined with cover crops and the return of crop residues
to the soil. The aim is to disturb the soil and its biological communities as little
as possible, while facilitating them to do work that traditionally the plough and
agrochemicals would otherwise do (FAO, 2014; Page et al., 2020). Furthermore, the
CA practices of residue return and cover crop use work to protect the soil from erosion
while concurrently providing substrate for the soil biota during decomposition, while
the main crop is growing. This can reduce the need for artificial fertilisers, and higher
levels of soil biodiversity can reduce pest and pathogen load, and so reduce the need
for spraying pesticides.

Considering there is disagreement in the literature on the efficacy and applicabil-
ity of CA, this thesis aims to review the literature on the benefits, drawbacks, and
adoption of the key principles of CA systems and experimental designs suitable for
systems-level analysis of CA.

2.2 Agricultural soil degradation

Tillage is primarily used by farmers to create a fine seedbed suitable for planting seeds,
which improves the uniformity of seed germination, manages weeds, aids in the release
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of soil nutrients through mineralisation and oxidation, manages crop residues and
therefore provides improved conditions for crop establishment and growth (Cannell,
1985; Farooq and Siddique, 2015). Many agricultural systems using very little or
no-tillage (NT) have been utilised since ancient times by indigenous cultures, mainly
due to the physical toll of tilling a significant area of land by hand or with livestock
(Triplett and Dick, 2008). For example, the ancient Egyptians and the Incas in the
Andes of South America used a stick to make a hole in the ground and put seeds by
hand into an unprepared seedbed (Derpsch, 1998). Early tillage implements, designed
to be pulled by people or livestock, did not invert the soil but scratched or scarified
the soil surface. In the 17th century, ploughs were invented that partially inverted
the soil, thus achieving better control of weeds in crop establishment. However, it
was not until the 18th and 19th centuries that plough designs began to morph into
the shape of the plough mouldboards still used in agriculture today, which can invert
the soil 135◦, achieving very efficient burial of weed seeds (Derpsch, 1998). This
innovation quickly became popular in Europe as it was very successful at controlling
the invasive weed couch grass (Elymus repens), which had spread across much of
Europe’s cropland and was difficult to control with non-inversion tillage tools.

The power requirement for tillage is considerable; thus, when tractors were intro-
duced in the late 1800s, they enabled large-scale, regular tillage to be more viable.
This led to many farmers believing that higher instances of tillage resulted in higher
yields (Derpsch, 1998). In modern agricultural practice in many countries in the
world, conventional tillage is the use of a mould-board plough to invert the soil to a
required depth, thus burying the previous season’s crop residues. Ploughing is then
followed by a variety of other tillage operations to work the furrows down to a suit-
able seedbed. During the past centuries, tillage has undoubtedly greatly aided the
enhancement of food production for a growing population, by improving seedbeds
for crop establishment and reducing the burden of weeds, pests and diseases in crop-
ping systems (Triplett and Dick, 2008). However, increases in the use of agricultural
tillage have been strongly linked with the declining state of the world’s soil resources
in recent decades (Lindstrom et al., 2001; Van Oost et al., 2006).

2.3 Tillage Erosion

Tillage is responsible for significant soil erosion via downslope translocation of soil
material, causing heavy deposition in lower slope positions and thinning of topsoils
in upper-slope positions (FAO, 2019a). Cultivation not only moves soil particles in

10



the direction of the tillage, but it can also disturb the soil profile and break up soil
aggregates into smaller and lighter aggregates, which are more prone to wind and
water erosion. Unlike wind and water-based erosion, which are often immediately
obvious to the naked eye following extreme weather events, tillage erosion becomes
apparent on a much longer timescale, via changes to visual soil properties (Van Oost
et al., 2006). The importance and severity of global tillage erosion was only recognised
by soil scientists in the 1990s, and to this day remains far less well known compared
to wind or water-based erosion (FAO, 2019a).

Typically, soil erosion from arable agricultural land is an order of magnitude higher
than under undisturbed native vegetation, and contributes a disproportional impact
on global sediment production for its total land area of 33% of the Earth’s surface
(Van Oost et al., 2009). Using a tillage model and land use databases, Van Oost
et al. (2009) estimated that the mean gross tillage erosion rates for a large part of
Europe (6.5% of global cropland) were an average of 3.3 t ha−1 y−1, corresponding
to a sediment flux of 0.35 Pg y−1 (shown in Figure 2.1).

Figure 2.1: Tillage erosion rates calculated for Europe. The values represent the
mean gross tillage erosion rate aggregated at 1 km and are approximately half of the
erosion rate over the eroded area. Adapted from (Van Oost et al., 2009).

When tillage, wind, and water erosion are combined, it has serious implications for
future agricultural productivity. Doetterl et al. (2012) predicted a global soil erosion
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rate of 10.5 t ha−1 y−1 for cropland and 1.7 t ha−1 y−1 for pastures. This degree of
soil erosion also results in significant erosion of soil organic carbon (SOC) from the
topsoil, estimated to be 193 kg C ha−1 y−1 from cropland and 40.4 kg C ha−1 y−1

from eroding pastures, and results in a global flux of 20.5 ± 10.3 Pg y−1 of soil and
403.5 ± 201.8 Tg C y−1. A visual representation of this process is presented in Figure
2.2.

Although erosion does not induce carbon losses from soil to the atmosphere, as
the SOC is deposited elsewhere, it does threaten to seriously degrade agricultural
soil productivity and resilience over long periods. It is estimated that water erosion
alone causes annual fluxes of 23-42 Mt Nitrogen (N) and 14.6-26.4 Mt Phosphorus
(P) from agricultural soil (FAO and ITPS, 2015). In comparison to annual fertiliser
application, which is ca. 112 Tg for N and ca. 18 Tg of P. Considering that N and
P fertilisers are costly to farmers (Clark, 2022), this highlights the significant annual
economic cost for replacing nutrient losses from agricultural soil (FAO and ITPS,
2015). Loss of topsoil results in the gradual reduction in the crop rooting zone as
well as the soil water holding capacity, which in turn increases the likelihood of crop
failure due to drought and the incidence of flooding due to increases in surface run-off.

Figure 2.2: The effect of erosion on soil horisonation and the depth function of soil
organic carbon. The Ah horizon is the undisturbed SOM-rich layer; the Ap horizon
is the ploughed surface horizon. The Bnt horizon is growth-limiting due to high clay
and sodium. Adapted from (FAO, 2019a)
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2.4 Soil Organic Carbon Loss

Globally, soils contain the largest terrestrial carbon (C) pool sensitive to changes in
land use and agricultural management practices, and are therefore of high importance
in the global carbon cycle (Haddaway et al., 2017). In only the first meter of soil,
the Soil Organic Carbon (SOC) pool stores an estimated 1500 PgC, which equates
to more than the atmospheric (roughly 800 PgC) and terrestrial vegetation (500
PgC) carbon cycles combined (FAO and ITPS, 2015; FAO, 2017). SOC is formed
by photoautotrophic organisms, mainly plants, synthesising atmospheric CO2 into
organic material. When this organic material dies, soil fauna incorporate it into the
soil profile and where it is consumed by heterotrophic microorganisms, resulting in
SOC accumulation in a complex biogeochemical mixture of microbial decomposition
products and plant residues in various stages of decomposition (FAO, 2017).

The SOC pool has much potential to provide a vital ecosystem service in the fu-
ture by acting as a C sink by exchanging with the atmospheric C pool and storing
as SOC, thus mitigating climate change (Follett, 2001). The loss of SOC is widely
regarded as a clear indicator of land degradation, as it affects many physical, chemi-
cal, and biological soil processes due to the broad range of soil functions it influences
(Reeves, 1997). SOC does not directly influence ecosystem services but is a regularly
used proxy for soil organic matter (SOM); however, the traditionally used assumption
that soil organic matter contains 58% carbon has been shown to only apply to some
soils or only to particular components of soil organic matter (Pribyl, 2010). SOM is
a critical attribute to many essential soil ecosystem functions and global warming.
SOM encompasses all organic constituents of the soil, less the 2mm in size, including
plant and animal residues and soil organisms (FAO, 2017). It is thought of as a key
indicator of agricultural productivity and environmental resilience because it is a crit-
ical factor in the maintenance of water-holding capacity, stabilisation of soil aggregate
structure and turnover of plant available nutrients in all soils (FAO, 2017). SOC has
traditionally been used as a proxy for SOM because of the ease of measurement of
SOC and the more direct connections between atmospheric C and SOC (FAO and
ITPS, 2015).

SOC is naturally removed from the soil through soil autotrophic and heterotrophic
respiration, where carbon (C) is released as CO2 (Turmel et al., 2015). However, it is
well reported that tillage significantly accelerates these losses to the atmosphere, es-
pecially following land use changes (Kucharik et al., 2001). This is because cultivation
breaks up soil aggregates and exposes SOM that was previously shielded within soil
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micro-aggregates to microbial decay, releasing C to the atmosphere (Hendrix et al.,
1986; Beare et al., 1994; Page et al., 2020). Cultivation also fragments surface crop
residues, which increases the rate of microbial decomposition of the organic residues
(Beare et al., 1993).

Modern usage of synthetic N fertiliser in cropping systems can positively or neg-
atively affect SOM mineralisation via several direct and indirect pathways. This has
led to much debate regarding the sustainability of synthetic N fertilisation (Mahal
et al., 2019). Repeated over-usage of synthetic N fertilisers can reduce SOC stocks
via accelerating C mineralisation, leading to further soil degradation in over-fertilised
soils (Mulvaney et al., 2009). However, some studies suggest that N fertiliser addi-
tion increases SOC stocks by enhancing the net primary productivity of production of
crop biomass, thus increasing SOM return (Mulvaney et al., 2009). NH4

+ application
can have an inhibitory effect on microbial activity, thus suppressing C mineralisation
(Mahal et al., 2019).

It was estimated by Kucharik et al. (2001) using a dynamic terrestrial ecosys-
tem model with field measurements, that the transition from native prairie lands in
Wisconsin (USA) to agricultural land between 1860 and 1950 may have caused the
depletion of up to 63% of the original SOC density. This was due to changes to C and
N cycling that occur during land use change from undisturbed native environments
to, in this case, continuous Maize production, which results in larger amounts of C
leaving the system compared to C that is returned.

SOC concentrations can be maintained by either increasing organic matter inputs,
or by slowing down SOC decomposition rates or in conjunction (Paustian et al., 1997).
Reductions in the quantity of tillage in cropping systems have been regularly cited to
have the potential to slow the loss of SOC from agricultural soils, and in some cases,
even to build SOC (Derpsch and Friedrich, 2009; Page et al., 2020; Wang et al., 2020;
Kumara et al., 2020). This is due to a reduction in soil erosion and therefore losses of
topsoil, which is high in SOC, a reduction in soil to residue contact and also decreases
the turnover rate of soil macro-aggregates, which increases the physical protection of
particulate organic material to the susceptibility of microbial decay (Page et al., 2020).

2.5 History of Reduced Tillage Systems

It was the ‘Dust Bowl’ in North America during the 1930s that sparked the beginning
of the movement towards soil conservation management in agriculture. The disastrous
droughts during this period caused widespread economic and ecological damage, thus
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driving the shift towards alternative and innovative agricultural concepts (Farooq and
Siddique, 2015). Lowering the intensity of tillage was identified as a potential solution
to reducing the environmental impact of agriculture and to improve cropping system
sustainability (Townsend et al., 2016).

This is characterised by the publication of “Plowman’s Folly” by Edward H.
Faulkner in 1943, where he linked the vast soil erosion to over-usage of the then
universally used and well-regarded tool of the mould-board plough (Faulkner, 1987).
This book is widely regarded as a milestone in changes to agricultural tillage prac-
tices as he questions the efficacy of ploughing, stating “No one has ever advanced a
scientific reason for plowing”; “There is simply no need for plowing in the first in-
stance. And most of the operations that customarily follow the plowing are entirely
unnecessary, if the land has not been plowed”; “There is nothing wrong with our soil,
except our interference” (Faulkner, 1987). Faulkner also advocated for the addition
of ‘Green Manure’ into the crop rotation to improve the soil’s water holding capacity
as well as the infiltration rate.

The views of Faulkner were seen as somewhat controversial at the time, as al-
ternatives to ploughing at the time would not allow for adequate weed control. It
was described by the Readers Digest as “no book on agricultural subject has ever
prompted so much discussion in the United States, at the time it was written”. It
was met with fierce criticism from both farmers and researchers, with an article pub-
lished in Nature in 1944 stating “Farmers are cautious men, and are not likely to
take very seriously the extravagant claims made by Mr. Faulkner” however the au-
thor notes that “some enterprising farmers in Great Britain may try their hand” at
non-inversion tillage and green manure cropping (Schofield, 1944). Advancements in
seeding machinery technology that allowed seeds to be planted with no tillage were
first demonstrated in the USA in 1950 (Harrington, 2008). This enabled commercial
agricultural systems predicated on reduced tillage to gain popularity in North Amer-
ican agriculture, where the term was coined as “conservation tillage”. One of the
earliest uses of this phrase was in 1967 in Illinois to encourage governmental support
for various forms of reduced tillage (Allmaras and Dowdy, 1985).

Since then, cropping systems predicated on reduced-tillage (RT) have been made
increasingly more viable with the introduction of plant growth regulators (PGRs)
developed during World War II (Phillips, 1984; Derpsch, 1998) and effective herbicides
to control weeds in the 1960-70’s, such as atrazine, paraquat, and glyphosate (Manno,
1996; Giller et al., 2015). This was a significant development, as the use of rotational
ploughing had traditionally been used to invert the topsoil, thus burying the weed
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seed bank to a depth where the seeds became unviable. The commercial release of
Paraquat in 1961 led many agricultural chemical firms to begin intensive RT research
in many countries (Derpsch, 1998). Also, during this time, there were significant
advances in tractor horsepower and machinery designed with reduced tillage in mind,
with the first commercial NT drill introduced by Allis-Chalmers in 1967 (Lindwall
and Sonntag, 2010).

Additionally, during this period, there was an increasingly expressed public alarm
about the dangers of soil erosion (Allmaras and Dowdy, 1985), resulting in the issue
of soil degradation being raised at the World Conservation Strategy in 1980 (IUCN,
1980) and the World Soil Charter in 1982 (FAO, 1982; Kassam et al., 2014b). This
was combined with significant increases in fuel prices during the 1970’s resulting in
many farms becoming interested in systems that utilised less intensive management
to reduce production and maintenance costs (Farooq and Siddique, 2015). Reduced
tillage systems were preferred by some farmers as the traditional plough-based system
was considered by some to be a grossly inefficient use of time and fuel and causes
much mechanical degradation to the agricultural machines and implements (Way-
delin, 1995; Derpsch, 1998). During this evolving period in agricultural practice, the
term “Conservation Agriculture” was first coined in the latter part of the 1990s, which
was followed by the 1st World Congress on Conservation Agriculture held in Madrid
in 2001 (Giller et al., 2015).

2.6 Definitions of tillage systems

Today, tillage practices, systems and terminology vary considerably globally. Farm-
ers opt for tillage systems which suit their cropping system, budget, weather and soil
conditions (Alskaf et al., 2020). For example, in Scandinavia, the term ‘conservation
tillage’ regularly involves some form of reduced tillage, but encompasses many vari-
ants from this, e.g., stubble cultivation in autumn followed by harrowing in spring, to
no-tillage (NT) systems with no cultivation at all before sowing (Wang et al., 2006).
The wide variety of commonly used tillage systems makes tillage system categorisa-
tion a complex process, and terminology commonly varies amongst practitioners and
researchers (Morris et al., 2010; Alskaf et al., 2020). This is shown by the inconsis-
tency of the literature on the adoption of emerging tillage systems, where there is
much variation in practices, cropping systems, and climates. This document uses the
tillage system definitions set out by (Townsend et al., 2016), which are presented in
Table 2.1 below.
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Table 2.1: Description of types of tillage systems. NB: Tillage definitions in the
literature vary widely and may differ from those given in this table. Adapted from
Townsend et al. (2016).

Tillage systems Description

Conventional tillage
(CON)

CON usually relates to the practice of ploughing, which is performed using a
mould-board plough to invert the soil to a required depth, thus burying the
previous season’s crop residues and weeds. This is then followed by a variety
of other tillage operations to work the furrows down to a suitable seedbed.
(NB: Some definitions of CON include deep non-inversion tillage.)

Non-inversion tillage;
reduced tillage;

reduced cultivation;
minimum tillage

Tillage practices that do not invert the soil. Some definitions specify maxi-
mum cultivation depths (e.g., no greater than 100 mm) and/or a particular
percentage cover, usually 30% of crop residues left on the soil surface.

Deep reduced tillage Non-inversion tillage to a depth greater than 100 mm/150 mm.

Shallow reduced tillage Non-inversion tillage to a depth of less than 100 mm.

Strip-tillage Strips (covering less than a third of the soil surface) are tilled and the residue
moved onto the untilled strips. Seeds are then drilled on the tilled strips.

Zero-tillage; No-tillage
(NT); direct drilling

This is where the seed is drilled into the stubble of the previous crop with
only very minor soil disturbance.

Conservation tillage
Reduced tillage combined with at least 30% residue cover, where water erosion
predominates, or at least 1120 kg crop residue left on the surface, where wind
erosion predominates.

Conservation Agriculture
(CA)

No-tillage combined with permanent organic soil cover (either residue or cover
crop), and diverse crop rotations.

Rotational ploughing A system where the land is ploughed at specific points in the rotation, with
other tillage practices used in between.

Strategic tillage A flexible, responsive system where ploughing is used within the rotation in
response to specific conditions.

Secondary tillage This term tends to refer to shallower and finer-scale tillage practices occurring
after the main tillage practice.
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2.7 Adoption of reduced tillage systems

As already detailed, the journey towards the NT system that exists today began in the
USA with the first successful demonstration of NT direct sowing in 1950 (Harrington,
2008). However, it wasn’t until the registration of the broad-spectrum bipyridyl
herbicide Paraquat in 1962 that the system (then known as ‘Chemical Fallow’) began
to slowly become something of global interest (Lindwall and Sonntag, 2010).

The first NT seeding experiments outside of the USA began in Australia in 1964,
where the potential use of bipyridyl herbicides as a replacement for tillage was assessed
(Farooq and Siddique, 2015). The Australian landscape is prone to high instances of
soil degradation due to very light soils (up to 90% sand in some areas) and extremely
dry conditions (< 250mm year−1 in some cases), coupled with anthropogenic factors
such as land clearance and regular cultivation in agricultural areas (Derpsch, 1998;
Derpsch and Friedrich, 2009). These factors combine to make NT cropping appealing
to Australian farmers for the moisture-conservation and seeding timeliness benefits
of the NT system (Lindwall and Sonntag, 2010). As a result, farmer adoption of NT
cropping has been steady and consistent in Australia since its introduction in the
1960s. Now the proportion of farmers using at least some NT is peaking at nearly
90% in many regions of Australia (Figure 2.3) (Llewellyn et al., 2009; Lindwall and
Sonntag, 2010) with the proportion of Australian grain crop areas sown using NT or
zero-till estimated to be 74% in 2016 (Llewellyn and Ouzman, 2019).

Although Figure 2.3 shows that NT is now to be considered ‘conventional practice’
in Australian grain production, the figure illustrates the time-scale involved in a
shift towards a new agricultural cropping system (Llewellyn and Ouzman, 2019). It
also illustrates the variation in the rate of adoption between agro-ecological zones,
possibly due to scepticism of the methodology in certain climates and soil types.
However, ultimately, it shows the successful application of NT in a country with
wide-ranging agro-ecological conditions, with most regions now exceeding 90% NT
adoption (Llewellyn and Ouzman, 2019). Although Figure 2.3 does not account for
dis-adoption, it is thought that the instance of dis-adoption is less than 5% nationally
(Lindwall and Sonntag, 2010).

NT introduction in Australia was quickly followed by several trials across Europe,
in Germany in 1966 (Baeumer, 1970), Belgium in 1967 (Cannell and Hawes, 1994),
and Italy in 1968 (Farooq and Siddique, 2015). The introduction and development
of NT in South America in 1969 was primarily to address issues with extensive soil
degradation caused by changing agricultural practices and technology developed from
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Figure 2.3: Cumulative proportion of Australian crop growers who have used no-
tillage (NT) by region. Source: (Llewellyn et al., 2009)

European colonists (Speratti et al., 2015). The use of plough-based establishment
had been popular and successful on European soils, and many European experts
believed that tillage improves soil fertility. Whereas it is now known that increased
tillage intensity can reduce SOC due to increased microbial activity and carbon (C)
oxidation (Page et al., 2020).

In the UK, the popularity of RT systems peaked in the 1970’s where it is estimated
that around 35% of the crops were established under RT; however, this declined to
10% - 25% in the late 1980s due to problems with weeds associated with non-inversion
tillage (Alskaf et al., 2020). The use of RT then declined severely in England and
Wales due to the ban on straw burning in 1993. Straw burning had been used to
reduce crop residue biomass and to control weeds, pests and disease on crop stubble.
The ban on this practised resulted in many farmers in the UK opting for plough-based
tillage instead of RT because of fears of higher weed, pest and disease burden and
the remaining crop residue blocking seed drill coulters and seed placement (Townsend
et al., 2016).
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Table 2.2: The three principles of Conservation Agriculture with descriptions of the
practice.

Principle Description

No tillage (NT)

NT is defined as the direct planting of crops with a minimum of soil distur-
bance (Derpsch et al., 2014). NT is generally used synonymously with the
terms “direct-seeding” or “direct drilling”, which denotes the process of plant-
ing crops in previously unprepared soil by opening a narrow slot, trench, or
band only of sufficient width and depth to obtain proper seed coverage. No
other soil preparation is performed (Derpsch, 1998; Speratti et al., 2015). NT
systems are well-reported management tools for preventing soil erosion and
conserving soil fertility (Gadermaier et al., 2012).

Soil organic cover
A permanent use of soil organic cover, either by use of crop residue or cover
crops. Covering at least 30% of the soil between harvest and seeding (Page
et al., 2020).

Crop
rotation

Stimulating soil biology using a diversified crop rotation, sequence or associa-
tion which are specifically tailored to local environments and climatic condi-
tions, with the inclusion of leguminous crops and cover/catch crops (Kassam
et al., 2009; Derpsch et al., 2014; Knapp and van der Heijden, 2018).

2.8 Conservation Agriculture

CA is an agricultural system designed to manage agro-ecosystems for improved and
sustained productivity by conserving and enhancing soil quality and biota (FAO,
2014; Page et al., 2020). It is being increasingly promoted as a farming system that
can contribute to sustainable crop production intensification (Pretty, 2008; Kassam
et al., 2014b) and is claimed to mitigate or revert many negative effects of conventional
crop production practice, such as SOM decline (Page et al., 2020), soil erosion, and
greenhouse gas (GHG) emissions. CA consists of three crop management principles,
shown below in Table 2.2:

Although the terms NT or direct seeding are sometimes referred to as CA, this is
not strictly correct. CA is not a single technology, but a production system predicated
on the three main technologies described above. The first and second principles are
interdependent on one another, as a permanent soil cover is not possible whilst the
use of tillage is optional. Many farmers have and continue to implement various com-
binations of the CA principles (Giller et al., 2015). However, it is commonly deemed
that it is only accurate to claim that a system is CA when all three principles are
meticulously applied in practice (Derpsch et al., 2014; Giller et al., 2015). The term
Conservation Agriculture has been widely encouraged and promoted as it encourages
farmers to think of their farm as a holistic production system and not just focus on
the tillage component (FAO, 2014; Speratti et al., 2015). The three Conservation
Agriculture principles are commonly used with various companion practices such as
Integrated Pest Management (IPM) or Integrated Weed Management (IWM), which
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can be incorporated into the Conservation Agriculture system on a site-specific basis,
as shown in Figure 2.4 (Farooq and Siddique, 2015; Page et al., 2020).

Figure 2.4: The principles of Conservation Agriculture, with an addition of Integrated
Weed Management. Adapted from: (Farooq and Siddique, 2015).

Adequate weed control is a key pillar to successful CA systems due to the lack
of inversion tillage, as there can be a build-up of problematic weeds in the topsoil.
Therefore, weed control in CA systems is performed with a combination of adaptive
and appropriate crop rotations, adapted and aggressive cover crop species inclusion
in the rotation, and application of herbicides (Derpsch et al., 2014). CA is a system
designed to be a means of crop production that has soil and water enhancement
as its foremost priority. It is regularly cited to improve rainfed crop productivity
in dry climates due to moisture conservation; therefore, it may be an important
climate change adaptation strategy for regions of the world which are prone to drought
(Pittelkow et al., 2015).

2.8.1 Adoption

CA systems are now practised globally in varying agricultural ecologies and climates.
The spread of the application of CA systems has been significant. In 1973, the global
area of farmland farmed under CA principles was only 2.8 million hectares (ha). How-
ever, since then total land area of CA has risen to 106 M ha in 2008/09, and then to
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180 M ha in 2015/16, constituting an increase of 69% since 2008 (Kassam et al., 2009,
2019). Although it has been introduced and promoted in many countries globally,
widespread adoption has only occurred in certain regions (Speratti et al., 2015). A
range of factors have influenced the rate and extent of CA adoption in various global
regions, such as climate, soil type, average holding size, and topographic conditions,
to name a few. To date, the regions which have witnessed widespread adoption of
CA have been Australia (Llewellyn and Ouzman, 2019), North America, and South
America (Speratti et al., 2015). However, it is worth noting that objective measure-
ment of CA adoption is challenging to quantify, as none of the underlying principles
are systematically captured globally, especially when it comes to the combination of
all three CA principles together (Giller et al., 2015). Often, there is confusion between
terminology, where NT adoption is counted as CA adoption. Currently, Europe is
far behind other regions in uptake of CA, with only the African continent having a
lower relative uptake (1 million ha) than Europe, compared to Europe’s 1.36 million
ha (Basch et al., 2015). Within Europe, Finland, Spain, Portugal, Switzerland and
the UK have the highest rates of CA adoption in terms of relative land cover.

2.8.2 Support and Criticism

CA has received strong and widespread international support in recent years, in-
cluding the Food and Agriculture Organisation (FAO) (FAO, 2014). However, the
widespread adoption of CA is strongly debated, in particular its crop yield poten-
tial, its applicability in different farming systems, and the economic benefits of the
system (Giller et al., 2015). A meta-analysis by Pittelkow et al. (2015) using obser-
vations from 610 studies to assess the individual pillars of CA found that overall NT
reduced yields; however, this response was found to be variable and highly subject
to the conditions in which it was implemented. In some cases, it has the potential
to produce higher yields. This study also noted that they found that when all the
principles of CA were implemented, the negative impacts were significantly reduced
in comparison to CON. This highlights the importance of the combination of all three
of the CA principles together for successful evaluation of the CA system, and that
true evaluation of the system cannot be achieved by isolating individual principles, as
there is evidence to suggest that there is an interaction effect between the principles.
There are commonly confounding practices compared in the literature, where some
principles are adhered to, and others are not.

As a result of this, the application and benefits of CA in different agro-ecologies
are a polarising subject in the scientific community, especially when it is promoted for
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application in small-scale, resource-poor farms in Sub-Saharan Africa and South Asia.
The 2013 Nebraska Declaration on CA was held as an attempt to find a consensus
amongst scientists about the CA system applicability; however, it was subsequently
criticised by some for constraining scientific debate (Andersson et al., 2014; Giller
et al., 2015). Therefore, the following sections break down the individual principles
in more detail and evaluate them individually and as a combination.

2.9 No-tillage

Modern No-Tillage (NT) uses specifically designed seeding equipment with discs (low
disturbance) or narrow tines/coulters (higher disturbance) that are designed to open
a narrow slot into the soil and plant seeds at a required depth (Derpsch et al., 2014).
This section focuses on some of the known effects of transitioning to NT systems.

2.9.1 Crop Yield

The response of CA on crop yield can vary depending on a range of site-specific
factors (climate, soil types, etc.) and crop management factors, for example, if it is
combined with crop residue retention and diversified crop rotation (Corbeels et al.,
2014). In general, NT yields are typically found to be higher in moderate- to well-
drained soils, but slightly lower on poorly drained soils compared to CON (Triplett
and Dick, 2008). There is also evidence to suggest that root growth may be limited
in some NT systems in comparison to CON systems (Pietola, 2005).

A meta-analysis by Corbeels et al. (2014) comparing CA practices to CON-based
practices in sub-Saharan Africa found that NT reduced crop yield in comparison
to CON when it was not combined with crop residue retention and crop rotation
diversification. However, in contrast to this, they found that when crop residues were
not exported from the field, NT crop yield was higher in comparison to CON systems.
When they compared the effects of crop rotation on yield, there was no significant
difference between the yields of the two systems.

A global meta-analysis by Shakoor et al. (2021) using 50 peer-reviewed publica-
tions found no significant difference between the average crop yield of NT systems in
comparison to CON crops. Additionally, a global meta-analysis by Pittelkow et al.
(2015) used 5463 paired yield observations from 610 studies comparing NT with CON
from 48 crops and 63 countries. They found that there were no statistical differences
between NT and CON yields for oilseed, cotton, and legume crops. However, they
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found yield penalties for NT in some cereal crops in comparison to CON; wheat (-
2.6%), rice (+7.5%), and maize (-7.6%). They found that all crop yields declined in
the transitional years from tillage to NT over the first two years, except for oilseed
and cotton crops. However, from years 3 – 10, they found NT yield was not signif-
icantly different from the CON yield, apart from maize and wheat grown in humid
climates. When they considered N addition, they found a 12% yield decline without
N fertiliser addition and a 4% decline with inorganic N addition.

The meta-regression analysis by (Van den Putte et al., 2010) included 47 Euro-
pean studies (563 observations) and compared crop yields under CON, RT and NT
techniques. They found that on average, overall yield reductions for NT by 6.05% in
comparison to CON, and that soil type was a significant factor in the magnitude of
reduction, with NT performing better in clay soils.

2.9.2 Soil Organic Carbon

It is widely considered that tillage is a factor in losses of SOC from agricultural soils
due to reductions in soil structural stability, redistributions of SOM within the soil
profile, and a decrease in soil aggregate size resulting in losses of SOC as CO2 (Hendrix
et al., 1986; Kucharik et al., 2001). Reviews of NT and SOC regularly conclude that
NT causes stratification of SOC in the upper 5 or 10 cm depth (Blanco-Canqui and
Ruis, 2018), whereas the accumulation of SOC lower down the soil profile is a matter
of debate amongst researchers (Gadermaier et al., 2012). However, a meta-analysis
by Govaerts et al. (2009) synthesised the knowledge and data of C and N cycling
in agriculture, summarising the influence of tillage, residue management, and crop
rotation on SOC stocks. The meta-analysis found inconclusive results, where 7 of the
78 cases examined found that SOC concentrations were higher in CON in comparison
to NT; in 31 cases, there was no significant difference found, and in only 40 of the
cases examined did they find a significant improvement in SOC stocks under NT in
comparison to CON. In contrast, a meta-analysis of NT from South Asian countries
by Kumara et al. (2020) using a total of 670 paired observations from 147 studies
representing 67 crops found that the C sequestration potential of systems predicated
on NT was higher (26.83 Mg ha−1) in comparison to CON systems (24.5 Mg ha−1).
The authors found that soil type, irrigation, and inclusion of the other CA principles
were the main drivers for the magnitude change of C sequestration, specifically the
inclusion of legume crops in the crop rotation.
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2.9.3 Soil Physical Properties

Soil compaction is a concern amongst farmers, as this can cause issues with crop
establishment and growth, and as a result is thought to be a significant barrier to
adopting NT (Logsdon and Karlen, 2004). Others argue that soil in NT systems is
not a concern as dynamic processes such as wetting-drying, freeze-thawing, and crop
rooting can help to alleviate any compaction caused by the lack of tillage (Blanco-
Canqui and Ruis, 2018).

Soil bulk density and penetration resistance can be used as a measure of soil
compaction and, therefore, are both commonly used as an appropriate indicator of
the physical condition of the soil (Cooper et al., 2020). Pidgeon and Soane (1977)
compared the soil properties of NT and plough-based tillage systems over seven years
in the UK. They found significantly higher soil bulk density in NT systems; however,
they found that there were no increases in NT bulk density after the third year, as
the soil reached an equilibrium density for the current management practices. In
contrast, Blanco-Canqui and Ruis (2018) summarised 62 studies conducted focusing
on soil bulk density under NT and CON systems. They found that NT had no effects
on soil bulk density in 26 of the 62 studies, increased bulk density in 24 of the 62
studies and reduced it in 12 studies relative to the CON treatment. The magnitude
of the change from 0-50 cm soil depth was by 0.6% to 42% in about 39% of studies,
while it reduced bulk density by 0.6% to 11% in about 19% of studies. The authors
noted that most of these changes to bulk density were attributed to changes in the
top 0-10 cm of soil and that the bulk density of NT soils may be influenced by the
duration under NT management.

2.9.4 Crop Nutrition

Distribution and the cycling and availability of nutrients to crops are regularly in-
fluenced by soil tillage management (Doran, 1987). In general, the distribution of
many soil nutrients in NT systems in comparison to tillage systems is similar to the
stratification of SOC under NT systems, where there is a concentration in the soil
surface layer and little or no change at lower depths (Gadermaier et al., 2012). This
is particularly common with Phosphorus (P) and Potassium (K), which are relatively
immobile in the soil and are partially fixed in slowly available or unavailable forms
(Triplett and Dick, 2008).

Due to this stratification effect, NT generally results in accumulation of greater
amounts of P and K in the upper topsoil layer (Gómez-Rey et al., 2012). However,
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changes in SOM accumulation on the soil surface in NT systems can alter the nature
and rate of P and K fixation and exchange in these zones. Karathanasis and Wells
(1990) studied the soil K status occurring as a result of shifting management practice
from CON to NT. They found large increases of up to three times the exchangeable
and soluble K in most upper soil surface horizons managed using NT compared to
conventionally managed land. The authors also found that these increases in K
correlated well with SOM accumulation during the study period.

Doran (1987) studied the distribution of potentially mineralisable nitrogen (PMN)
in long-term tillage comparisons at various sites in the USA. The author found that
PMN levels of NT soils were 37% higher than those compared to conventionally
cultivated soils. Highest levels of PMN in NT soils were found in the top 0 – 7.5 cm
soil horizon, and in the ploughed soils, this was found to be lower from 7.5 – 15 cm
in the soil. The PMN were primarily associated with the distributions of microbial
biomass and total N.

Fertiliser is usually applied via broadcast spreader or via the seed drill spouts at
drilling. In tillage systems, this fertiliser can be worked into the soil to a required
depth before planting, whilst with NT systems, these applied nutrients remain banded
in the topsoil or on the soil surface. This can result in greater amounts of nutrition
in NT systems as a consequence of minimised soil disturbance, thereby reducing crop
residue decomposition, and resulting in accumulation of crop residues and fertiliser
in the top soil (Gómez-Rey et al., 2012). Cereal yields are lower in NT systems at
lower rates of N fertiliser in comparison to plough-based tillage.

2.9.5 Soil Biological Properties

Soil microbial communities are important regulators of SOM dynamics and nutrient
availability in the soil, and as such, microbial biomass is considered a good indicator of
soil fertility (Gadermaier et al., 2012). It is thought that the transition to NT cropping
systems may temporarily reduce soil fertility by reducing total plant available N
through increases in N immobilisation in the soil due to higher inputs of organic
residues (Doran, 1987). However, there is evidence to suggest that over a long-term
crop rotation, NT may improve N availability and reduce N losses from leaching,
by increasing labile N pool and soil N retention in the uppermost layers of the soil
(Gómez-Rey et al., 2012).

Doran (1987) studied the distribution of soil microbial biomass in long-term tillage
comparisons at various sites in the USA. The author found that microbial biomass
averaged 54% higher in NT soils in comparison to the surface of ploughed soils. The
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greatest levels of microbial biomass were found in the 0 – 7.5 cm soil depth in NT;
however, in the tillage system, this was greatest at the 7.5 -15 cm depth. The study
found that the differences in microbial biomass distribution at different depths were
closely associated with the corresponding levels of SOC and N, water content, and
water-soluble C as influenced by the differences in tillage management.

2.9.6 Greenhouse Gas Emissions

Anthropogenic emissions of Greenhouse Gases (GHG) are attributed to increasing
the global temperature by ∼ 0.89◦C in the 20th century. (IPCC, 2013; Mei et al.,
2018). The atmosphere is comprised of nitrogen (N2) (78%) and oxygen (O2) (21%)
(IPCC, 2013). When solar radiation reaches the atmosphere, around two-thirds of
it will penetrate the atmosphere and be absorbed by the earth’s surface, and in
turn is then emitted back out in the form of infrared rays towards the atmosphere,
some of which is reabsorbed (Signor and Cerri, 2013). This process is known as
the greenhouse effect. The atmospheric GHG’s in order of abundance are: Water
vapour (H2O), Carbon Dioxide (CO2), Methane (CH4), Nitrous Oxide (N2O), Ozone
(O3), Chlorofluorocarbons (CFC’s), Hydrofluorocarbon (HFC’s), and Fluorocarbons.
Although H2O is the most abundant in the atmosphere, its concentrations are not
affected by anthropogenic activities, and as such CO2, CH4, and N2O are considered
to be the most damaging GHGs (Signor and Cerri, 2013). It is estimated that since
1750, atmospheric concentrations of CO2, CH4, and N2O increased by 148%, 260%,
and 123%, respectively, to levels that are unprecedented in the past 800,000 years
(IPCC, 2013). This has been attributed to increasing global temperature in the
20th century and has sparked global concern and dthe evelopment of climate change
mitigation strategies.

Much of the focus of climate change mitigation has been on CO2 reduction strate-
gies. However, in recent years, there has been a focus on climate change mitigation
via reduction in non-CO2 greenhouse gases. One of the main focuses for GHG re-
duction globally has been mitigating nitrous oxide (N2O) emissions. Atmospheric
concentrations of N2O are now estimated to be over 19% higher than pre-industrial
atmospheric concentration (Montzka et al., 2011).

Rises in atmospheric concentrations of N2O are particularly damaging to the cli-
mate as it has been found to have a high Global Warming Potential (GWP) to CO2

and CH4 and have a significant contribution to ozone depletion (Mei et al., 2018).
The GWP is the internationally agreed method published by the Intergovernmen-
tal Panel on Climate Change (IPCC), which converts all GHGs to CO2 equivalents

27



(Wang et al., 2021). It is defined as an index based upon radiative properties that
can be used to estimate both direct and indirect effects of emissions of different gases
upon the climate system in a relative sense (Muralikrishna and Manickam, 2017). It
is the characteristic of each gas and is assigned as a function of its lifetime in the
atmosphere and rated to CO2 as it is the most abundant GHG (Signor and Cerri,
2013).

The main N2O sink is via photolysis and oxidation reactions in the stratosphere,
and it is estimated to have an atmospheric lifespan of 131 ± 10 years (Prather et al.,
2012). This is a long atmospheric lifespan in comparison to CH4 (9.1 ± 0.9) (Prather
et al., 2012), thus highlighting the importance of the task of mitigating N2O emissions
from agricultural soils in the future.

NT is widely considered to be an effective method for combating the effects of cli-
mate change due to evidence on SOC sequestration in some research (Blanco-Canqui
and Ruis, 2018). However, the effects of NT on GHG emissions are highly debated,
and research findings vary greatly amongst the literature (Shakoor et al., 2021). It
is commonly thought that tillage disturbs the soil profile and thus stimulates the
microbial decomposition of SOM, resulting in the losses of C and N in the forms of
CO2 and N2O (Turmel et al., 2015). This process is reduced in NT systems due to
improvements to soil aggregation and a reduction in soil temperature as a result of
the lack of tillage, thus leading to improved C storage (Page et al., 2020; Shakoor
et al., 2021).

Typically, NT systems are found to have higher microbial biomass in the top soil
in comparison to CON systems (Wang et al., 2006). The microbial community struc-
ture also changes; typically, there are more denitrifiers, aerobic microorganisms, and
facultative anaerobes found in NT with fewer nitrifiers and aerobic conditions (Wang
et al., 2006). When crop residue is left on the soil surface in NT systems is a source
of N and C substrate for the soil biology, which can result in higher heterotrophic
respiration from stimulation of soil biological activity, leading to increases in GHG
fluxes from soils. This process is also affected by fertiliser application. In tillage sys-
tems, fertiliser can be incorporated into the soil profile; however, in NT it is surface
applied, which in combination with surface crop residues can result in stimulation of
the denitrification process resulting in increased N2O emissions (Hu et al., 2019).

A meta-analysis by Shakoor et al. (2021) found that NT increased CO2 by 7.1%,
N2O emissions by 12%, and CH4 emissions by 20.8% in comparison to CON systems.
However, the analysis also calculated the GWP, which is used to calculate the CO2
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equivalent emissions for all GHGs. This GWP analysis found that NT significantly
reduced the GWP in comparison to CON by 7.5

2.10 Crop Residue Management

Crop residues are defined as crop biomass remaining on the soil’s surface after harvest
(Page et al., 2020). Global agricultural production generates around four billion
metric tonnes of crop residue per year, representing more than half of the world’s
agricultural phytomass (Smil, 1999; Lal, 2005). Management of crop residues varies
greatly depending on the climatic conditions and farming system. In general, crop
residue is either buried into the soil profile with tillage, burnt in situ or exported from
the field and is used or sold as biofuel or livestock feed and bedding (Turmel et al.,
2015). Due to global agricultural soil degradation and declining SOC concentrations,
many farmers are now being advised to increase the quantity of organic matter being
applied to their soils, as this is known to have multiple benefits to many ecosystem
services such as erosion control, enhanced nutrient cycling, and soil C sequestration
(Chen et al., 2013; Turmel et al., 2015). As well as many agronomic benefits, such
as SOM content, soil physical properties, water use efficiency (WUE), soil structural
stability, and reducing soil bulk density (Turmel et al., 2015; Lu, 2020). For most
farmers, the most readily accessible and inexpensive form of organic matter is crop
residue. However, this regularly results in farmers facing a ‘trade-off’ when managing
crop residue, having to balance the economic benefit of sale or use of these crop
residues with the long-term benefits to their soils.

The quantity of crop residue buried below the soil surface varies considerably
depending on the type of tillage, machinery usage and soil conditions. With advance-
ments in modern agricultural machinery in recent years, there have been advance-
ments in the tractor horsepower, implement size and operation speed and machinery
design, which generally reduces the quantity of crop residue left on the soil surface.
However, the retention of crop residue on the soil surface is thought to enhance and
maintain physical, chemical, and biological properties in agricultural soils via multiple
mechanisms (Turmel et al., 2015).

2.10.1 Soil Organic Carbon

Crop residues are the precursors of the labile and stabilised SOM pool, its decompo-
sition in the soil is the initial formation stage that results in nutrient release driving
improved microbial communities and plant growth, and in the longer-term results in
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repeated cycling of C through the microbial biomass and the formation of recalcitrant
stable SOM known as humus (Collins et al., 1997; Govaerts et al., 2009). Therefore,
crop residue addition is very important for increasing and/or maintaining SOC con-
centrations in agricultural soils. However, the effect and speed of change may be
controlled by soil type, climate and soil management factors (Turmel et al., 2015).

A study by Blanco-Canqui and Lal (2007) assessed long-term (10 year) impacts
of three levels (0, 8, 16 t ha−1 dry matter (DM)) of wheat straw applied annually on
SOC concentration and soil physical properties (0–50 cm depth) under zero tillage on
a Crosby silt loam in central Ohio. They found that between 0-10 cm total amount
of SOC was 16.0 t ha−1 in the treatment with no addition of straw, 25.3 t ha−1 in the
treatment with 8 t ha−1 straw added, and 33.5 t ha−1 of SOC in the treatment with
16 t ha−1 straw added. Although below the 10 cm depth, they found no significant
differences between the SOC pool concentrations of the treatments. They noted that,
around 33% of the total C addition during the 10 years was sequestered to SOC and
hypothesised the remaining quantity of C was lost via CO2 and CH4 emissions.

2.10.2 Soil Physical Properties

Crop residues protect the soil surface from solar radiation and erosion from wind
or water, as well as acting as a buffer to excessive surface sealing, crusting, and
compaction whilst reducing the dispersion of soil aggregates (Blanco-Canqui and Lal,
2009). The effectiveness of this is thought to be a function of percentage soil cover,
rainfall intensity, soil type, and wind velocity (Ruan et al., 2001).

The presence of crop residues and growing crops in the field can have an effective
reduction in soil erosion. This is due to increases in soil cover reducing the wind speed
at the surface of the soil, thus reducing the flux of soil particles (Blanco-Canqui and
Lal, 2009). The presence of crop residue on the soil surface helps to reduce the velocity
of surface water movement, which reduces the risks of water erosion. The effect of
vegetation cover on soil loss is highlighted in Figure 2.5.

Surface crop residue addition can cause problems with herbicide efficacy; therefore,
CA systems may require weed control plans to be modified in comparison to tillage-
based cropping systems (Fryrear and Skidmore, 1985). Surface crop residues can also
be effective at reducing evaporation losses from soils, conserving soil moisture, which
can be a highly beneficial agronomic practice in climates and soil types prone to
drought (Fryrear and Skidmore, 1985). The study mentioned in the previous section
by Blanco-Canqui and Lal (2007) assessing long-term impacts of three levels (0, 8, 16
t ha−1 DM) of annual wheat straw application under NT found that that the majority
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Figure 2.5: Graphical summary of four studies on the relationship between relative
soil loss by wind erosion and percent vegetation cover by wheat. Adapted from; (FAO,
2019a)

of the changes to soil physical properties due to crop residue addition were found in
the upper 5 cm of the soil, where crop residues decreased bulk density by 40–50%,
aggregate density by 30–40%, and particle density by 10–15%, and increased tensile
strength of aggregates by up to 14 times compared to soil without crop residues.
They also found that the quantity of surface crop residue addition can affect the
soil temperature (Figure 2.6), which can reduce evapotranspiration losses as well as
influence total GHG fluxes from the soil.
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Figure 2.6: Response of soil temperature to varying rates of crop residue soil cover
in a NT corn. The error bars represent the LSD values of the mean. Adapted from
(Blanco-Canqui and Lal, 2009)

2.10.3 Greenhouse Gas Emissions

The main direct sources of global N2O emissions are from agricultural practice, man-
ufacturing processes, and burning biomass (Reay et al., 2012). Indirect emissions are
predominantly attributed to anthropogenic manipulation of the Nitrogen (N) cycle,
via usage of fossil fuels resulting in NOx deposition, inorganic/organic N-fertiliser
application resulting in leaching and runoff, and cultivation of N-fixing crops (Reay
et al., 2012). These processes can promote increased availability of mineralised N
and thus the likelihood of occurrence of microbially mediated nitrification or den-
itrification resulting in N2O emissions (Montzka et al., 2011). Nitrification is the
aerobic microbial oxidation of ammonium (NH4

+) to nitrate (NO3
– ), emitting N2O

as a by-product of the reaction (Hergoualc’h et al., 2019). Nitrifier denitrification is
the reduction of nitrite (NO2

−) to nitrogen monoxide (NO), followed by the reduction
to N2O, and finally reduced down to dinitrogen (N2) (Wang et al., 2021). Denitrifica-
tion is a two-step anaerobic process whereby NO3

– is converted to N2O and then into
inert N2 (Wang et al., 2021). N2O is the gaseous intermediate in the denitrification
reaction and the by-product of nitrification that is emitted from soil microbiology into
the atmosphere (Hergoualc’h et al., 2019). The principal N transformations leading
to the emission of N2O in soils are shown in Figure 2.7. It is generally thought that
denitrification is the main source of N2O in soils, as denitrification N2O yield poten-
tial is much higher (1–100%) than nitrification (0.1–1%) (Hu et al., 2019). There are
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a number of regulatory factors that control the rate of these processes, such as soil
N concentration, fertiliser application, moisture, temperature, and land management
techniques (Signor and Cerri, 2013).

Figure 2.7: Principal N transformations leading to the emission of N2O in soils.
Source: (Wang et al., 2021)

N2O emissions are of particular concern in agricultural soils, which are estimated
to contribute about two-thirds of total anthropogenic emissions (Van Der Weerden
et al., 2012; Mei et al., 2018). With an increasing population globally and the con-
sequent demand for increases in food production, N2O emissions will likely continue
to rise in the coming decades without significant changes to our agricultural systems.
Considering the high GWP and lifespan of N2O and the significant emissions from
agriculture, the development of future emission-reduction strategies should have agri-
cultural practice at the heart of the strategy. Currently, there is much interest in
methodologies to reduce agricultural soils N2O emissions; however, accurate estima-
tion, prediction, and mitigation have proved to be challenging for researchers and
practitioners.

The rapid increase in NOx from fossil fuel burning due to industrialisation in the
past century was also coupled with the rapid intensification of agricultural practice.
These practices have resulted in large increases in N2O and NH4 emissions, to the
extent that anthropogenic reactive nitrogen (Nr) emissions have increased between
three to five times in the past 100 years (Reay et al., 2012). Intensification of agricul-
tural practice is responsible for a significant disturbance to the global N cycle, with
the usage of Nr as fertilisers, manures and widespread growth of N-fixing crops (Reay
et al., 2012). As agricultural practices continue to intensify globally, N2O emissions
are presently increasing at a rate of 0.25% per year (Wang et al., 2021). The rising
N2O from agriculture are presented in Figure 2.8.

Due to declining soil organic matter levels, many farmers are now being advised
to retain crop residues in the field. This practice not only reduces greenhouse gas
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Figure 2.8: Global N2O emissions and estimated values from agriculture between
1990 and 2030. Source: (Reay et al., 2012; USEPA, 2012)

emissions associated with burning but also returns organic material to the soil, sup-
porting key ecosystem services such as erosion control, improved nutrient cycling, and
carbon sequestration (Chen et al., 2013). In addition to these environmental bene-
fits, crop residue retention offers several agronomic advantages, including enhanced
soil organic matter content, improved soil physical properties, increased water use
efficiency (WUE), greater soil structural stability, and reduced soil bulk density (Lu,
2020).

However, these ecosystem service improvements from crop residue addition can be
offset by substantial soil N2O emissions (Garcia-Ruiz and Baggs, 2007; Chen et al.,
2013). Crop residue decomposition can have multiple effects on soil mitigation and
production of N2O emissions. This is because, as plants decompose, the organic
material is subject to microbial N mineralisation and nitrification. Depending on
the N content of the crop residues, this may release large amounts of labile N and
thus reduce the C:N ratio of the soil (Garcia-Ruiz and Baggs, 2007; Chen et al.,
2013). Crop residues also add C substrate back to the soil, which can result in N
immobilisation in the soil, as this addition stimulates microbial N assimilation. This
results in heterotrophic microorganisms and autotrophic nitrifiers rapidly assimilating
NH4

+, which reduces future N2O production as the labile N pool is reduced (Chen
et al., 2013).
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The chemical composition and the quantity of crop residue additions play an im-
portant role in determining the availability of NH4

+ and NO3
– in the soil and therefore

control the nitrification and denitrification processes, and thus the total magnitude of
the N2O emissions (Aulakh et al., 1991). A meta-analysis by Hu et al. (2019) found
that N2O emissions are increased when high and low quantities of biomass are added
to the soil, but not significantly affected when medium quantities are added. This
is suggested by the authors to be related to the C:N ratio and the lignin:N ratio of
the biomass. When high amounts of C and N are applied to the soil, this promotes
heterotrophic microbial respiration, which depletes soil O2 concentrations (Gomes
et al., 2009). These anaerobic soil conditions promote denitrification and thus N2O
production. For example, a study by Garcia-Ruiz and Baggs (2007) found that soils
with the addition of legume crop residues can have N2O emissions of close to three
times that of a non-amended soil. The magnitude of these soil GHG fluxes is a result
of crop residue addition but also heavily influenced by the rate and type of fertiliser,
crop type, soil temperature and soil moisture (Skiba et al., 1996).

2.11 Crop Rotation

Crop rotation is the practice of growing a series of crops sequentially over time on the
same land (Yates, 1954). It has been a widely adopted crop management practice for
many years to mitigate weed, insect, and pathogen pressure, as well as to increase
plant diversity in agricultural cropping systems (Zhao et al., 2020). However, the
variation and complexity in crop rotations vary vastly across the world in modern
agriculture. Since the introduction of modern herbicides and synthetic fertilisers in
previous decades, some cropping systems are now dramatically simplified and predi-
cated on mono-culture cash crop production, relying heavily on pesticides to control
problems with crop weeds, pests and pathogens in the place of rotational cropping.

Due to the rise in understanding about global soil degradation in recent years,
cover cropping is becoming a more common practice in global agriculture. These
are planted as longer-term over-winter cover crops or can be planted as fast-growing
species as a catch-crop in between harvest and drilling of cash crops. There are
many cited benefits to cover crop inclusion in a crop rotation, including: reducing
soil erosion, improving soil fertility, sequestering SOC, improvements to soil structure
and water stable aggregation, and improvements to in-field biodiversity (Govaerts
et al., 2009).
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2.11.1 Crop Yield

During the coming years, it is predicted that land use intensity may have to increase
to meet growing demands for food and bioenergy, and therefore, longer crop rotations
may not be as economically viable (Bennett et al., 2012; Vera et al., 2022). As land
use intensity increases to meet rising demand for food and bioenergy, farmers may
face stronger economic pressure to prioritise high-yielding, high-profit crops in shorter
rotations, reducing the appeal of longer rotations that tie up land in less profitable
uses. However, there is much evidence to suggest that monoculture or un-complex
crop rotations are prone to yield decline in comparison to complex or longer crop
rotations (Bennett et al., 2012). Many biotic and abiotic factors are linked to this crop
rotation yield decline. Biotic factors include plant pathogens, mycorrhizal pathogens,
crop allelopathy, or crop auto-toxicity. Abiotic factors include land management
practices and soil nutrient availability (Bennett et al., 2012).

A meta-analysis by (Zhao et al., 2020) using 45 studies with 214 comparisons from
China to examine the effects of crop rotation on yield, found that in comparison to
monoculture crop production, crop rotation increased crop yields by 20% on average.
They noted that the strength of the effects of crop rotation on yield was strongly linked
to the total rainfall of the area. In southwestern China, yield benefit was found to
be +38% improved yield in complex crop rotations; however, in areas with moderate
annual rainfall (400−550 mm), the yield benefit was smaller and less pronounced
(+10%). They also found that the yield response of crop rotation heavily depended
on soil texture and previously cultivated crops. Greater yield benefits were seen in
soils with medium-coarse texture, lower total N (≤ 1.2 g kg−1), and with intermediate
levels of initial soil organic carbon (7–10 g kg−1). However, they also found that the
yield benefits of crop rotation were more pronounced in CON systems in comparison
to NT systems.

2.11.2 Soil Organic Carbon

CA practices are regularly cited to have the potential to sequester more SOC be-
cause of improvements to the water-holding capacity of the soil, which results in the
ability to grow catch-crops in between the harvest and drilling of cash crops. The im-
provements to water retention increase the chance for plant establishment and growth
during this period, when soil moisture can be at its most depleted. Cover crops can
increase SOC sequestration by increasing the input of plant residues and providing
organic matter cover, preventing soil erosion.
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A meta-analysis by West and Post (2002) using a global database of 67 long-term
agricultural experiments, consisting of 276 paired treatments, compared potential soil
C sequestration rates for different crops in response to decreasing tillage intensity or
enhancing rotation complexity. They found that enhancing the rotation complexity
has the potential to sequester an average 20 ± 12 g C m−2 yr−1 in many cropping
systems. The study also estimates the time in which sequestration can occur; for
this, they estimated that following the implementation of complex rotations, SOC
may reach a new equilibrium in 40−60 years.

2.12 Combined Principles

2.12.1 Crop Yield

In recent years, widespread uptake of NT has taken place globally over an estimated
125 million ha, which is equivalent to 9% of global cropping area. However, the degree
in which this is combined with the other principles of CA is highly variable and is
difficult to quantify accurately (Pittelkow et al., 2015; Giller et al., 2015).

As already detailed in Section 2.9 on NT, the practice implemented by itself is
highly variable when compared to crop yield under CON. Despite individual studies
claiming yield benefits of CA ranging from 20 – 120% in Latin America, Africa and
Asia (Kassam et al., 2009; Rockström et al., 2009), there are many cases where
no yield responses are found. The meta-analysis by Pittelkow et al. (2015) found
significant yield reductions (-9.9% when NT was implemented on its own. However,
when combined with crop residue retention and diversified crop rotations, the yield
decline is minimised (-2.5%) in comparison to CON. When two of the CA principles
were combined, they found yield declines of −5.2% for NT and crop residue retention
and -6.2% when NT was combined with crop rotation. The authors state that the
results from the analysis suggest that for the best results of CA cropping systems that
NT should be the last principle to be implemented into a system already employing
crop residue retention and crop rotation. Whereas typically, it has been the first
principle that is implemented in many cropping systems globally. The results from
the meta-regression analysis by Van den Putte et al. (2010) also concur with these
findings. This study found that, on average, NT resulted in a crop yield decline of
8.5%. However, the yield decline is more pronounced in systems with less diverse crop
rotations, where only cereals are present (12%) in comparison to a diverse rotation
(6.2%).
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Pittelkow et al. (2015) highlights the need for a nuanced view when assessing CA
practice, as yield responses to crops and agro-ecologies differ greatly from CA imple-
mentation (Giller et al., 2015). The paper found significant yield enhancements for
NT (7.3%) under rainfed agriculture in dry climates when the other two CA principles
are also implemented. However, when NT is applied alone in these climatic condi-
tions, it resulted in yield reductions of −11.9%. When this was compared to humid
climates, it was found that NT results in yield declines regardless of the application
of any other CA principles. It was hypothesised that the yield response to climatic
conditions is based upon improved water infiltration and greater soil moisture conser-
vation that are associated with NT systems. Thus, CA has the potential to provide
the most agronomic benefit in regions where crops are prone to drought.

2.12.2 Soil Organic Carbon

The magnitude of the effects of CA on SOC compared to CON systems varies con-
siderably in the literature. This is influenced by many factors, including soil type,
crop management, climate, baseline SOC content, duration of CA implementation,
and soil sample depth and methodology (Page et al., 2020). Most of the studies
available concentrate on NT and residue retention in comparison to CON and residue
removal. There are a small number of studies that factor in the inclusion of crop
rotation diversification and the effects of cover crops. When just NT and crop residue
retention are monitored the narrative review by Page et al. (2020) found that values
of the magnitude change in SOC ranged from −0.15 Mg ha−1 year−1 in areas such
as the midwestern USA to +0.93 Mg ha−1 year−1 in tropical Brazil. When all CA
management principles were conducted together, it was often found that this leads
to greater SOC concentrations compared to NT and residue retention practices.

The meta-analysis of NT from South Asian countries by (Kumara et al., 2020)
using a total of 670 paired observations from 147 studies representing 67 crops found
that the C sequestration potential of systems predicated on NT was higher (+2.33 Mg
ha−1) in comparison to CON systems. When the other CA principals were evaluated,
this was found to have the potential to sequester more C than NT alone. They
found NT + crop rotation treatments increased C sequestration by 2.85 Mg ha−1

in comparison to CON + crop rotation and found that NT + crop residue addition
increased C sequestration by 1.29 Mg ha−1 compared to the CON + crop residue
treatments. However, when all principles were applied, this resulted in the largest
difference between the systems (4.6 Mg ha−1). They also found significant effects of
soil type on C sequestration potential, finding that clay-based soils had the potential
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to sequester significantly more C than sand or silt loams. They also found that
duration of practice was a significant factor in the magnitude of C sequestration
potential, which they hypothesise to be because of improvements to soil quality over
time in CA systems.

2.12.3 Economic Performance

Many economic benefits of CA systems have been well reported; these include; re-
duced expenditure and improved profitability (FAO, 2014, 2001; Syngenta, 2024),
lower energy requirements (Parihar et al., 2018; Das et al., 2021), lower water usage
(Kumara et al., 2020; Das et al., 2021), reduce expenditure (Kumara et al., 2020;
Lorenzetti and Fiorini, 2024; Kumara et al., 2020), reduce machinery operation times
and improve timeliness of machinery operations (Kassam et al., 2014a; Morris et al.,
2010), and improve system gross profit margin (Lorenzetti and Fiorini, 2024). How-
ever, when considering the farm-level economic variables and factors of CA adoption,
it is imperative to consider not only the short-term financial effects of agronomic
and machinery changes, but also the implications for the wider farm management.
These include the risks and uncertainty that accompany new methodologies, finan-
cial constraints to enable systems change, the availability and knowledge base of the
labour force, and time-related factors, such as interest rates and subsidy payments
(Pannell et al., 2014). It is also worth noting that there is not a large body of lit-
erature assessing the economics of CA, and that most of those published highlight
that the economics of CA are highly heterogeneous between regions and individual
farms within a region and therefore need to be considered on a case-by-case basis.
This heterogeneity is also present within individual farms, where soil textures can
vary considerably, potentially leading to partial adoption of CA or its application
only in specific soil types or cropping systems (Pannell et al., 2014). Therefore, eco-
nomic analyses of CA systems are best conducted at a local scale to account for these
site-specific variations.

A meta-analysis by Kumara et al. (2020) analysed the system economics of 67
crops grown in South Asian countries under NT, RT and CA practices. They found
significant cost of production reductions under NT and RT systems in comparison to
CON systems in all the selected crops analysed; however, they did not differentiate
between systems inclusion of other CA principles (crop rotation and residue manage-
ment) in the economic analysis. They found the cost of production to be significantly
less in NT and RT rice (-22%), legumes (-20%), wheat (-14%), and other crops (-10%).
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Table 2.3: Cost comparison of conventional (CON) practice and Conservation Agri-
culture (CA) in US dollars ha−1. Adapted from (Farooq and Siddique, 2015).

CON (USD ha−1) CA (USD ha−1) Cost Saving (%)

Fuel 75 25 66.67
Depreciation 115 65 43.47
Maintenance 22 10 54.55
Pesticides 35 45 -28.57
Total Costs 247 145 41.30

2.12.4 Barriers to Adoption

As the previous sections of this report have touched upon, there are many agronomic,
social, and practical considerations for the adoption of CA systems. It is a challenging
transition for farmers to implement all three CA principles, as it requires a holistic
change at the individual farm level, where broad advice does not suit site-specific
conditions. The common barriers to its adoption are: knowledge of how to man-
age the system for the best outcome, many social factors (tradition, prejudice etc.),
availability and cost of specialist machinery, the opportunity cost of crop residues for
feed rather than mulch, lack of supporting policy in certain countries, lack of suitable
herbicides to control weeds in the place of tillage, and constraints on the availability
of land, labour and capital at key times of year (Derpsch and Friedrich, 2009; Pannell
et al., 2014). One of the most significant factors affecting the lack of uptake of CA is
the well-reported yield decline in the transition period from CON to CA. Although
there is evidence to suggest that CA systems are more profitable, most of the benefit
is a result of cost savings and not from production increases (Farooq and Siddique,
2015). Despite this, transitional yield declines can severely discourage poorer farmers
who may be focused on short-term goals, and thus is considered a key limiting factor
in the uptake of CA (Pittelkow et al., 2015).

A study by Llewellyn and Ouzman (2019) analysed data collected from two Aus-
tralian national surveys of cereal growers, a country where there has been wide uptake
of CA. They found that most farmers believed that NT systems with stubble reten-
tion would result in increased incidence of weed, pest and disease problems as well as
raising crop input costs. Despite this, more than half of the farmers believed that NT
wheat yield would become more reliable, and over 70% in the northern region of Aus-
tralia. Pittelkow et al. (2015) notes that for successful implementation of CA in the
dry climates that would agronomically benefit the most from the system (sub-Saharan
Africa and South Asia), it is important that it is adjusted to local conditions involving
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multi-stakeholders that consider equipment availability, local market opportunities,
and farmers’ production objectives.

2.12.5 Equipment for Conservation Agriculture

One of the key practical management decisions for farmers in the UK who are con-
sidering the transition to CA is the choice of seed drill. Drills designed to function
in tilled soil do not perform well in undisturbed soils, which are usually coupled with
surface crop residue. Therefore, specialist equipment is required (Triplett and Dick,
2008). There has been a plethora of NT-based drills emerging on the market in the
UK in recent years with a range of designs, widths, and costs (Examples shown in
Figure 2.9 and 2.10 below). Matching the type of seed drill to the soil conditions is
key to successful crop establishment (Baker et al., 2006). As the prices of these drills
range from £20,000 to in the region of £120,000 (Mowbray and Clarke, 2019), this
decision is usually considered with great care by farmers.

Figure 2.9: A Sky Agriculture EasyDrill
HD. Source: Author’s own

Figure 2.10: A Horsch CO3. Source: Au-
thor’s own

One of the main problems encountered by farmers when using NT seed drills is
the closure of the “seed slot”” (the area of the soil which is moved by the seed drill
coulter to plant the seed in to). This is of particular importance in clay soil types,
where the effect of the drill passing through the soil can smear the uncultivated soil,
leaving the planted seed exposed and a localised area of compaction within the seed
slot (Baker et al., 2006). This can lead to problems with slugs and water running
down the channels created by the seed drill (Clarke, 2015). The main difference
in NT seed drill design is that of the openers, the only components of an NT drill
that break the soil surface. There are many different types and variations of openers
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available to farmers. However, the two main categories are tine-based or disc-based
openers, examples of which are displayed in Figures 2.11 and 2.12 below. Both tine
and disc-based approaches have different mechanical variations which alter the shape
of the slots they create in the soil and their interaction with seed placement and
seedling emergence and growth (Baker et al., 2006). The openers are also coupled
with a trailing implement which is designed to close the seed slot, which can work
on a variety of principles from rolling, pressing, or deflecting disturbed soil back
over the planted seed (Baker et al., 2006). The study by Choudhary (1979) found
varying responses for a range of NT openers to the establishment of wheat seedlings
at different soil moisture contents.

In general, most openers with mechanical components (e.g. disc-based openers)
have some limitations in wet and sticky soils (Baker et al., 2006). However, disc-based
drills create much less soil disturbance and can drill directly into larger cover crop
stands, as the discs cut through the biomass on the soil surface, which can accumulate
between the openers and the carrier frame in the tine-based systems. However, one
problem that can be encountered whilst drilling into crop residues with disc-based
drills is the process of pushing crop residue down into the seeding slot, colloquially
known by farmers as “hair pinning”, which can reduce crop establishment (Triplett
and Dick, 2008; Baker et al., 2006).

Figure 2.11: An example of a tine opener.
Source: Swire (2017)

Figure 2.12: An example of a disc opener.
Source: Oliver (2017)

Another consideration for farmers is the horsepower needed to operate the drill;
tine-based drills require significantly less weight to operate effectively as the tines pull
into the ground, creating downforce whilst in operation. In comparison, disc-based
systems require weight on the drill carrier frame to achieve the same downforce, there-
fore typically requiring larger tractors with higher horsepower. The study by Baker
et al. (2006) showed that a disc-based drill required four times as much downforce
to penetrate the soil as a tine-based alternative. However, required 50% less draught
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force to pull the drill through the soil. These points emphasise the importance of NT
drill opener choice dependent on soil conditions and the existing farming system.

Many farmers who have been practising CA for many years in the UK advocate
for a two-drill approach to farm management. In this scenario, it allows the farmer
to choose the type of drill best suited to the soil and crop residue conditions of the
moment. A key barrier to this approach is the initial costs of the NT drills; in many
cases, farmers cannot economically justify having two NT-specific drills on the farm.
As an alternative to this, there is a growing movement of farmers purchasing second-
hand drills and retrofitting low-disturbance openers to them to create low-cost NT
drills (Mowbray, 2020).

2.12.6 Regenerative Agriculture

Regenerative Agriculture (RA) is an emerging approach to land management that
aims to restore and enhance the resilience of agroecosystems by improving soil health,
biodiversity, and ecosystem services (Rhodes, 2017; White, 2020). While it shares sev-
eral foundational principles with CA, including minimal soil disturbance and perma-
nent soil cover, RA differs in its broader ecological goals and more holistic system-level
focus. A range of claims have been made about the potential for RA to enhance the
sustainability of food production, including the possibility that RA can be a part of a
climate change mitigation strategy, although despite widespread interest, no legal or
regulatory definition exists nor has a widely accepted definition emerged in common
usage. (Newton et al., 2020; Schreefel et al., 2020).

The RA movement began in the 1980s when the term was used by the US-based
Rodale Institute. Robert Rodale, the then president and chief executive officer of the
institute, described RA as “one that, at increasing levels of productivity, increases
our land and soil biological production base. It has a high level of built-in economic
and biological stability. It has minimal to no impact on the environment beyond the
farm or field boundaries. It produces foodstuffs free from biocides. It provides for the
productive contribution of increasingly large numbers of people during a transition to
minimal reliance on non-renewable resources” (Giller et al., 2021). This was expanded
on by Harwood (1983), the Director of Rodale Research Centre, who gave a 10-point
summary of the ‘Regenerative Agriculture Philosophy’:

1. Agriculture should produce highly nutritional food, free from biocides, at high
yields.
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2. Agriculture should increase rather than decrease soil productivity, by increasing
the depth, fertility and physical characteristics of the upper soil layers.

3. Nutrient-flow systems, which fully integrate soil flora and fauna into the pattern
of are more efficient and less destructive of the environment, and ensure better
crop nutrition. Such systems accomplish a new upward flow of nutrients in
the soil profile, reducing or eliminating adverse environmental impact. Such a
process is, by definition, a soil genesis process.

4. Crop production should be based on biological interactions for stability, elimi-
nating the need for synthetic biocides.

5. Substances which disrupt the biological structuring of the farming system (such
as present-day synthetic fertilisers) should not be used.

6. Regenerative agriculture requires, in its biological structuring, an intimate rela-
tionship between the manager/participants of the system and the system itself.

7. Integrated systems, which are largely self-reliant in nitrogen through biological
nitrogen fixation, should be utilised.

8. Animals in agriculture should be fed and housed in such a manner as to preclude
the use of hormones and the prophylactic use of antibiotics, which are then
present in human food.

9. Agricultural production should generate increased levels of employment.

10. A Regenerative Agriculture requires national-level planning but a high degree
of local and regional self-reliance to close nutrient-flow loops.

Although there was limited press and academic coverage of RA from the 1980s,
since 2010 the term has seen a huge growth in usage from producers, retailers, re-
searchers, and consumers, as well as politicians and the mainstream media (Newton
et al., 2020) (See Figure 2.13). Despite widespread interest in RA, no legal, scien-
tific, or regulatory definition of the term exists, nor has a widely accepted definition
emerged in common usage (Schreefel et al., 2020; Newton et al., 2020; Giller et al.,
2021). The study by Newton et al. (2020) reviewed 229 journal articles and 25
practitioner websites to characterise the term RA. They found many definitions and
descriptions of RA in use in the scientific and practitioner publications, and they also
found some publications which did not put forward a definition of RA, and when
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contacted, expressed reluctance to define the term. They found that for those who
could define the term, the definitions were based predominantly upon “processes”
(e.g. use of cover crops, mob grazing, etc.) and “outcomes” (e.g. increase soil organic
carbon, increase biodiversity, etc.) based approaches. The authors note that both
“process” and “outcome” based approaches leave ambiguity on the actual definition
of RA. For example, process-based definitions may imply that users are open-minded
about the possible outcomes of these processes, and similarly, outcome-based defini-
tions may imply that users are open-minded about the processes that may lead to
those outcomes (Newton et al., 2020).

Figure 2.13: A: Occurrence of Regenerative Agriculture or Regenerative Farming in
news items. B: Academic peer-reviewed publications on Regenerative Agriculture or
Regenerative Farming. Adapted from: Giller et al. (2021)

Similar to CA, practical advice about RA is usually disseminated using a set of
principles; however, currently there is no consensus in the agricultural industry lit-
erature on those principles, but generally they contain the CA principles with some
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additions (Landers et al., 2021). This is highlighted by the comparison between Figure
2.14 and Figure 2.15, where Syngenta Group (2025) define six principles of RA, and
Wood (2023) defines five principles, however the only “Minimise soil disturbance”,
“Maintain living roots”, “Maximise cropping diversity”, and “Integrate livestock” are
shared between both sets of principles. Wood (2023) uses “Keep the soil covered” and
an additional principle of “Context of the farm operation”, whilst Syngenta Group
(2025) opt for “Precision application of biological and chemical inputs”. This prin-
ciple, suggested by Syngenta Group (2025), highlights the risks of having a poorly
defined technology, which can then be used for marketing purposes. Syngenta Group
manufactures agrochemicals, thus has an economic interest in additions to the prin-
ciples of RA, which incorporate agrochemical usage. As (Landers et al., 2021) states,
failure to define RA will likely, at times, be harmful to society when sustainable food
systems are urgently needed.

Whilst there is an urgent need for a clear scientific definition of RA, there is some
consensus that it broadly features the principles of CA, with, typically, the addition of
livestock grazing. The rise of RA is a great opportunity for the agricultural industry
as it already has gained support from industry and consumers (Giller et al., 2021). It
is not a direct threat to CA, as it embodies the CA principles; therefore, it should be
seen as the evolution of CA to a broader scope and a more meaningful contribution
to sustainability (Landers et al., 2021), although the lack of a universally accepted
definition or certification system remains a challenge for wider adoption and policy
integration.
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Figure 2.14: The principles of Regenerative Agriculture defined by: Syngenta Group
(2025)

Figure 2.15: The principles of Regenerative Agriculture defined by: Wood (2023)

2.13 Conservation Agriculture Experimentation

Experiments designed to evaluate CA are often criticised by proponents of the CA
system that necessary aspects of the system were omitted from the experiment and
that the results therefore do not represent ‘true’ CA that would be practised com-
mercially (Giller et al., 2009). This can either be in the form of an experimental
design where principals are removed to isolate the effects of a singular principal, or
in the case of systems experiments, where it becomes difficult to isolate the variables
and evaluate responses (Derpsch et al., 2014). Additionally, this is exacerbated by
the highly heterogeneous results from CA experimentation between regions and in-
dividual farms. For greater consensus on the effects of CA systems, there is a need
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for more experimentation on the subject and a greater variety of methodologies to
evaluate the practice.

2.13.1 On-Farm Experiments

On-farm experiments (OFE) are experiments conducted at a commercial scale on
commercial farms, and in most cases, in collaboration with farmers (Roques et al.,
2022). Traditionally, applied agricultural research has been conducted in research
centres and university-owned farms, with the findings then disseminated to farmers
by the researchers and knowledge exchange organisations (Mutsaers, 1997; Cho et al.,
2021). Research conducted on existing commercial farms, however, can allow for im-
proved knowledge transfer from academia to industry, as the research is conducted
is often more commercially relevant to the farmer in terms of environment, location,
and management practices (Cho et al., 2021; Roques et al., 2022). This type of
on-farm research is generally adapted to fit in with the existing agricultural system
being implemented on the farm, and as a result, has the potential to deliver more
adoptable and sustainable solutions for farmers. This is unlike traditional agronomic
experimentation, where the various crop production variables are tightly controlled
and assigned to small and highly representative areas (Pringle et al., 2004a). OFE
offers some advantages over the traditional small plot approach as it not only greatly
improves the relevance of the results, due to the field-scale area and farm-scale ma-
chinery used, but it also allows for spatial variable analysis of in-field characteristics
that is relevant to commercial application (Roques et al., 2022).

Over the past two decades, there has been increased interest and use of OFE con-
ducted by farmers in partnership with researchers due to demonstrated improvements
to land and agronomic productivity and advancements in technology (Kyveryga, 2019;
Cho et al., 2021). For example, recommendations and results derived from small-scale
research experiments conducted by researchers in small plots are often disregarded by
farmers due to the difference between the scale and their own scale of operation (Jin
et al., 2021). OFE can help to address this problem by demonstrating new technology
and methodology in agriculture at a systems level. However, this type of research
carries greater risks of failure compared to traditional experiments due to a variety
of scenarios, e.g. errors in trial establishment, data collection, or farmer withdrawal
from the experiment (Roques et al., 2022). It also comes with different methodologies
to traditional agronomic research strategies, for example, systems experiments require
much larger experimental areas to accommodate farm-scale equipment (Drinkwater
et al., 2016). There are also many confounding factors in systems research because the
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entire system, including the treatments, is the unit of study; therefore, it frequently
requires different experimental and statistical analyses in comparison to traditional
research (Drinkwater et al., 2016). In general, in factorial field experiments, a “Con-
trol” plot is included, which does not receive a treatment. In systems experiments,
however, this is not representative of commercial agricultural systems, where the op-
tion to not farm the land is not financially viable. Many studies opt for the use
of a reference system to compare with the experimental systems, which is generally
the “conventional” management practice used in that area in commercial farming
(Drinkwater et al., 2016).

The use of precision farming technologies in the agricultural industry has sparked
interest in on-farm research from farmers and researchers alike because of the ease
of collecting low-cost production data (Griffin et al., 2006). Although some farmers
regularly conduct rudimentary analysis, such as treatment yield averages from prede-
fined management areas on their farms, many still do not take this approach, opting
for incremental changes to their management practices over time. This traditional
decision-making process is a complex one that is based on many factors and not pri-
marily based purely on agronomic results (Pringle et al., 2004b). For example, many
farms are family businesses and therefore, there is often pressure to take risk-averse
business decisions and opt for the management practices that are tried and tested.
This results in the uptake of new technologies being slower in the agricultural indus-
try in comparison to other industries. On-farm experimentation may hold the key to
improving the rate of technology and methodologies in the agricultural industry by
involving direct communication between farmers and researchers, which can support
and improve research relevance and enhance the adoption rate of new technologies
in the industry (Kyveryga, 2019). The interest and usage of on-farm research has
increased greatly during the last twenty years in developed countries. This is related
to the wider uptake of precision farming technologies such as Global Positioning Sys-
tems (GPS), yield sensors and variable-rate applicators (VRA), which have made
collecting data over remote and large areas more possible at low cost.

2.13.2 Experimental Design

Although the rise of new precision agriculture technologies has made the collection of
on-farm data an easier process, the main problem with site-specific field-scale (SSFS)
data is the occurrence of large spatial variance, which reduces the use of the classical
statistical approaches to agronomic experimentation (Griffin, 2006). However, Pringle
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et al. (2004a) note that in contrast to traditional experimentation, SSFS experimen-
tation should not attempt to reduce or ignore the spatial and temporal variation of
agronomic data, as this is the very reason for this type of research methodology. This
can result in large amounts of data that would usually not be available in more tradi-
tional agronomic experimental designs to become useful to farmers and researchers.
The authors also note that it is important when designing OFE that the design should
not disrupt the farmer’s normal cropping management operations. Therefore, designs
of OFE experiments need to have flexibility, simplicity, and economic risk reduction
as the main objectives of the design (Pringle et al., 2004a).

2.13.3 Data Collection in On-Farm Research

In agronomic experimental designs, the method of how treatments are allocated to
plots is either by random or systematic allocation. Randomisation is seen as vitally
important by many as: (i) it neutralises environmental variation; and (ii) the standard
estimation of variance is valid only when applied to a random sample. Therefore, in
most cases, randomisation, blocking, and replication are essential to minimise exter-
nal variation in OFE over large spatial areas. However, the basic intrinsic features of
cropping systems, which include agronomic and mechanical considerations, should be
taken into account when designing OFE experiments, and therefore, in some cases,
compromises on statistical power have to be made (Alesso et al., 2019). Simple de-
signs such as completely randomised and randomised complete block designs (RCBD)
are very popular choices in OFE; however, occasionally systematic, non-randomised
arrangements of treatments are used (Piepho et al., 2011). This is usually when
more complex statistical methodologies are being utilised, such as spatial analysis
(Kyveryga et al., 2018). Pringle et al. (2004a) evaluate field-scale experimental de-
signs and discuss the choice of randomisation and systematic treatment allocations.
They state that the choice of randomised or systematic treatment allocations is af-
fected by whether the goal of the experiment is a comparison of crop responses or
estimation of crop responses. Panten et al. (2010) elaborates on this and states that
“The main aim of whole-of-block on-farm trials is to estimate treatment effects spa-
tially for the whole area. Therefore, systematic as opposed to randomised treatment
application is preferred.”

OFE can be grouped based on the primary objective of the experiment: (i) exper-
iments that aim to quantify crop responses, and (ii) experiments that are designed to
explore the spatial variability of crop responses within fields Pringle et al. (2004b);
Alesso et al. (2019). Georeferenced data is therefore not required for OFEs aiming
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to just quantify the effect of a treatment compared to a control treatment. However,
if the aim is to spatially map the response patterns over a large area, then it is of
imperative importance that the spatially referenced data is collected (Alesso et al.,
2019).

2.13.4 Randomised complete block design

The most common methodology to OFE is the randomised complete block design
(RCBD), which utilises field length strips or tramlines as the plots (Piepho et al.,
2011; Cho et al., 2021). This type of design allows for Analysis of variance (ANOVA)
to test the statistical significance of the treatment. This is shown below in Figure
2.16.

This type of RCBD, although simple, is difficult for farmers to implement in
their businesses as it requires planning, treatment randomisation can cause opera-
tional problems in crop management, and for the data to be analysed it requires each
experimental unit to be harvested individually and the yield recorded, which can sig-
nificantly slow down farm operations during very busy periods for the farm business
(Cho et al., 2021). In recent years, this has been aided by the availability and increase
in use of yield monitors in modern combine harvesters.

Figure 2.16: Randomised complete block design for field scale experiments. There is
one treatment and one control plot allocated per block, replicated four times. Source:
(Cho et al., 2021)
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2.13.5 Split Plot Design

A split-plot design is another commonly used experimental design for OFE trials.
Unlike an RCBD, the split-plot design has two treatments and experimental units that
differ in size (Kyveryga et al., 2018). Split-plot design allows for smaller and fewer
experimental units. The sub-plots embedded in the design can be used to test the
hypothesis and are effective at identifying underlying mechanistic differences across
the systems (Drinkwater et al., 2016). However, this type of design is complicated
for machinery operators as it utilises multiple treatment factors and randomisation.
This is a time-consuming design for OFE, as it involves harvesting multiple plots
individually, which can slow down harvest operations on farms. An example of the
split plot design is shown below in Figure 2.17.

Figure 2.17: The split-plot design detailed by Kyveryga et al. (2018). Whole plots
are denoted by black and yellow, split plots are denoted by red and blue.

2.13.6 Systematic strip design

The systematic strip design or adjacent strip comparison method is a simple and
low-cost methodology for evaluating treatment comparisons on a large commercial
scale (Doerge and Gardner, 2015). Due to the simplicity and ease of establishment
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of this design, it is one of the most common types of agronomic experimental design
(Pringle et al., 2004a). This method utilises parallel alternating strips across a whole
field, with varying strip widths depending on the farming system. Commonly, the
width of the strip is dictated by machinery operational widths; however, this method
is occasionally adapted in a ‘split planter’ design where two halves of a seed drill
are used for different seed varieties (Doerge and Gardner, 2015; Alesso et al., 2019).
When the farmer drills the field, the result is alternating strips of differing varieties,
allowing for comparison between the two treatments.

Figure 2.18: The systematic strip design used by Roques et al. (2022). The black
lines are the tramlines for machinery operations, and the red shaded area is the width
of the tramline plots

2.14 Conclusion

There is much evidence to suggest that CA practice may be beneficial for not only
farm economics but also many different soil quality parameters, including SOC se-
questration, improving SOM, soil structure, water holding capacity and aggregate
stability in agricultural soils over time. There is evidence to suggest that even though
NT has been found to result in yield declines in comparison to CON, the severity of
the yield suppression is reduced by the inclusion of crop residue retention and crop
rotation in the cropping system, and the duration of the NT system.

Currently, CA adoption in the UK is lagging behind much of the rest of the world
(Basch et al., 2015), despite much promotion from research and development bodies.
There are many causes for hesitancy in the adoption of CA, including evidence of yield
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declines, increased weed and pest incidence, and lack of knowledge of the systems.
This is coupled with complications in comparing and evaluating the effects of CA
in scientific literature, due to variation in climatic and soil type conditions, lack of
standardisation of research methodologies, as well as variation in the application and
terminology of all CA principles for effective comparisons (Derpsch et al., 2014).

To improve understanding, scientific consensus and commercial adoption of CA
practices in the UK, there is a need for more systems-level experimentation over a
wider variety of conditions, which assess the combination of NT, crop residue return,
and diverse crop rotations and their interactions on UK farms. It is also recommended
that to mitigate yield reductions when adopting CA practices, farmers implement crop
residue retention and crop rotation diversification into their cropping system before
implementing NT, as well as growing crops which have been shown to suffer less from
NT yield decline in their specific region in the transitional years.

54



Chapter 3

General methodologies

3.1 Introduction

This chapter provides an overview of the general techniques employed to collect,
analyse, and interpret the data collected in this study. This mainly details the general
experimental design and general management of the main field experiment, data
collection methodologies, and the statistical approach to evaluating the effects of the
experimental treatments.

3.2 Experimental site

3.2.1 Location and Climate

The study was conducted at Shavington and Cloverley Estate, Calverhall, Whitchurch,
UK (Lat 52.915, Lon −2.606). The area has a humid temperate oceanic climate, with
a mean annual air temperature from the past 20 years of 9.82◦, the coldest month
being January with a mean temperature of 1.15◦, and the hottest month being July
with a mean temperature of 21.13◦. During the previous 20 years, the mean precipi-
tation was 682.53 mm, with the mean number of days receiving ≥ 1 mm of rain being
131.6 per year (Met Office, 2023). Historic mean climate data (1946 - 2024) is shown
in Figure 3.2.

The experiment began in 2022 and was conducted over two fields, which are sit-
uated adjacently (Figure 3.1), and are 3.7 ha and 5.7 ha in area. The main soil type
of the site is a sandy clay loam, which is classified by the National Soil Resources
Institute as a slowly permeable, seasonally wet, slightly acid but base-rich loamy and
clayey soils (SoilScape 18) (Hallett et al., 2017). The topsoil A horizon is approxi-
mately 25 cm deep, with a B horizon extending from approximately 25 cm to 60 cm
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Figure 3.1: Figure indicates the location of the experiment in the west of England
(A), on Whitegates Estate located in north Shropshire (B).

deep (Figure 3.5). The site is drained with 100 mm diameter clay piping at a depth
of 1.2 m. Unfortunately, no field drainage maps are available as the system has been
adapted on multiple occasions over the years since its installation.

Daily temperature and precipitation data were obtained from a local weather
station located 20 km from the experimental site at Lat 52.794, Lon -2.663, 72 metres
above sea level (Met Office, 2023; Meteostat, 2024). Sunshine data taken from an
automatic Kipp & Zonen sensor. The weather data is presented below in Figure 3.2;
however, the effects on the experiment are discussed in each of the following chapters.

3.2.2 Previous Cropping

There is limited data available about the previous cropping on the experimental site;
however, it included a mixed rotation of grass leys and some arable cropping grown
conventionally, utilising pesticides and tillage. In recent years, the site has been used
to grow forage maize.
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Figure 3.2: Climatic data for the experimental years and the mean historic data (1946
- 2024) for A: Mean precipitation (mm), B: Mean temperature (◦C), C: Mean hours
of sun (hrs). Data source: Met Office (2023); Meteostat (2024).

3.3 Baseline soil sampling

Baseline soil sampling was conducted on 02/02/2022, with one pooled sample and
one undisturbed sample collected from the north, south, east, and west of each field.
The pooled sample was composed of soil taken from five locations at a depth of 0–10
cm, which were mixed in a bucket before subsampling for chemical analysis. The
undisturbed sample was taken from a randomly selected location within the field and
used to determine dry bulk density. Soil samples were sent to NRM Laboratories
Ltd., Bracknell, UK (division of Cawood Scientific Ltd.), who are largest commercial
laboratory for agronomic soil analysis in the UK. The laboratories hold ISO/IEC ac-
creditation (ISO/IEC 2017) from UKAS (Staines upon Thames, UK). Samples were
sent for standardised soil agronomic analysis as recommended by UK nutrient man-
agement guidelines (AHDB, 2017). Measurements included soil pH and soil indices P
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(Olsen P method (Olsen, 1954)), Mg and K (NRM, 2021a). The baseline soil sample
results are summarised in Table 3.1.

Table 3.1: Soil properties from the baseline sampling.

Position
Phosphorus

(mg l−1)
Potassium
(mg l−1)

Magnesium
(mg l−1) pH

Bulk density
(g cm−3)

SOC
(%)

N
(%)

Field 1 NORTH 20.2 130.1 61.6 6.55 1.29 1.821 0.1656
Field 1 EAST 25.2 123.25 68.65 6.1 1.15 1.651 0.1623
Field 1 SOUTH 20.2 113.6 68.3 6.21 1.5 1.694 0.161
Field 1 WEST 23.4 134.15 64.8 6.44 1.28 1.678 0.1637
Field 1 CENTRE 19.2 123.65 65.7 6.28 1.23 1.655 0.1641
Field 2 NORTH 17.6 127.3 68.35 6.33 1.17 1.435 0.1371
Field 2 SOUTH 13.4 132.55 51.85 6.06 1.47 1.705 0.1688
Field 2 EAST 14.8 121.25 50.05 6.38 1.14 1.525 0.1373
Field 2 WEST 13.8 130.5 54.3 6.2 1.14 1.849 0.1764
Field 2 CENTRE 21.8 151.85 47.95 6.09 1.13 1.594 0.1474

3.4 Sampling Point Generation

Before the experiment started, an electrical conductivity (EC) scan was performed
on 24/03/2022 to determine the variation in soil properties across the trial site. This
was performed using a trailed scanner operating at 24 m widths. The scan was
performed by running the scanner 12 m from the tramlines, recording data at one-
second intervals. The EC scanner records at one-second intervals and produces data
points recorded in Siemens m−1 across the field site at 24-metre widths. Further
details of the EC scanning methodology can be found in Section 5.1.1.

Ordinary kriging was then performed using R (version 4.3.0) (R Core Team, 2023)
to interpolate the variation in soil EC across the whole field. Ordinary kriging is a
widely used spatial interpolation method. It serves to estimate a value at a point
of a region for which a variogram is known, using data in the neighbourhood of the
estimation location (Wackernagel, 2003; Vasques et al., 2020; Heil and Schmidhalter,
2012). The zonal maps of soil EC produced by the kriging interpolation process
were then used to divide the field into soil sampling zones where differences in soil
properties are hypothesised to correspond with variation in the EC results. To achieve
a representative spread of samples taken across the whole site, the results of the EC
kriging were then simplified using a smoothing function in QGIS (version 3.22.11)
(QGIS Association, 2024) into 10 soil zones across both fields. These were defined to
encompass all experimental units in the field.

Using QGIS, the treatment plots were then used to generate random sampling
points with soil zone and experimental unit as factors. The programme generates
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Figure 3.3: A: An interpolated map of the electrical conductivity scanning on
24/03/2022. B: A plot of the sampling zones and randomly generated sampling
points. Sampling zones are indicated with coloured areas, whilst the sampling points
are indicated with black points.

three sampling points per area, with a 10-meter buffer from other points generated.
The experimental unit areas were reduced by 3m to reduce the effect of the neigh-
bouring treatment. 150 sampling points were generated randomly throughout the
trial site using treatment and soil zone as factors. This resulted in each treatment
being sampled at 15 points distributed evenly between the five soil zones of that
treatment. Points were identified using a Garmin eTrex22 with a predicted accuracy
of 3m (Garmin, 2022).

This sampling strategy was designed to provide a representative, unbiased, and
spatially independent set of data points, improving the reliability and generalisabil-
ity of conclusions drawn from the study. Agricultural fields often show substantial
spatial heterogeneity in soil physical and chemical properties, such as texture, mois-
ture, organic matter, and nutrient content (Nyengere et al., 2023). These underlying
differences can strongly influence key soil processes, including greenhouse gas fluxes,
nutrient cycling, and crop performance.

By performing an electrical conductivity (EC) scan before sampling, zones of
contrasting soil properties were identified, enabling a stratified sampling approach.
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Randomising the selection of sampling points within these zones minimised the risk
of sampling bias, for example, by unintentionally over-representing areas of certain
soil conditions. This increases the likelihood that the resulting dataset accurately
captures the variability within the system, providing a more robust basis for com-
paring treatment effects and ensuring that observed differences are not simply due to
localised soil conditions.

Randomisation also helps to avoid systematic errors that might arise from oper-
ator decisions or field patterns, and improves the statistical validity of subsequent
analyses by ensuring independence of samples. Furthermore, applying minimum dis-
tance buffers between points and reducing sampling areas near plot edges reduced the
risk of spatial autocorrelation or treatment contamination from neighbouring plots.

3.5 Experimental design

The experiment consists of a systems-level comparison of Conservation Agriculture
(CA) and Conventional Agriculture (CON) crop production systems with 10 plots
and five replicates using a systematic plot design. Plots were 24 m wide and varied
in length due to the field shape. The experimental design is presented in Figure 3.4
and a photo of the experimental site is presented in Figure 3.5.

All machinery operations were conducted by local agricultural contractors. All
grain haulage, storage, and drying were conducted by agricultural contractors. The
two systems were managed independently by qualified agronomists, one specialising in
commercial agronomy and the other specialising in conservation/regenerative agron-
omy. The agronomic plan was devised by the agronomists independently for each
system, from regular field observations during the season, as is common practice in a
commercial setting. The agronomists were asked to adhere to the following principles
for each system:
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Figure 3.4: Experimental design - Light blue denotes the Conservation Agriculture
(CA) treatment, and red shaded areas denote the conventional agriculture (CON)
treatment. Numbered labels refer to the block number.

Conventional Agriculture (CON):

1. Tillage: Ploughing and cultivation to be performed ahead of crop establishment
when judged necessary by the agronomist, using conventional methods.

2. Residue management: Cereal straw to be baled and removed from the field fol-
lowing harvest; oilseed rape residues were also removed or lightly incorporated.

3. Cover crops: No cover crops to be sown at any point during the rotation. The
fields are to fallow between cash crops.

4. Pest and disease control: Standard agrochemical practices are to be followed,
including the use of insecticides, fungicides, and herbicides according to com-
mercial recommendations and seasonal pest pressure.

5. Crop rotation: A typical rotation should be followed for the region, primarily
focusing on maximising profitability.

61



Conservation Agriculture (CA):

1. Tillage: No tillage to be used at any stage. All crops to be established using a
low-disturbance direct drill (e.g., John Deere 750A or equivalent).

2. Residue management: All straw and crop residues to be chopped and evenly
redistributed over the soil surface at harvest to maintain continuous ground
cover.

3. Cover crops and companion crops: Where possible, diverse cover crop mixes
should be sown in the autumn or spring during fallow periods between cash
crops.

4. Pest and disease control: Herbicide and fungicide applications to be used accord-
ing to commercial recommendations, depending on weed and disease pressure.
Insecticides are not to be used.

5. Crop rotation: The rotation should include both cereal and broadleaf crops,
with deliberate diversification.

Figure 3.5: A: A drone photograph of the trial taken in July 2024. Source: Andrew
Watson. B: A photo from the experimental site showing the soil profile. The A
horizon is featured from the soil surface to approximately 25 cm, the B horizon is
from approximately 25 cm to 60 cm.
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3.6 Crop Rotations

During the first three years of the experiment, both systems used the same crop
rotation. This was to allow for direct comparisons between treatments. This decision
was contrary to one of the key principles of agricultural systems research, where the
entire decision-making process for crop management should have been performed by
the agronomists. This would allow the crop rotation to be tailored to the system in
which it is being implemented. This would be the preferred option, as it would be
a more accurate representation of industry practice, where crop rotations would be
altered during the transition to CA to allow for cover cropping and a wider diversity
of crops. The systems-level research approach of using different cropping systems
would have been preferable if there were more years’ worth of data available during
this study period, as trends over time could have been analysed. The rotation used
was spring beans (Vicia faba) in 2022, winter wheat (Triticum aestivum) in 2023, and
oilseed rape (Brassica napus) in 2024. The oilseed rape crop in the CA treatment
was drilled with a companion crop of berseem clover (Trifolium alexandrinum) and
buckwheat (Fagopyrum esculentum); however, this crop failed over the winter of 2023;
therefore, spring barley (Hordeum vulgare) was planted in the spring of 2024. The
crop rotation is detailed in Figure 3.6.

Figure 3.6: The crop rotation for both experimental treatments during the experi-
mental duration.
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3.7 Management Operations

3.7.1 Year 1

The CON plots were established on 19/03/2022 with a John Deere 6250R (250 HP)
with a six furrow Kverneland plough to a depth of 20 cm (Figure 3.7). They were
then drilled with spring beans (var. Lynx) on 24/03/2022 with HORSCH Pronto
3 DC (HORSCH Maschinen GmbH, Schwandorf, Germany) at a seed rate of 300
kg ha−1. The CA treatment was drilled on 28/03/2022 with a SAME (SDF Group,
Treviglio, Italy) Iron 165.7 tractor (163 HP) and a John Deere 750a direct drill at 330
kg ha−1 (Figure 3.8). All spraying was done using a Bateman RB35 self-propelled
sprayer. The crop was harvested on 03/10/2022 with a tracked CLAAS Lexion 760
(CLAAS KGaA mbH, Harsewinkel, Germany) combine harvester equipped with a
CLAAS Vario 930 header. Each experimental plot was harvested individually, the
grain transferred to a trailer, and the individual plot yield quantified using a weigh
bridge. The cutter bar height was 20 cm from the soil surface, and the straw for both
treatments was chopped and spread back to the soil using the combine harvester.
The complete list of operations performed during this cropping year is summarised
in Table 3.2.

Figure 3.7: John Deere 6250R (250HP)
with a six furrow Kverneland plough
establishing the CON treatment on
19/03/2022. Source: Author’s own

Figure 3.8: A SAME Iron 165.7 tractor
(163 HP) equipped with a John Deere
750a drilling spring beans (var. Lynx)
on 28/03/2022 Source: Author’s own

3.7.2 Year 2

Winter wheat (Triticum aestivum var. Extase) was drilled in the CON treatment on
16/10/2022 using a HORSCH Pronto 3 DC (HORSCH Maschinen GmbH, Schwan-
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Table 3.2: Machinery operations in 2022 for the crop of spring beans for both treat-
ments, detailing machinery, equipment, and horsepower (HP) used for all field oper-
ations
Date Crop Treatment

Area
(ha) Operation Machine HP Implement

Width
(m)

22/01/2022 Spring beans CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
19/03/2022 Spring beans CON 5.14 Cultivation John Deere 6250R 250 6 furrow Kverneland plough 3
21/03/2022 Spring beans CON 5.14 Fertiliser John Deere 6R 215 237 Fert speader 24
24/03/2022 Spring beans CON 5.14 Drilling John Deere 6R 215 237 HORSCH Pronto 3 DC 4
29/03/2022 Spring beans CON 5.14 Drilling John Deere 6250R 250 POTTINGER 3M COMBI DRILL 4
29/03/2022 Spring beans CON 5.14 Rolling John Deere 6R 215 237 NA 12
31/03/2022 Spring beans CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
15/05/2022 Spring beans CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
08/06/2022 Spring beans CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
29/06/2022 Spring beans CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
22/08/2022 Spring beans CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
03/10/2022 Spring beans CON 5.14 Harvest CLAAS Lexion 750 429 CLAAS V900 header 9.2
03/10/2022 Spring beans CON 5.14 Tractor + Trailer John Deere 6250R 250 18t trailer NA

22/01/2022 Spring beans CA 3.25 Spraying Bateman RB35 225 Self propelled sprayer 24
21/03/2022 Spring beans CA 3.25 Fertiliser John Deere 6R 215 237 Fert Spreader 24
28/03/2022 Spring beans CA 3.25 Drilling SAME Iron 165.7 163 John Deere 750a 4
31/03/2022 Spring beans CA 3.25 Spraying Bateman RB35 225 Self propelled sprayer 24
30/06/2022 Spring beans CA 3.25 Spraying Bateman RB35 225 Self propelled sprayer 24
22/08/2022 Spring beans CA 3.25 Spraying Bateman RB35 225 Self propelled sprayer 24
03/10/2022 Spring beans CA 3.25 Harvest CLAAS Lexion 750 429 CLAAS V900 header 9.2
03/10/2022 Spring beans CA 3.25 Tractor + Trailer John Deere 6250R 250 18t trailer NA

dorf, Germany) at a seed rate of 220 kg ha−1 at a seed depth of 3 - 4 cm. Before
drilling, the CON treatment was cultivated using a VÄDERSTAD TopDown 3000
cultivator (Vaderstad Ltd, Väderstad, Sweden) to a depth of 15 cm (3.9). The CA
treatment were drilled on 12/10/2022 with a SAME Iron (SDF Group, Treviglio,
Italy) 165.7 tractor (163 HP) and a John Deere 750a direct drill (Deere & Company,
Moline, Illinois, United States) at 200 kg ha−1 at a seed depth of 3 - 4 cm, with
no prior cultivation. The wheat crop was harvested on 20/08/2023 with a tracked
CLAAS Lexion 760 (CLAAS KGaA mbH, Harsewinkel, Germany) combine harvester
equipped with a CLAAS Vario 930 header (3.10). Each experimental plot was har-
vested individually, and the grain was transferred to a trailer and weighed using a
weighbridge. The cutter bar height was approximately 20 cm from the ground, with
the straw residue baled and removed for sale in the CON treatment and chopped and
spread back to the soil surface in the CA treatment.

3.7.3 Year 3

Oilseed rape (Brassica napus) for the 2024 season was drilled in the CA treatment
on 28/08/2023 using a SAME Iron 165.7 tractor (SDF Group®, Treviglio, Italy; 163
HP) and a John Deere 750a direct drill (Deere & Company®, Moline, Illinois, United
States) at a working width of 4 m. The CON treatment was first cultivated on
29/08/2023 using a John Deere 8370R tractor (370 HP) with a VÄDERSTAD Top-
Down (Vaderstad Ltd®, Väderstad, Sweden) cultivator, followed by drilling oilseed
rape (Brassica napus) with a John Deere 6R 215 tractor (237 HP) and a HORSCH
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Figure 3.9: A photo of the CON
treatment being cultivated using a
VÄDERSTAD TopDown 3000 cultivator
on 16/10/2022. Source: Author’s own

Figure 3.10: A tracked CLAAS Lexion
760 with a CLAAS Vario 930 header har-
vesting the experiment on 20/08/2023.
Source: Author’s own

Table 3.3: Machinery operations in 2022/3 for the crop of winter wheat, detailing
machinery, equipment, and horsepower (HP) used for all field operations
Date Crop Treatment

Area
(ha) Operation Machine HP Implement

Width
(m)

13/10/2022 Winter wheat CON 5.14 Cultivation John Deere 8370R 370 Vaderstad TopDown 4
14/10/2022 Winter wheat CON 5.14 Drilling John Deere 6R 215 237 HORSCH Pronto 3 DC 4
20/10/2022 Winter wheat CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
27/10/2022 Winter wheat CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
13/02/2023 Winter wheat CON 5.14 Fertiliser John Deere 6R 215 237 NA 24
23/03/2023 Winter wheat CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
07/04/2023 Winter wheat CON 5.14 Fertiliser Bateman RB35 225 Self propelled sprayer 24
16/04/2023 Winter wheat CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
11/05/2023 Winter wheat CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
15/05/2023 Winter wheat CON 5.14 Fertiliser Bateman RB35 225 Self propelled sprayer 24
05/06/2023 Winter wheat CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
20/08/2023 Winter wheat CON 5.14 Harvest CLAAS Lexion 750 429 CLAAS V900 header 9.2
20/08/2023 Winter wheat CON 5.14 Tractor + Trailer John Deere 6250R 250 18t trailer NA

12/10/2022 Winter wheat CA 3.25 Drilling SAME Iron 165.7 163 John Deere 750a 4
20/10/2022 Winter wheat CA 3.25 Spraying Bateman RB35 225 Self propelled sprayer 24
13/02/2023 Winter wheat CA 3.25 Fertiliser Bateman RB35 225 Self propelled sprayer 24
27/03/2023 Winter wheat CA 3.25 Fertiliser Bateman RB35 225 Self propelled sprayer 24
12/04/2023 Winter wheat CA 3.25 Spraying Bateman RB35 225 Self propelled sprayer 24
20/05/2023 Winter wheat CA 3.25 Spraying Bateman RB35 225 Self propelled sprayer 24
15/06/2023 Winter wheat CA 3.25 Spraying Bateman RB35 225 Self propelled sprayer 24
20/08/2023 Winter wheat CA 3.25 Harvest CLAAS Lexion 750 429 CLAAS V900 header 9.2
20/08/2023 Winter wheat CA 3.25 Tractor + Trailer John Deere 6250R 250 18t trailer NA

Pronto 3 DC (HORSCH Maschinen GmbH, Schwandorf, Germany) at the same work-
ing width. Multiple pesticide applications were conducted throughout the season for
both treatments, with a Bateman RB35 (Bateman Sprayers®, UK; 225 HP) self-
propelled sprayer (24 m boom) and quad biked with a mounted 12 m pellet appli-
cator for slug pellet applications. Oilseed rape was harvested on 09/08/2024 using a
CLAAS Lexion 750 (CLAAS KGaA mbH®, Harsewinkel, Germany; 429 HP) combine
harvester equipped with a CLAAS V900 9.2 m header. Grain was transferred using
a John Deere 6250R (250 HP) tractor and an 18-tonne trailer.
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Spring barley (Hordeum vulgare) for the 2024 season was grown only in the CA
treatment. It was managed with a series of pesticide applications beginning on
03/02/2024, primarily using the Bateman RB35 sprayer, with additional slug pel-
let applications applied via quad bike. The crop was harvested on 15/09/2024 using
the same CLAAS Lexion 750 combine and 9.2 m V900 header. Grain transport was
carried out with the John Deere 6250R tractor and 18-tonne trailer.

Table 3.4: Machinery operations in 2023/4 for the crops of oilseed rape and spring
barley, detailing machinery, equipment, and horsepower (HP) used for all field oper-
ations
Date Crop Treatment

Area
(ha) Operation Machine HP Implement

Width
(m)

29/08/2023 Oilseed Rape CON 5.14 Cultivation John Deere 8370R 370 Vaderstad TopDown 4
29/08/2023 Oilseed Rape CON 5.14 Drilling John Deere 6R 215 237 HORSCH Pronto 3 DC 4
31/08/2023 Oilseed Rape CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
04/09/2023 Oilseed Rape CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
20/09/2023 Oilseed Rape CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
29/10/2023 Oilseed Rape CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
03/02/2024 Oilseed Rape CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
03/02/2024 Oilseed Rape CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
01/04/2024 Oilseed Rape CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
22/03/2024 Oilseed Rape CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
21/04/2024 Oilseed Rape CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
03/07/2024 Oilseed Rape CON 5.14 Spraying Bateman RB35 225 Self propelled sprayer 24
09/08/2024 Oilseed Rape CON 5.14 Harvest CLAAS Lexion 750 429 CLAAS V900 header 9.2
09/08/2024 Oilseed Rape CON 5.14 Tractor + Trailer John Deere 6250R 250 18t trailer NA

28/08/2023 Oilseed Rape CA 3.25 Drilling SAME Iron 165.7 163 John Deere 750a 4
15/09/2023 Oilseed Rape CA 3.25 Spraying Quad 30 Slug pellet applicator 12
03/02/2024 Spring Barley CA 3.25 Spraying Bateman RB35 225 Self propelled sprayer 24
18/04/2024 Spring Barley CA 3.25 Spraying Bateman RB35 225 Self propelled sprayer 24
10/05/2024 Spring Barley CA 3.25 Spraying Bateman RB35 225 Self propelled sprayer 24
18/04/2024 Spring Barley CA 3.25 Spraying Bateman RB35 225 Self propelled sprayer 24
08/05/2024 Spring Barley CA 3.25 Spraying Quad 30 Slug pellet applicator 12
16/05/2024 Spring Barley CA 3.25 Spraying Bateman RB35 225 Self propelled sprayer 24
15/09/2024 Spring Barley CA 3.25 Harvest CLAAS Lexion 750 429 CLAAS V900 header 9.2
15/09/2024 Spring Barley CA 3.25 Tractor + Trailer John Deere 6250R 250 18t trailer NA

3.8 Pesticide application

The following section details all of the applications of pesticides applied throughout
the experiment. All products used during the experimental duration were recorded,
alongside the timing and application rates. In this study, herbicides and crop desic-
cants are distinguished differently, despite being the same active ingredients, as they
were used for different agronomic purposes. The application rates were normalised
using the following equation 3.1:

Normalized Rate (kg ha−1) =


R · w

100 · δ, if formulation is w/w% and δ =
{

1, if unit is kg
0.001, if unit is g

R · v
100 , if formulation is w/v% and unit is l

R·g
1000 , if formulation is g/l and unit is l

(3.1)
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Where R is the application rate in units per hectare, w is the percentage of active
ingredient by weight (w/w %), v is the percentage of active ingredient by volume
(w/v %), g is the concentration of active ingredient in grams per litre (g/l), and δ is
the conversion factor (1 if the unit is kg, 0.001 if the unit is g).

3.8.1 Year 1

The experimental site (i.e. both treatments) was sprayed off using a systemic broad-
spectrum herbicide (Glyphosate 360 g/l) on 22/01/2022 at a rate of 2.13 l ha−1

with addition of a water conditioner drift retardant (Intracrop Sprayforce DRT) at
0.53 l ha−1. Following the planting of the spring bean crops in both treatments on
31/03/2022, both agronomists used a pre-emergence herbicide of Clomazone (360
g/l) at 0.2 l ha−1, combined with Imazamox (16.7 g/l) and Pendimethalin (250 g/l)
at 3.37 l ha−1. On 15/05/2022 (Growth Stage (GS) 15 (Zadoks et al., 1974)), an
insecticide (Lambda-cyhalothrin 50 g/l) was applied to the CON treatment at a rate
of 0.15 l ha−1. This was followed on 08/06/2022 (GS 64) by a fungicide application of
Azoxystrobin (250 g/l) and Tebuconazole (430 g/l) at a rate of 0.48 l ha−1, which was
then repeated on 29/06/2022 (GS 69). The CA treatment used a single application
of fungicide on 30/06/2022, which consisted of a combination of Boscalid (26.7%
w/w) and Pyraclostrobin (6.7% w/w) at a rate of 0.65 l ha−1. Both treatments were
desiccated on 22/08/2022 using Glyphosate (490 g/l) at 2.9 l ha−1, with addition of
a pod sealant (Intracrop Senate) at 1 l ha−1.

3.8.2 Year 2

For the winter wheat crop, the CON treatment was applied with a pre-emergence
herbicide on 09/10/2022 of Diflufenican (500 g/l) at 0.15 l ha−1 in combination with
Flufenacet (500 g/l) at 0.24 l ha−1. The CA treatment was applied with a post-
emergence herbicide at GS 12 on 11/10/2022, consisting of Flufenacet (60 g/l) and
Pendimethalin (300 g/l) at 3.44 l ha−1 in combination with Diflufenican (500 g/l) at
0.22 l ha−1. On 08/11/2022 (GS 13), a follow-up herbicide application was applied in
the CON treatment of Florasulam (50 g/l) at 0.07 l ha−1 combined with an insecticide
Lambda-cyhalothrin (50 g/l) at 0.1 l ha−1. In the spring, at growth stage 30, a
plant growth regulator (PGR) mix was applied on 23/03/2023 (GS 30) in the CON
treatment consisting of Chlormequat (750 g/l) and Trinexapac-ethyl (250 g/l) at rates
of 0.96 l ha−1 and 0.05 l ha−1 respectively. The timing of this fungicide application was
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Table 3.5: Fertiliser applications and timings for the first experimental year for both
treatments. The application date is shown by date and crop growth stage (Zadoks
et al., 1974), the normalised rate ha−1 was calculated using Equation 3.1. All product
names are registered trademarks ®.

Date
Growth
Stage Crop Treatment Category Product Active Ingredient

Normalized
Rate

(Kg Ha−1 )
2022-01-22 -10 Spring beans CON Herbicide Gallup XL Glyphosate (360 g/l) 0.77
2022-03-31 -1 Spring beans CON Herbicide Mohawk CS Clomazone (360 g/l) 0.07
2022-03-31 -1 Spring beans CON Herbicide Nirvana Imazamox (16.7 g/l) 0.06
2022-03-31 -1 Spring beans CON Herbicide Nirvana Pendimethalin (250 g/l) 0.84
2022-05-15 14 Spring beans CON Insecticide Clayton Sparta Lambda-cyhalothrin (50 g/l) 0.01
2022-06-08 64 Spring beans CON Fungicide Azofin Plus Azoxystrobin (250 g/l) 0.12
2022-06-08 64 Spring beans CON Fungicide Toledo Tebuconazole (430 g/l) 0.21
2022-06-29 69 Spring beans CON Fungicide Azofin Plus Azoxystrobin (250 g/l) 0.12
2022-06-29 69 Spring beans CON Fungicide Clayton Ohio Tebuconazole (430 g/l) 0.21
2022-08-22 98 Spring beans CON Desiccant Gallup Hi-Aktiv Glyphosate (490 g/l) 1.42
2022-01-22 -10 Spring beans CA Herbicide Gallup XL Glyphosate (360 g/l) 0.77
2022-03-31 -1 Spring beans CA Herbicide Mohawk CS Clomazone (360 g/l) 0.07
2022-03-31 -1 Spring beans CA Herbicide Nirvana Imazamox (16.7 g/l) 0.06
2022-03-31 -1 Spring beans CA Herbicide Nirvana Pendimethalin (250 g/l) 0.84
2022-06-30 67 Spring beans CA Fungicide Signum Boscalid (26.7% w/w) 0.18
2022-06-30 67 Spring beans CA Fungicide Signum Pyraclostrobin (6.7% w/w) 0.04
2022-08-22 98 Spring beans CA Desiccant Gallup Hi-Aktiv Glyphosate (490 g/l) 1.42

at T0 (Timing 0), targeting the early tillering growth stage of cereal crops. Typically,
in winter wheat crop management in the UK this is followed throughout the season
with fungicide applications T1 (stem elongation GS 31-32), T2 (flag leaf fully emerged
GS 39), and T3 (anthesis GS 59-69). From here on, this section refers to the timings
using the T number to highlight the key fungicide application timings.

At T1, a fungicide application of Bixafen(65 g/l), Fluopyram (65 g/l), Folpet (500
g/l), and Prothioconazole (130 g/l) at a rate of 1.14 l ha−1 was applied to the CA
treatment on 12/04/2023 (GS 31). This was combined with a PGR of Chlormequat
(750 g/l) at a rate of 1.14 l ha−1. In comparison, the CON treatment used Fluxapy-
roxad (75 g/l) at 0.5 l ha−1, Folpet (500 g/l) at 0.96 l ha−1, Mefentrifluconazole (97
g/l) at 1 l ha−1, and Pyraclostrobin (150 g/l) at 0.5 l ha−1 at T1 on 16/04/2023. This
was combined with a PGR of Chlormequat (750 g/l) at 0.96 l ha−1, and Trinexapac-
ethyl (250 g/l) at 0.14 l ha−1. A herbicide mix was applied in the CA treatment
consisting of Florasulam (20% w/w) and Tribenuron-methyl (60% w/w) at 22.93 l
ha−1 on 22/04/2023.

At T2, on 11/05/2023, the CON treatment was sprayed with a fungicide mix of
Fenpicoxamid (50 g/l) at 1.4 l ha−1, Fluxapyroxad (75 g/l) at 0.7 l ha−1, Folpet (500
g/l) at 0.96 l ha−1, and Pyraclostrobin (150 g/l) at 0.7 l ha−1. As well as PGR mix of
Chlormequat (305 g/l) and 2-chloroethylphosphonic acid (155 g/l) at a rate of 0.4 l
ha−1. For the CA treatment T2, Fluxapyroxad (47.5 g/l) and Mefentrifluconazole(100
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g/l) were used at rate of 0.8 l ha−1, in combination with Folpet (500 g/l) at 1.14 l
ha−1 applied on 20/05/2023.

At T3, on 05/06/2023, a fungicide mix of Prothioconazole (125 g/l) and Tebu-
conazole (125g/l) was used on the CON treatment at a rate of 0.75 l ha−1. Whilst the
CA treatment was applied with Fluxapyroxad (47.5 g/l) and Mefentrifluconazole(100
g/l) at a rate of 0.34 l ha−1 on 15/06/2023. No pre-harvest desiccant was used in
either experimental treatment.

Table 3.6: Fertiliser applications and timings for the second experimental year for
both treatments. The application date is shown by date and crop growth stage
(Zadoks et al., 1974), the normalised rate ha−1 was calculated using Equation 3.1.
All product names are registered trademarks ®.

Date
Growth
Stage Crop Treatment Category Product Active Ingredient

Normalized
Rate

(Kg Ha−1 )
2022-10-09 -1 Winter wheat CON Herbicide Sempra XL Diflufenican (500 g/l) 0.07
2022-10-09 -1 Winter wheat CON Herbicide System 50 Flufenacet (500 g/l) 0.12
2022-11-08 13 Winter wheat CON Herbicide Lector Florasulam (50 g/l) 0.00
2022-11-08 13 Winter wheat CON Insecticide Clayton Sparta Lambda-cyhalothrin (50 g/l) 0.00
2023-03-23 30 Winter wheat CON PGR Belcocel 750 Chlormequat (750 g/l) 0.72
2023-03-23 30 Winter wheat CON PGR Moddus Trinexapac-ethyl (250 g/l) 0.01
2023-04-16 33 Winter wheat CON Fungicide Syrex Fluxapyroxad (75 g/l); (7.3 w/w%) 0.04
2023-04-16 33 Winter wheat CON Fungicide Arizona Folpet (500 g/l) 0.48
2023-04-16 33 Winter wheat CON Fungicide Myresa Mefentrifluconazole (97 g/l) 0.10
2023-04-16 33 Winter wheat CON Fungicide Syrex Pyraclostrobin (150 g/l) (14.6 w/w%) 0.07
2023-04-16 33 Winter wheat CON Herbicide Ally Max SX Metsulfuron-methyl (14.3 %w/w) 143 g/kg 0.00
2023-04-16 33 Winter wheat CON Herbicide Ally Max SX Tribenuron-methyl (14.3 % w/w); 143 g/kg 0.00
2023-04-16 33 Winter wheat CON PGR Belcocel 750 Chlormequat (750 g/l) (65.2 w/w%) 0.72
2023-04-16 33 Winter wheat CON PGR Moddus Trinexapac-ethyl (250 g/l) 0.04
2023-05-11 39 Winter wheat CON Fungicide Aquino Fenpicoxamid (50 g/l) 0.07
2023-05-11 39 Winter wheat CON Fungicide Syrex Fluxapyroxad (75 g/l); (7.3 w/w%) 0.05
2023-05-11 39 Winter wheat CON Fungicide Arizona Folpet (500 g/l - 39%w/w) 0.48
2023-05-11 39 Winter wheat CON Fungicide Syrex Pyraclostrobin (150 g/l) (14.6 w/w%) 0.10
2023-05-11 39 Winter wheat CON PGR Chlormephon 2-chloroethylphosphonic acid (155 g/l); 0.06
2023-05-11 39 Winter wheat CON PGR Chlormephon Chlormequat (305 g/l) 0.12
2023-06-05 61 Winter wheat CON Fungicide Prosaro Prothioconazole (125 g/l); 0.09
2023-06-05 61 Winter wheat CON Fungicide Prosaro Tebuconazole (125g/l) 0.09
2022-10-11 12 Winter wheat CA Herbicide Prefect Diflufenican (500 g/l) 0.11
2022-10-11 12 Winter wheat CA Herbicide Crystal Flufenacet(60 g/l) 0.21
2022-10-11 12 Winter wheat CA Herbicide Crystal Pendimethalin (300 g/l); 1.03
2023-04-12 31 Winter wheat CA Fungicide Ascra Xpro Bixafen(65 g/l) 0.07
2023-04-12 31 Winter wheat CA Fungicide Ascra Xpro Fluopyram (65 g/l); 0.07
2023-04-12 31 Winter wheat CA Fungicide Mirror Folpet (500 g/l) 0.57
2023-04-12 31 Winter wheat CA Fungicide Ascra Xpro Prothioconazole (130 g/l); 0.15
2023-04-12 31 Winter wheat CA PGR 3C Chlormequat 750 Chlormequat (750 g/l) 0.86
2023-04-22 32 Winter wheat CA Herbicide Paramount Max Florasulam (20% w/w) 0.00
2023-04-22 32 Winter wheat CA Herbicide Paramount Max Tribenuron-methyl (60 % w/w); 0.01
2023-05-20 39 Winter wheat CA Fungicide Mivyto XE Fluxapyroxad (47.5 g/l); 0.04
2023-05-20 39 Winter wheat CA Fungicide Arizona Folpet (500 g/l) 0.57
2023-05-20 39 Winter wheat CA Fungicide Mivyto XE Mefentrifluconazole(100 g/l) 0.08
2023-06-15 61 Winter wheat CA Fungicide Mivyto XE Fluxapyroxad (47.5 g/l); 0.02
2023-06-15 61 Winter wheat CA Fungicide Mivyto XE Mefentrifluconazole(100 g/l) 0.03

3.8.3 Year 3

Before the emergence of the oilseed rape crop, a pre-emergence herbicide (Clomazone
(360 g/l)) was applied to the CON treatment on 01/09/2023 at a rate of 1.04 l ha−1.
An insecticide (Lambda-cyhalothrin (50 g/l)) was also included, which was applied
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at a rate of 0.15 l ha−1. This was followed by a molluscicide application of ferric
phosphate (2.11 % w/w), in pellet form at a rate of 5 kg ha−1. The CA treatment
also had a molluscicide treatment of ferric phosphate (2.42 % w/w) at a rate of 6.95
kg ha−1. On 20/09/2023, the CON treatment was applied with another insecticide,
lambda-cyhalothrin (50 g/l) at 0.15 l ha−1 and another molluscicide application of
ferric phosphate at 4 kg ha−1. At GS 11, a post-emergence herbicide (Propaquizafop
(100 g/l)) was applied at a rate of 0.5 l ha−1, combined with an insecticide lambda-
cyhalothrin (50 g/l) at 0.1 l ha−1. This was followed by a molluscicide application at
GS 12 on 02/10/2023 of ferric phosphate at 3 kg ha−1. At GS 16 (29/10/2023), the
CON treatment was applied with a herbicide mix of Halauxifen-methyl and Picloram
at 0.4 l ha−1 and 0.5 l ha−1 respectively, and a fungicide of Prothioconazole at 0.45 l
ha−1. This was followed by an application of ferric phosphate at 4 kg ha−1.

In 2024, the CON treatment was applied with a fungicide at GS 51 (22/03/2024)
of Prothioconazole (250 g/l) at 0.4 l ha−1, and a fungicide and herbicide mix at GS 64
(21/04/2024) of Azoxystrobin (250 g/l) and Prothioconazole (250 g/l) at 0.5 l ha−1.
The crop was dessicated with Glyphosate (360 g/l) at GS 86 (03/07/2024) at a rate
of 3.84 l ha−1.

The spring barley crop in the CA treatment was applied with a pre-emergence her-
bicide at GS -1 of Chlorotoluron (250 g/l), Diflufenican (40 g/l), and Pendimethalin
(300 g/l) at a rate of 2 l ha−1, and Glyphosate (360 g/l) at a rate of 1.5 l ha−1. This
was followed by an post-emergence application of herbicide at GS 13 on 16/05/2024
of Fluroxypyr (200 g/l) at a rate of 0.46 l ha−1 and a molluscicide application of Ferric
Phosphate (2.11 % w/w) on 08/05/2024 at a rate of 4 kg ha−1.

All pesticide application data were summarised to total application of each key
category (herbicides, fungicides, dessicants, insecticides, molluscicides, and PGRs)
applied per year and was tested for normality and homogeneity of variances using the
methodology previously outlined in Section 3.10. No statistical analysis of this data
was applied due to a limited sample size.
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Table 3.7: Agro-chemical applications and timings for the third experimental year
for both treatments. The application date is shown by date and crop growth stage
(Zadoks et al., 1974), the normalised rate ha−1 was calculated using Equation 3.1.
All product names are registered trademarks ®.

Date
Growth
Stage Crop Treatment Category Product Active Ingredient

Normalized
Rate

(Kg Ha−1 )
2023-09-01 -5 Oilseed Rape CON Herbicide Mohawk CS Clomazone (360 g/l) 0.37
2023-09-01 -5 Oilseed Rape CON Insecticide Clayton Sparta Lambda-cyhalothrin (50 g/l) 0.01
2023-09-01 -5 Oilseed Rape CON Molluscicide Epitaph Ferric Phosphate (2.11 % w/w) 0.11
2023-09-04 -1 Oilseed Rape CON Herbicide Mohawk CS Clomazone (360 g/l) 0.09
2023-09-04 -1 Oilseed Rape CON Molluscicide Epitaph Ferric Phosphate (2.11 % w/w) 0.08
2023-09-20 11 Oilseed Rape CON Insecticide Clayton Sparta Lambda-cyhalothrin (50 g/l) 0.01
2023-09-20 11 Oilseed Rape CON Molluscicide Epitaph Ferric Phosphate (2.11 % w/w) 0.08
2023-10-02 11 Oilseed Rape CON Herbicide Falcon Propaquizafop (100 g/l) 0.05
2023-10-02 11 Oilseed Rape CON Insecticide Clayton Sparta Lambda-cyhalothrin (50 g/l) 0.01
2023-10-02 12 Oilseed Rape CON Molluscicide Epitaph Ferric Phosphate (2.11 % w/w) 0.06
2023-10-29 16 Oilseed Rape CON Fungicide Ecana Prothioconazole (250 g/l) 0.11
2023-10-29 16 Oilseed Rape CON Herbicide Belkar Halauxifen-methyl (10 g/l) 0.00
2023-10-29 16 Oilseed Rape CON Herbicide Belkar Picloram (48 g/l) 0.02
2023-10-29 14 Oilseed Rape CON Molluscicide Epitaph Ferric Phosphate (2.11 % w/w) 0.08
2024-03-22 51 Oilseed Rape CON Fungicide Ecana Prothioconazole (250 g/l) 0.10
2024-04-21 64 Oilseed Rape CON Fungicide Azofin Plus Azoxystrobin (250 g/l) 0.12
2024-04-21 64 Oilseed Rape CON Herbicide Ecana Prothioconazole (250 g/l) 0.12
2024-07-03 86 Oilseed Rape CON Desiccant Motif Glyphosate (360 g/l) 1.38
2023-09-15 10 Oilseed Rape CA Molluscicide Sigon Ferric Phosphate (2.42 % w/w) 0.17
2024-04-18 -1 Spring Barley CA Herbicide Tower Chlorotoluron (250 g/l); 0.50
2024-04-18 -1 Spring Barley CA Herbicide Tower Diflufenican (40 g/l) 0.08
2024-04-18 -1 Spring Barley CA Herbicide Ovation Glyphosate (360 g/l) 0.54
2024-04-18 -1 Spring Barley CA Herbicide Tower Pendimethalin (300 g/l); 0.60
2024-05-08 12 Spring Barley CA Molluscicide Sluxx HP Ferric Phosphate (2.11 % w/w) 0.08
2024-05-16 13 Spring Barley CA Herbicide Hurler Fluroxypyr (200 g/l) 0.09

3.9 Fertiliser application

3.9.1 Year 1

The following section details all of the applications of fertilisers applied throughout
the experiment. Before drilling of the first crops of the experiment, both treatments
had Polysulphate solid fertiliser (14 % w/w potassium oxide (K2O), 17 % w/w cal-
cium oxide (CaO), 48 % w/w sulphur trioxide (SO3), and 6 % w/w magnesium oxide
(MgO) applied at 250 kg ha−1. This was followed at GS 14 in the CON treatment by
a foliar application of boron (B) as disodium octaborate (7.72 % w/w), magnesium
sulphate MgSO4 7.2 % (4.32 % w/w Mg), manganese (Mn) as manganese sulphate
MnSO4+H2O (5.15 % w/w), and molybdenum (Mo) as sodium molybdate Na2MoO4

(0.05 % w/w) at a rate of 1.72 l ha−1. This was accompanied with a phosphite-based
biostimulant containing phosphorus tetroxide (P2O4) (28 % w/w) as dipotassium
phosphite (50-75 % w/w), and potassium oxide (K2O (23 % w/w) as monopotassium
phosphite (50-75 % w/w) at a rate of 0.96 l ha−1. This application was then repeated
again in the CON treatment at GS 64 at the rate of 1.72 ha−1. The nutrient appli-
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cations for each treatment during the first year of the experiment are shown below in
Table 3.8.

Table 3.8: Fertiliser applications and timings for the first experimental year for both
treatments. The application date is shown by date and crop growth stage (Zadoks
et al., 1974), the normalised rate ha−1 was calculated using Equation 3.1. All product
names are registered trademarks ®.

Date
Growth

Stage Crop Treatment Product
Chemical
Element

Normalized
Rate

(Kg Ha−1 )

2022-03-21 -5 Spring beans CON Polysulphate K 35.00
2022-03-21 -5 Spring beans CON Polysulphate Ca 42.50
2022-03-21 -5 Spring beans CON Polysulphate S 120.00
2022-03-21 -5 Spring beans CON Polysulphate Mg 15.00
2022-05-15 14 Spring beans CON Intracrop Maxim PPE B 0.13
2022-05-15 14 Spring beans CON IntraCrop Odessy K 0.58
2022-05-15 14 Spring beans CON Intracrop Maxim PPE Mg 0.07
2022-05-15 14 Spring beans CON Intracrop Maxim PPE Mn 0.09
2022-05-15 14 Spring beans CON Intracrop Maxim PPE Mo 0.00
2022-05-15 14 Spring beans CON IntraCrop Odessy K 0.58
2022-05-15 14 Spring beans CON Intracrop Maxim PPE S 0.37
2022-05-15 14 Spring beans CON Intracrop Maxim PPE Zn 0.00
2022-06-08 64 Spring beans CON Intracrop Maxim PPE B 0.13
2022-06-08 64 Spring beans CON IntraCrop Odessy K 0.58
2022-06-08 64 Spring beans CON Intracrop Maxim PPE Mg 0.07
2022-06-08 64 Spring beans CON Intracrop Maxim PPE Mn 0.09
2022-06-08 64 Spring beans CON Intracrop Maxim PPE Mo 0.00
2022-06-08 64 Spring beans CON IntraCrop Odessy K 0.58
2022-06-08 64 Spring beans CON Intracrop Maxim PPE S 0.15
2022-06-08 64 Spring beans CON Intracrop Maxim PPE Zn 0.00

2022-03-21 -5 Spring beans CA Polysulphate K 35.00
2022-03-21 -5 Spring beans CA Polysulphate Ca 42.50
2022-03-21 -5 Spring beans CA Polysulphate S 120.00
2022-03-21 -5 Spring beans CA Polysulphate Mg 15.00

3.9.2 Year 2

During the second experimental year, both treatments received a base fertiliser ap-
plication of urea (46 N % w/w) with a urease inhibitor (80 kg N ha−1) on 13-02-2023.
However, after this application, the fertiliser plan varied for each treatment. The
total nitrogen (N) applied for the CON system totalled 185 kg N ha−1, in comparison
to 133 kg N ha−1 in the CA treatment. The CON treatment received three splits
of N based fertiliser throughout the growing season; the first dose of urea (46 N %
w/w) of 13/02/2023, a second dose of liquid fertiliser (80 kg N ha−1 + 23.5 kg SO3

ha−1) on 07-04-2023, and a final dose of liquid fertiliser (80 kg N ha−1 + 23.5 kg SO3

ha−1) on 2023-05-15. This was complemented with several foliar micronutrient appli-
cations. At the T0 (Growth Stage (GS) 20 (Zadoks et al., 1974)) fungicide timing a
micronutrient foliar spray (54.72 g N ha−1, 41.28 g S ha−1, 2.33 g Mg ha−1, 30.24 g
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Zn ha−1, 132 g Mn ha−1), and a biostimulant of MTU (1-(2-methoxyethyl)-3-(1,2,3-
thiadiazol-5yl)urea) and pidolic acid was applied alongside a plant growth regulator
(PGR) of Chlormequat (750 g/l) and Trinexapac-ethyl (250 g/l) combined. At the
T1 fungicide timing (GS 32) a micronutrient foliar spray (54.72 g N ha−1, 41.28 g S
ha−1, 2.33 g Mg ha−1, 30.24 g Zn ha−1, 132 g Mn ha−1) was also applied, as well as
another application of plant growth regulator (PGR) of Chlormequat (750 g/l) and
trinexapac-ethyl (250 g/l) combined. At T2 (GS 39) a specific Mg (76.76 g ha−1) and
S (155.93 g ha−1) water soluble fertiliser was applied, alongside a liquid fertiliser and
biostimulant (268.66 g N ha−1, 134.33 g P ha−1, 134.33 g K ha−1, 61.16 g Mg ha−1),
and a PGR of 2-chloroethylphosphonic acid (155 g/l) and Chlormequat (305 g/l). At
the final T3 (GS 61) timing, a Mg (76.76 g ha−1) and S (155.93 g ha−1) water-soluble
fertiliser was applied. The complete fertiliser application for the CON treatment is
detailed in Table 3.9.

The CA treatment used a base fertiliser application of urea (46 N % w/w) with
a urease inhibitor (80 kg N ha−1) on 13/02/2023, followed liquid fertiliser (54.26 kg
N ha−1 + 15.93 kg SO3 ha−1) on 27/04/2023. Subsequently, foliar N was applied
in four doses along with a combination of liquid micronutrients and biostimulants:
micronutrient foliar fertiliser (70.2 g P ha−1, 23.6 g K ha−1, 464 g S ha−1, 40 g Mg
ha−1, 302.2 g Mn ha−1, 3.8 g Zn ha−1) was first applied on 27/03/2023, alongside a
soluble mix of humic and fulvic acids (< 10 g l−1). At the T1 fungicide timing (GS
31) a foliar macro and micronutrient fertiliser (73.4 g N ha−1, 121.58 g Mg ha−1, 4.58
g Zn ha−1, 50.46 g ha−1, 137.64 g B ha−1, 64 g Mn ha−1) was also included. This
was followed at T1.5 (GS 32) by the first dose of foliar N (5250 g N ha−1) in addition
to foliar Mg (30.28 g ha−1) and S (15.36 g S ha−1). This fertiliser application was
then repeated at T2 (GS 39) and T3 (GS 61) with the addition of sulphate of potash
(1462.17 g ha−1, 516.06 g S ha−1). The complete fertiliser application data for both
the CA and CON experimental treatments for the second year of the experiment are
detailed in Table 3.9.

3.9.3 Year 3

During the final experimental year of the project, on 02/10/2023 (GS 11), the CON
treatment was applied with a mix of magnesium oxide (0.35 % w/v), nitrogen (14
% w/v), phosphorus pentoxide (7 % w/v), and potassium oxide (7 % w/v) at a rate
of 1 l ha−1. This was followed at GS 21 by nitrogen (N 32 % w/v) and sulphur
trioxide (SO3 % w/v) at a rate of 125 l ha−1. Both treatments were applied with a
P and K solid fertiliser, which consisted of P (24 % w/w) in the form of phosphorus
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pentoxide (P2O5) and K (24 % w/w) in the form of potassium oxide (K2O). The
CON treatment then was applied with two applications of liquid nitrogen (N 32 %
w/v) and sulphur trioxide (SO3 % w/v) at GS 30 and GS 50, at a rate of 200 and 250
l ha−1 respectively. This was followed at GS 51 by an application of magnesium oxide
(0.35 % w/v), nitrogen (14 % w/v), phosphorus pentoxide (7 % w/v), and potassium
oxide (7 % w/v) at a rate of 3 l ha−1, and boron (150 g/l) at a rate of 1.91 l ha−1. The
final fertiliser application from the CON treatment in the oilseed rape crop occurred
on 21/04/2024 (GS 64), which was magnesium oxide (MgO 16 % w/w) and sulphur
trioxide (SO3 % w/w).

After the failed oilseed rape crop, the CA treatment began the spring barley crop
in 2024 with two applications of urea (46% w/w N) with a urease inhibitor (BASF
Limus®) at a rate of 180 kg ha−1 at GS 13 and at GS 30. This was co-applied with
an application of a bio-stimulant of Mn (10 %), SO3 (18 %), and N (2 %) at a rate
of 2.29 l ha−1. This was combined with another biostimulant containing MgO (43
g/l) and P2O5 (63 g/l) at a rate of 1.15 l ha−1. The nutrient applications for each
treatment during the third year of the experiment are shown in Table 3.10.

All fertiliser data were summarised to total application of each chemical element
applied per year and were tested for normality and homogeneity of variances using
the methodology previously outlined in Section 3.10. No statistical analysis of this
data was applied due to a limited sample size.
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Table 3.9: Fertiliser applications and timings for the second experimental year for
both treatments. The application date is shown by date and crop growth stage
(Zadoks et al., 1974), the normalised rate ha−1 was calculated using Equation 3.1.
All product names are registered trademarks ®.

Date
Growth

Stage Crop Treatment Product
Chemical
Element

Normalized
Rate

(Kg Ha−1 )

2023-02-14 20 Winter wheat CON Urea - Limus coated N 57.50
2023-03-23 30 Winter wheat CON Intracrop Status NA 0.00
2023-03-23 30 Winter wheat CON Intracrop Status NA 0.06
2023-03-23 30 Winter wheat CON Intracrop Cearum S 0.03
2023-03-24 31 Winter wheat CON Intracrop Cearum Cu 0.01
2023-03-25 32 Winter wheat CON Intracrop Cearum Mn 0.09
2023-03-26 33 Winter wheat CON Intracrop Cearum Zn 0.02
2023-04-07 31 Winter wheat CON Chafer N32 +9.4 SO3 N 80.00
2023-04-07 31 Winter wheat CON Chafer N32 +9.4 SO3 S 23.50
2023-04-16 33 Winter wheat CON Intracrop Cearum Cu 0.01
2023-04-16 33 Winter wheat CON Intracrop Cearum Mn 0.09
2023-04-16 33 Winter wheat CON Intracrop Cearum S 0.03
2023-04-16 33 Winter wheat CON Intracrop Cearum Zn 0.02
2023-05-11 39 Winter wheat CON Epsotop Mg 0.46
2023-05-11 39 Winter wheat CON Epsotop S 0.62
2023-05-11 39 Winter wheat CON ProGrAm Mg 0.01
2023-05-11 39 Winter wheat CON ProGrAm N 0.27
2023-05-11 39 Winter wheat CON ProGrAm P 0.13
2023-05-11 39 Winter wheat CON ProGrAm K 0.13
2023-05-15 40 Winter wheat CON Chafer N32 +9.4 SO3 N 48.00
2023-05-15 40 Winter wheat CON Chafer N32 +9.4 SO3 S 14.10
2023-06-05 61 Winter wheat CON Epsotop Mg 0.46
2023-06-05 61 Winter wheat CON Epsotop S 0.62

2023-02-14 20 Winter wheat CA Urea - Limus coated N 57.50
2023-03-27 24 Winter wheat CA AMIX BioMan Mg 0.04
2023-03-27 24 Winter wheat CA Maxi-Phi Fast Root Mn 0.02
2023-03-27 24 Winter wheat CA AMIX BioMan Mn 0.30
2023-03-27 24 Winter wheat CA Maxi-Phi Fast Root P 0.70
2023-03-27 24 Winter wheat CA Maxi-Phi Fast Root K 0.24
2023-03-27 24 Winter wheat CA AMIX BioMan S 0.46
2023-03-27 24 Winter wheat CA Maxi-Phi Fast Root Zn 0.04
2023-04-07 31 Winter wheat CA Chafer N32 +9.4 SO3 N 80.00
2023-04-07 31 Winter wheat CA Chafer N32 +9.4 SO3 S 23.50
2023-04-12 31 Winter wheat CA Stoker B 0.14
2023-04-12 31 Winter wheat CA Stoker Mg 0.12
2023-04-12 31 Winter wheat CA Stoker Mn 0.05
2023-04-12 31 Winter wheat CA Stoker Mo 0.00
2023-04-12 31 Winter wheat CA Stoker N 0.07
2023-04-12 31 Winter wheat CA Stoker S 0.34
2023-04-12 31 Winter wheat CA Stoker Zn 0.00
2023-04-22 32 Winter wheat CA Maxi-Phi Hi-Mag Mg 0.15
2023-04-22 32 Winter wheat CA Poly N Plus N 4.80
2023-04-22 32 Winter wheat CA Poly N Plus S 0.90
2023-04-22 32 Winter wheat CA Maxi-Phi Hi-Mag S 0.30
2023-05-20 39 Winter wheat CA YaraTera KRISTA SOP K 1.46
2023-05-20 39 Winter wheat CA Maxi-Phi Hi-Mag Mg 0.15
2023-05-20 39 Winter wheat CA Poly N Plus N 4.80
2023-05-20 39 Winter wheat CA Poly N Plus S 0.90
2023-05-20 39 Winter wheat CA YaraTera KRISTA SOP S 1.29
2023-05-20 39 Winter wheat CA Maxi-Phi Hi-Mag S 0.30
2023-06-15 61 Winter wheat CA YaraTera KRISTA SOP K 1.46
2023-06-15 61 Winter wheat CA Maxi-Phi Hi-Mag Mg 0.15
2023-06-15 61 Winter wheat CA Poly N Plus N 4.84
2023-06-15 61 Winter wheat CA Poly N Plus S 0.91
2023-06-15 61 Winter wheat CA YaraTera KRISTA SOP S 1.29
2023-06-15 61 Winter wheat CA Maxi-Phi Hi-Mag S 0.30
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Table 3.10: Fertiliser applications and timings for the third experimental year for both
treatments. The application date is shown by date and crop growth stage (Zadoks
et al., 1974), the normalised rate ha−1 was calculated using Equation 3.1. All product
names are registered trademarks ®.

Date
Growth

Stage Crop Treatment Product
Chemical
Element

Normalized
Rate

(Kg Ha−1 )

2023-10-02 11 Oilseed Rape CON ProGrAm Mg 0.00
2023-10-02 11 Oilseed Rape CON ProGrAm N 0.14
2023-10-02 11 Oilseed Rape CON ProGrAm P 0.07
2023-10-02 11 Oilseed Rape CON ProGrAm K 0.07
2024-02-03 21 Oilseed Rape CON Chafer N32 +9.4 SO3 N 40.00
2024-02-03 21 Oilseed Rape CON Chafer N32 +9.4 SO3 S 11.75
2024-02-03 21 Oilseed Rape CON 0-24-24-5 P 82.80
2024-02-03 21 Oilseed Rape CON 0-24-24-5 K 82.80
2024-02-03 21 Oilseed Rape CON 0-24-24-5 S 17.25
2024-02-03 30 Oilseed Rape CON Chafer N32 +9.4 SO3 N 64.00
2024-02-03 30 Oilseed Rape CON Chafer N32 +9.4 SO3 S 18.80
2024-02-03 50 Oilseed Rape CON Chafer N32 +9.4 SO3 N 80.00
2024-02-03 50 Oilseed Rape CON Chafer N32 +9.4 SO3 S 23.50
2024-03-22 51 Oilseed Rape CON ProGrAm Mg 0.01
2024-03-22 51 Oilseed Rape CON ProGrAm N 0.42
2024-03-22 51 Oilseed Rape CON ProGrAm P 0.21
2024-03-22 51 Oilseed Rape CON ProGrAm K 0.21
2024-03-22 51 Oilseed Rape CON Proleaf Boron 15 B 0.29
2024-04-21 64 Oilseed Rape CON Epsotop Mg 0.46
2024-04-21 64 Oilseed Rape CON Epsotop S 0.62

2024-02-03 -10 Spring Barley CA 0-24-24-5 P 82.80
2024-02-03 -10 Spring Barley CA 0-24-24-5 K 82.80
2024-02-03 -10 Spring Barley CA 0-24-24-5 S 17.25
2024-04-18 13 Spring Barley CA Urea - Limus coated N 82.80
2024-04-18 30 Spring Barley CA Urea - Limus coated N 46.00
2024-05-16 13 Spring Barley CA EvoPlex Mn Mn 0.23
2024-05-16 13 Spring Barley CA EvoPlex Mn S 0.41
2024-05-16 13 Spring Barley CA EvoPlex Mn N 0.05
2024-05-16 13 Spring Barley CA Maxi-Phi Activate MP Mg 0.05
2024-05-16 13 Spring Barley CA Maxi-Phi Activate MP P 0.07
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3.10 Statistical analysis

3.10.1 Power Analysis

In a large field experiment, such as the one being used in this study, it is important
to plan the sampling design to maximise statistical power, within the constraints of
labour and time frame available. Therefore, multiple power analysis simulations were
performed using the Pwr package (Champely et al., 2020) in R (R Core Team, 2023)
(version 4.3.0) to determine the most efficient sampling design possible to test the
hypotheses. Effect sizes (Cohen’s d) were taken from previous literature for a variety
of variables, which were planned to be monitored during the duration of the crop
rotation. This was done to calculate the quantity of observations required to test the
hypothesis with a satisfactory level of statistical power (α). With α being defined
as the probability of correctly rejecting the null hypothesis for a fixed effect size and
fixed sample size.

Cohen’s d was calculated using the following formula:

d = x̄1 − x̄2

spooled
(3.2)

Where x̄1 and x̄2 are the sample means of the two groups being compared, and
spooled is the pooled standard deviation, calculated as:

spooled =
√

(n1 − 1)s2
1 + (n2 − 1)s2

2
n1 + n2 − 2 (3.3)

Where n1 and n2 represent the sample sizes of the two groups, while s2
1 and s2

2

denote the variances of the respective groups. The numerator (x̄1 - x̄2) captures the
mean difference between the groups, while the denominator (spooled) standardises this
difference by accounting for the variability within both groups. A larger value of d

indicates a greater separation between the group means relative to their variability,
with commonly accepted thresholds for interpreting the magnitude of the effect (small
- d = 0.2, medium - d = 0.5, large - d = 0.8. This metric is particularly useful for
comparing the magnitude of effects across studies or when the units of measurement
differ between variables (Cohen, 2013).

3.10.2 Data distribution assessment

Data normality assessment for all data collected in this study was analysed using the
Shapiro-Wilk Test from the base R stats package (R Core Team, 2023), and the
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Anderson-Darling normality test from the MVN package (Korkmaz et al., 2014) in R
version 4.3.0. Results were visualised using histograms and qqplots generated using
the ggplot2 package (Wickham, 2016). The Shapiro-Wilk tests were formulated
using the following equation:

W =

(∑n
i=1 aix(i)

)2

∑n
i=1(xi − x̄)2 (3.4)

Where:

• W is the Shapiro-Wilk test statistic.

• ai are constants that depend on the sample size and are pre-determined from
the expected order statistics of a normal distribution.

• x(i) are the ordered sample values, where x(1) ≤ x(2) ≤ · · · ≤ x(n).

• x̄ is the sample mean.

• n is the sample size (the number of observations).

The null hypothesis (H0) for the Shapiro-Wilks tests used for this study were that
the data followed a normal distribution:

H0 : The data is normally distributed.

The alternative hypothesis (H1) was that the data does not follow a normal dis-
tribution:

H1 : The data is not normally distributed.

The test statistic W was compared to a computed p-value. If the p-value was
less than the recommended significance level (i.e., α = 0.05), the null hypothesis was
rejected, indicating that the data does not follow a normal distribution.

3.10.3 Homoscedasticity Assessment

To assess for the homoscedasticity, the Bartlett’s Test was used to test for homogeneity
of variances across different groups for all data collected in this study. This was
performed using Bartlett’s Test from the stats package in R version 4.3.0 (R Core
Team, 2023). The Bartlett’s Test equation is presented below in Equation 3.5.
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χ2 = (N − k)
(k − 1) ln

(
k∏

i=1
s2

i

)
−

k∑
i=1

(Ni − 1) ln(s2
i )

2 (3.5)

Where:

• χ2: The test statistic used in Bartlett’s test. This value follows a chi-squared
distribution under the null hypothesis of equal variances across the groups.

• N : The total number of observations across all groups.

• k: The number of groups being compared for equality of variances.

• s2
i : The sample variance of the i-th group. Each group is assumed to have a

normal distribution.

• Ni: The number of observations in the i-th group.

• ∏k
i=1 s2

i : The product of the variances of all k groups. The natural logarithm of
this product is taken as part of the formula.

The test compares the observed variances across groups to the expected variances
under the null hypothesis.

H0 : The variances are equal across all groups.

The alternative hypothesis (H1) is that the data does not follow a normal distri-
bution:

H1 : At least one group has a different variance.

If the p-value was less than the recommended significance level (0.05), the H0

was rejected, indicating that the variances are not homogeneous. If the p-value was
greater than the significance level, this results in a failure to reject H0, suggesting
that there was no significant difference in variances across the groups.

3.10.4 Data Overdispersion Assessment

A large quantity of the data collected in this project was count data or count-like non-
integer data (due to averaging, scaling, or aggregation), which is commonly overdis-
persed (Ver Hoef and Boveng, 2007). The presence or not of overdispersion in the
dataset determines the appropriate statistical methodology. Overdispersal was tested
using the following equation:

80



Dispersion Statistic = Residual Deviance
Residual Degrees of Freedom (3.6)

The overdispersion test is based on the ratio of the residual deviance to the residual
degrees of freedom in a Poisson regression model.

• Residual Deviance (D): This measures how well the model fits the data by
comparing the likelihood of the fitted model to the likelihood of a saturated
model (which perfectly fits the data). The formula for residual deviance is:

D = −2 · (log Lmodel − log Lsaturated)

where Lmodel is the likelihood of the model and Lsaturated is the likelihood of the
saturated model.

• Residual Degrees of Freedom (dfresidual): This represents the number of
observations minus the number of estimated parameters in the model. The
formula is:

dfresidual = n − p

where n is the number of observations and p is the number of parameters in the
model.

• Dispersion Statistic: The dispersion statistic is calculated as the ratio of
residual deviance to residual degrees of freedom:

Dispersion Statistic = D

dfresidual

If the dispersion statistic is greater than 1, it suggests overdispersion. This
means the variance in the data is larger than expected under the Poisson model.
A value close to 1 indicates a good fit with no significant overdispersion.

The presence of over-dispersion was also tested for using Fisher’s index of disper-
sion, as the previous dispersion equation mainly evaluates the basic variance-to-mean
ratio, and if the variance is close to the mean, it might not indicate overdispersion.
The Fisher index provides a measure of how much the variance deviates from what
would be expected in a distribution. It is particularly sensitive to skewness and out-
liers in the data. Therefore, it can highlight overdispersion even when the dispersion
statistic suggests no presence of overdispersion. The Fisher Index for dispersion was
calculated using the following equation:
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FisherIndex = 1
n − 1

n∑
i=1

(
xi − x̄

x̄

)2
(3.7)

Where:

• n is the number of observations in the dataset.

• xi represents the individual data points in the dataset.

• x̄ is the mean of the dataset, calculated as:

x̄ = 1
n

n∑
i=1

xi

• The term xi−x̄
x̄

represents the normalized deviation of each observation from the
mean, scaled by the mean value.

• The squared deviations,
(

xi−x̄
x̄

)2
, measure the relative magnitude of each devi-

ation.

• The sum of squared deviations is then averaged by dividing by (n−1) to account
for the degrees of freedom.

3.10.5 Statistical model fitting
3.10.5.1 Linear Mixed-effects Models

Dependent variables that met Gaussian assumptions were analysed using a linear
mixed-effects model (LMM) using the lme4 package (Bates et al., 2015) in R Version
4.3.1 (R Core Team, 2023). The basic model formula was:

yi = β0 + β1 · treatmenti + ublocki
+ ucropi

+ uyeari
+ ϵi (3.8)

Where:

• The β0 term represents the overall intercept of the model.

• The β1 term estimates the fixed effect of the treatment factor, which indicates
the impact of treatment on the response variable.

• The random effects (ublocki
, ucropi

, and uyeari
) account for the variability in the

response variable that is associated with the hierarchical structure of the data
(block, crop, and year). These random intercepts allow for individual deviations
within each of these factors.
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• The residual error term ϵi accounts for the unexplained variation in the response
variable that is not captured by the fixed and random effects.

Linear mixed-effects models were fitted using the Restricted Maximum Likelihood
(REML) method to account for both fixed and random effects in the data (Corbeil
and Searle, 1976). The analysis was performed using the lmer function from the lme4
package in R (version 4.3.0) (Bates et al., 2015). REML was chosen to provide unbi-
ased estimates of variance components by maximising the likelihood of the residuals
after accounting for the fixed effects. Model diagnostics, including residual plots and
checks for normality and homoscedasticity, were conducted to ensure model validity.

3.10.5.2 Generalised Linear Models

If the overdispersion assessment identified significant overdispersion in the data, a
generalised linear model (GLM) with a quasi-Poisson family with a log-link function
was applied (Ver Hoef and Boveng, 2007). This was performed in the stats package
in base R with the following model syntax:

y = β0 + β1 · treatment + β2 · year + β3 · block + ϵ (3.9)

Where:

• y: The response variable, modelled as a function of fixed effects.

• β0: The intercept term, representing the baseline response when all predictor
variables are at their reference levels.

• β1 ·treatment: The fixed effect of the treatment variable, capturing its influence
on the response.

• β2 ·year: The fixed effect of the year variable, accounting for temporal variation
in the response.

• β3 ·block: The fixed effect of the block variable, controlling for spatial variation
within experimental blocks.

• ϵ: The error term, assumed to follow a quasi-Poisson distribution to account
for overdispersion in the response variable.
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• The model is fitted using the quasi-Poisson family with a log link function, al-
lowing for flexible dispersion estimation beyond standard Poisson assumptions.
This choice was informed by prior assessment of dispersion magnitude in the
dataset.

3.10.5.3 Generalised Linear Mixed-effects Models

Dependent variables that did not meet Gaussian assumptions, but were not overdis-
persed, were analysed using generalised linear mixed-effects models using the glmer
function from the lme4 package in R (Version 4.3.0). The basic model formula is
detailed in Equation 3.10:

y = β0 + β1 · treatment + ublock + ucrop + uyear (3.10)

Where:

• y: The response variable, which is modelled based on a linear combination of
predictors and random effects.

• β0: The intercept term, representing the baseline value when all predictor vari-
ables are at their reference levels.

• β1 · treatment: The fixed effect of the treatment variable, which quantifies the
influence of different treatment levels on the response.

• ublock, ucrop, and uyear: The random effects corresponding to the grouping factors
block, crop, and year. These random effects account for the variability in
the response variable due to differences within each of these groups. Models
were tested with all random effects and checked for the singularity issue. If
model singularity was present, the specific random effects were removed from
the model.

• The model is fitted using a suitable model family and link function depending
on the distribution and overdispersion magnitude of the response variable. This
was dependent on the results of the distribution assessments previously detailed
in this chapter.

The generalised linear mixed model (GLMM) was fitted using maximum likeli-
hood estimation with Laplace approximation. Maximum likelihood estimation uses
an iterative approach to determine estimates for population parameter values that
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maximise the likelihood that the sample data came from a population with these
parameter values (Ng and Cribbie, 2017). This method was chosen due to the hier-
archical structure of the data, with random effects for block, crop, and year. Any
deviation from these stated model formulas is noted in each method’s section. The
results from the models are presented using the estimate (β), standard error (SE),
test statistic (Z), and the p-value. All post-hoc analyses for both the generalised
linear mixed-effect models and the linear mixed-effect models were performed using
the emmeans package on R (Version 4.3.0) (Lenth, 2023) using pairwise comparisons
to compute estimated marginal means for specified factors.

3.10.6 Model Diagnostics

For both the linear mixed models (LMM), generalised linear models (GLM), and gen-
eralised linear mixed-effects models (GLMM) used in this study, several diagnostic
plots were generated to evaluate the assumptions underlying the models and to iden-
tify potential issues such as influential data points or model misfit. The following
plots were generated to check the fit and assumptions of the model:

• Residuals vs. Fitted Values Plot: This plot helps detect patterns in the
residuals and assess whether the GLM provides an adequate fit (Dodge, 2008).
The plot was checked for heteroscedasticity or patterns that would suggest
model misfit.

• Q-Q Plot of Residuals: The Q-Q plot of residuals was used to visually inspect
whether the residuals of the model deviate from normality (Marden, 2004).
Significant deviations would suggest that the model may not be appropriate for
the data.

• Cook’s Distance Plot: Cook’s distance (Cook, 1977) was calculated to iden-
tify influential observations that could disproportionately affect model esti-
mates. A threshold of 4

n
(where n is the number of observations) was used

to highlight potentially influential points.

The results from these diagnostic plots were examined to identify any potential
violations of model assumptions, such as non-linearity, non-normality, or influential
data points. Where issues were identified, further investigations were conducted, and
potential remedies were considered (e.g., transformations or removal of outliers) to
improve the model fit.
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After reviewing the diagnostic plots, adjustments were made where necessary,
including refining the model specification or addressing influential data points. In
cases where significant departures from model assumptions were found, alternative
approaches were explored. The model was re-evaluated through these diagnostic
plots until a satisfactory fit was achieved. Following the methodology of Zuur and
Ieno (2016), this study presents the model diagnostics of all models employed during
this study in the supporting appendices for each chapter (A, B, C, D).
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Chapter 4

Application of Soil Proximal
Sensors to Guide the Transition to
Conservation Agriculture

4.1 Introduction

Before and during the transition to Conservation Agriculture (CA), it is important
for farmers to understand the soil texture across the land that they farm, to facilitate
planning for future management decisions and outcomes. This is because the soil
textural class will alter the effect of CA on soil physical properties and subsequent
crop growth (Rochette et al., 2008; Zhao et al., 2020; Pannell et al., 2014; Ren et al.,
2023). The meta-analysis by Blanco-Canqui and Ruis (2018) showed that soil textural
class significantly altered the magnitude of the effect of no-tillage (NT) on a range of
soil physical properties. Among the most responsive to changes in tillage systems were
found to be medium-textured soils, where soil bulk density, penetration resistance,
and wet aggregate stability were all altered by NT. They hypothesise that this could
be because the higher organic matter in NT systems interacts more favourably with
medium-textured soils, such as loams, where the balance of sand, silt, and clay allows
organic matter to enhance aggregation and pore structure effectively. In contrast,
in sandy soils, low water-holding capacity and limited cohesion reduce the impact
of added organic matter, while in clay-rich soils, the dominance of fine particles and
strong shrink-swell behaviour can overshadow the structural benefits provided by
organic matter.

Soil textural class also influences machinery and equipment requirements; for ex-
ample, disc-based direct drills may struggle to close the seeding slot in heavy clay
soils (Agrii, 2021; Baker et al., 2006). To understand soil textural variation on their
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farms, most farmers rely on historical knowledge, with some opting to use conven-
tional soil testing from commercial laboratories. Conventional soil textural analysis
by the pipette method (Bieganowski and Ryżak, 2011) is the most accurate method
of soil textural classification. However, it is a laborious process and thus it is an
expensive analysis for farmers to utilise in the resolution required to accurately map
soil textural spatial variation (Rhymes et al., 2023). Therefore, there is very little
high-resolution data on soil textural spatial variability in agricultural land in the UK.

Currently, there are several methodologies for scanning soil texture at a high spa-
tial resolution using proximal sensors. Most commonly, these commercial soil prop-
erty mapping products involve the use of electrical conductivity (EC), visible and
near-infrared spectroscopy (Vis–NIR) or gamma-ray spectroscopy (GRS), which are
paired with global navigation satellite systems (GNSS) positioning for mapping land-
scape features (Rhymes et al., 2023). All of these technologies have been promoted
heavily to farmers in recent years and have become popular due to the interest in
adopting precision agricultural principles such as variable rate product application,
which requires spatial knowledge of soil and crop properties. Soil scanning has also
been preferred to the traditional grid sampling method by farmers because it is faster,
simpler, and less expensive (Grisso et al., 2009).

Soil electrical conductivity (EC) scanning has become one of the most frequently
used methodologies to characterise in-field variability for precision agriculture (Cor-
win and Lesch, 2003). EC is the ability of a material to conduct an electrical current,
which is influenced largely by the proportion of clay in a soil combined with the quan-
tity of moisture between soil particles (Grisso et al., 2009). As a result, EC can be
used to spatially estimate changes in soil texture, due to differences in soil moisture
content in soils with varying quantities of sand, silt and clay particles, which hold on
to moisture in different ways. However, EC is also influenced by various other soil
properties, including drainage conditions, salinity, soil organic matter, and subsoil
characteristics.

Gamma quant-emitting radionuclides naturally occur in all soils (Reinhardt and
Herrmann, 2019; Pätzold et al., 2020). Gamma-ray spectrometry (GRS) scanning
records these radionuclides emitted from the soil from the decay of Caesium-137,
Uranium-238, Thorium-232, and Potassium-40 (Reinhardt and Herrmann, 2019; Pätzold
et al., 2020). Approximately 90 % of the gamma radiation that can be measured above
ground originates from the top 30 cm of the soil (Pätzold et al., 2020). Thus, it has
potential for use in agricultural soil science, where most of the focus for farmers and
researchers is on the A horizon of the soil. This data can be used to map field-scale
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variation of the gamma-spectra, which can be correlated with soil mineralogy or tex-
ture (Pätzold et al., 2020). GRS has been shown in previous studies to perform well
at single sites where the calibration model can be trained on the soil type of the
single site (Mahmood et al., 2013), or at sites with similar geo-pedological conditions
(Pätzold et al., 2020). In some of these cases, it is possible to link soil properties and
GRS data using linear correlations (Mahmood et al., 2013). However, in sites where
there is high soil property variation, methodologies based on machine learning are
superior as this can enable calibration of site-independent texture prediction mod-
els, overcoming interferences from different parent materials (Pätzold et al., 2020).
This chapter section compares EC and GRS scanning data for mapping soil texture
variation using a Random Forest Machine Learning Algorithm to assess the accuracy
of the model predictors, and discusses the use of both EC and GRS as a farmer
decision-making tool for field-scale agronomic decisions.

4.1.1 Research Aims and Hypotheses

The research aims (A) of this chapter are:

• A1: Assess the accuracy of gamma-ray spectrometry (GRS) and electrical con-
ductivity (EC) scanning in predicting field-scale soil texture in a UK agricultural
context.

• A2: Evaluate the potential of a multi-sensor (GRS + EC) “soil sensor fusion”
approach for improving the spatial resolution and reliability of soil texture maps.

This section addresses the tests of the following hypotheses (H ):

• H1: Commercially available soil scanning technologies are effective estimators
of soil textural variation to aid farmers in the transition to CA.

• H2: A soil texture prediction model which combines data derived from several
soil proximal sensors will exceed the accuracy of a model with data from a single
source.

4.2 Materials and Methods

4.2.1 Soil Texture

A subset of 50 of the 150 randomly generated sampling points described in Chapter
3 was taken using a random number generator, to include 5 sampling points for each
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experimental plot. This ensures a representative spread of data points from across
the experimental site. The sampling points are presented in Figure 4.1.

Figure 4.1: Soil sampling points during the experimental duration. The CA treatment
is shown in blue and CON in red.

Soil texture samples were then collected on 09/10/2022 to a depth of 20 cm, dried,
disaggregated and analysed using the laser diffraction method (NRM, 2021b). Laser-
diffraction analysis (LDA) is a rapid automated method achieving highly resolved
frequency distributions of particle sizes (Taubner et al., 2009). This method consists
of suspending the soil sample in water and passing this through a flow cell, positioned
in the path of a laser beam. The passing of soil particles through the flow cell
causes the laser to be diffracted. The magnitude of diffraction is directly related
to the size of the soil particle. Thus, it is possible to predict the size and relative
population of particles in a sample (NRM, 2021b). The laser diffraction method has
been shown to have a highly significant linear correlation with the traditionally used
pipette method for each of the particle-size fractions from clay to coarse silt (Taubner
et al., 2009). Although, the methodology is not as accurate as the pipette method,
and it is recommended to calibrate the laser diffraction method with the pipette
method (Taubner et al., 2009), it was decided that in this study it was appropriate
to use the laser diffraction method as it is a greatly faster process and the main aim
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is to assess spatial variation in soil texture of the site and not to accurately quantify
it.

The individual percentages of sand, silt, and clay were combined and plotted in
a soil textural triangle using the soiltexture package (Moeys et al., 2024) in R (R
Core Team, 2023). The classification of the soil texture was based on these values,
adapted from Avery (2006):

Table 4.1: Soil Textural Classification for England and Wales. Adapted from: Avery
(2006).

Texture Class Sand (%) Silt (%) Clay (%)

Sand 85–100 0–15 0–10
Loamy Sand 70–85 0–30 0–15
Sandy Loam 43–85 0–50 0–20
Loam 23–52 28–50 7–27
Silt Loam 0–20 50–88 0–27
Silt 0–20 88–100 0–12
Sandy Clay Loam 45–80 0–28 20–35
Clay Loam 20–45 15–53 27–40
Silty Clay Loam 0–20 40–73 27–40
Sandy Clay 45–65 0–20 35–55
Silty Clay 0–20 40–60 40–60
Clay 0–45 0–40 40–100

4.2.2 Interpolation

To estimate spatially distributed values at unsampled locations, the spatial correla-
tion between the individual soil separate samples at different locations was modelled
using variograms. This was performed to quantify the semi-variance against the dis-
tance between data points. The models fitted to the variogram were automatically
generated using the automap package in R (Hiemstra et al., 2009). All soil separates
were modelled using a Matern semi-variogram model with varying values for the
nugget, sill, and range, which were all automatically computed. The semi-variograms
were then used to perform Ordinary Kriging using automap and gstat (Pebesma,
2004) and plotted using ggplot2 (Wickham, 2016). The statistics from the interpo-
lated models are detailed in Appendix A.16. The interpolated datasets for sand, silt,
and clay were used to calculate the interpolated soil textural class throughout the
experimental site.

4.2.3 Soil Proximal Sensing

An electrical conductivity (EC) scan and a gamma-ray spectrometry (GRS) scan were
conducted on 24/03/2022 and 18/10/2022, respectively. The EC scan was performed
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using a trailed scanner, and the GRS scan was performed mounted on an all-terrain
vehicle. Both scanners were set up to operate at 24 m widths at 12 m distance from
the tramlines, recording data at one-second intervals. The EC scanner produced data
points recorded in Siemens m−1 across the field site. The GRS data were measured in
Electron Volts (eV) and then transformed to soil texture fraction percentages using an
algorithm produced by the SoilOptix®Intelligence System (597112 Hwy 59, Tavistock,
Ontario N0B 2R0 Canada). The sensor measures gamma radiation emitted from
the decay of Caesium-137, Uranium-238, Thorium-232, and Potassium-40 emitted
from 20 - 30 cm depth (Enesi et al., 2024; Pätzold et al., 2020; Harmer, 2024). A
proprietary, multivariate calibration algorithm was used to estimate soil properties,
which was calibrated by measured samples taken from field locations recommended
by the software, which were dependent on the range of sensor values (Enesi et al.,
2024). Harmer (2024) stated that “Sample quantity per field is based on field size,
stemming from a ratio of one sample per 3 ha: where a minimum of three samples
are required for fields less than 10 ha.”

4.2.4 Analysis

To assess which scanning technology was a more accurate predictor of soil texture,
a Random Forest machine learning model and spatial correlation models were im-
plemented. The Random Forest machine learning algorithm was selected due to its
robustness in handling non-linear relationships and its suitability for feature impor-
tance assessment (Breiman, 2001; Wehrle and Pätzold, 2024). First, a spatial grid
of 10 m points was generated for the extent of the experimental site, and mean val-
ues from the nearest EC and GRS point were assigned to the grid point using the
st nearest feature function in the sf R package (Pebesma et al., 2024). An 80%
subset of soil texture values derived from the sampled points was used as the re-
sponse variable to train the model, with EC and GRS used as predictor variables.
The remaining 20% of the data was used to test the model’s performance. Ran-
dom data division was performed to create the training and test datasets using the
createDataPartition function from the caret package (Kuhn et al., 2023). The
random forest model was applied using the randomForest package (Breiman et al.,
2024) in R (R Core Team, 2023). To balance model accuracy and computational
efficiency, the model was configured with 10,000 trees, and to assess the importance
of the predictors was assessed to assess the relative contribution of each predictor to
soil texture prediction.
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Before the spatial correlation analysis, the data for the sampled soil texture values,
EC, and GRS datasets were interpolated across the experimental site using inverse
distance weighting (IDW) using the gstat package (Pebesma, 2004) and converted
to raster images. The raster images were then correlated with the stats package in
base R (R Core Team, 2023). The spatial correlation analysis was performed using
a Pearson correlation coefficient between predicted and sampled values. Accuracy of
the prediction was assessed using the prediction Mean Absolute Error (MAE), Mean
Square Error (MSE), and the Root Mean Squared Error (RMSE).

4.3 Results

4.3.1 Soil Texture

The soil texture for the site is mainly a sandy loam with patches of sandy clay
loam according to the Soil Survey of England and Wales (Natural England, 2008)
(Figure 4.2 A). However, the GRS scanning predicted that the experimental site was
predominantly a sandy silt loam and silty clay loam (Figure 4.2 B).

Figure 4.2: A - The results from the textural analysis of 50 samples throughout the
experimental site plotted on a soil textural triangle using the Soil Textural Classifica-
tion of England and Wales. B - The commercially produced results from the textural
variation prediction from the GRS scanning plotted on a soil textural triangle using
the Soil Textural Classification of England and Wales.
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Figure 4.3: A - The results from the textural analysis of 50 samples interpolated
using ordinary kriging and plotted spatially in the experimental site. The commercial
textural prediction from the EC (B) and GRS (C) scanning is plotted spatially in
the experimental site.

4.3.2 Spatial correlation analysis

Correlation and error analysis of the Inverse Distance Weighting (IDW) interpolation
found the clay content of the soil was predicted well (RMSE = 3.09) by the GRS
scanning (M = 20.19, SE = 0.03, CI = 0.06) in comparison to the sampled data (M
= 17.96, SE = 0.24, CI = 0.49). However GRS predicted the contents of sand (M
= 21.05, SE = 0.04, CI = 0.08, RMSE = 38.1) and silt (M = 58.75, SE = 0.01,
CI = 0.02, RMSE = 35.75) poorly in comparison to the sampled data (sand: M =
58.46, SE = 0.68, CI = 1.36, silt: M = 23.58, SE = 0.54, CI = 1.08).

The prediction correlations for clay content were similar for both EC (r = 0.3) and
GRS (r = 0.39), showing a mildly positive correlation between the predicted value
and the sampled values. The lower MAE (2.56) and RMSE (3.09) indicate that GRS
predictions for clay were moderately more accurate in this experiment. GRS predicted
sand content also had a moderate positive correlation with the sampled values (r =
0.49), albeit with high error margins (MAE = 38, RMSE = 38.1). The EC predicted
sand content, however, had a negative correlation (r = -0.33, MAE = 38, RMSE

= 38.1) with the sampled values, meaning that the EC scan was a poor predictor of
sand particle content. Additionally, EC silt content prediction was found to have a
weak positive correlation with the sampled values (r = 0.3, MAE = 2.65, RMSE =
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3.35). Although the error of the prediction was low, it was still a poor indicator of soil
silt particle content. GRS scanning had an improved correlation with the sampled
silt particle content (r = 0.46); however, the prediction also had higher error values
(MAE = 35.7, RMSE = 35.75) in comparison to the EC prediction. Overall, GRS
performed better than EC for the prediction of soil clay particle content in terms of
correlation and accuracy. It was also a better linear predictor with the sampled silt
content, but it is not as accurate in terms of prediction errors in comparison to EC.
GRS had an improved correlation to EC; however had much higher prediction error.
Overall, both scanning techniques were poor predictors of sand particle content. The
results of the error and correlation analysis for GRS and EC, compared to sampled
values shown below in Figure 4.2 and the prediction error of the GRS scanning is
shown in Table 4.2.

Table 4.2: Pearson Correlation Coefficient analysis values (r) for the Inverse Distance
Weighting (IDW) interpolation of soil textural prediction from Electro-conductivity
scanning (EC) and gamma-ray spectrometry scanning (GRS). Prediction accuracy is
characterised by the Mean Absolute Error (MAE), Mean Square Error (MSE), and
the Root Mean Squared Error (RMSE).

Soil Texture Scanning Prediction Correlation (r) MAE MSE RMSE

Clay EC 0.3 7.37 58.48 7.65
Clay GRS 0.394 2.56 9.56 3.09

Sand EC -0.33 33.77 1155.12 33.99
Sand GRS 0.49 38 1451.81 38.1

Silt EC 0.3 2.65 11.22 3.35
Silt GRS 0.46 35.7 1278.22 35.75

4.3.3 Machine learning analysis

The Random Forest model predictions are presented in Figure 4.4 compared to the
physical sample prediction and the commercial GRS prediction. The model with both
GRS and EC included as predictor variables had moderate accuracy at predicting soil
texture within the experimental site, with an accuracy of 0.86 (95 % CI : (0.1841,
0.901), No info rate = 0.57, p = 0.65). The model p-value indicates that the model
does not predict soil texture significantly differently than random chance, and is only
performing marginally better than random chance. High model accuracy confidence
intervals suggest that there is uncertainty around the overall accuracy estimate. The
No-Information Rate (NIR) also suggests that there was not enough soil texture data
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to train the model sufficiently, as this suggests that if the model were to predict solely
the most common class, the predicted accuracy would still be 57 %. There was shown
to be a moderate level of agreement between the two predictor variables (GRS + EC),
which is evidenced by the κ value of 0.22.

The Random Forest model with only GRS included as a predictor variable was less
accurate at predicting soil texture within the experimental site than the model with
GRS and EC predictor variables. The overall model accuracy was 0.43 and a 95%
CI of 0.1 - 0.82, indicating a lot of uncertainty in the model’s true model accuracy.
The model p-value of 0.8734 and NIR 57.14% indicate that the model’s accuracy is
not a significant improvement over predicting the most frequent class. The confusion
matrix for both model outputs is shown below in Figure 4.3. Neither model assessed
in this study was shown to be satisfactorily accurate due to high uncertainty, κ and p

values. However, higher accuracy in the model with GRS and EC included illustrates
the importance of the inclusion of multiple predictor variables. The full confusion
statistics for the model are detailed below in Table 4.3.

The Random Forest variable importance analysis (Table 4.4) revealed distinct
patterns in the predictive relevance of soil electrical conductivity (EC) and gamma-
ray spectrometry (GRS) predictors for the classification of soil textural classes (clay,
sand, and silt). For clay, GRS predictors such as GRS clay predictor, GRS sand
predictor, and GRS silt predictor demonstrated the highest Mean Decrease Accuracy
(MDA), with values of 27.08, 26.45, and 25.26, respectively. This shows the strength
of GRS as a model variable for the prediction of soil clay particle content. Conversely,
the EC predictors contributed less to the clay content classification, with the deep
EC data showing a slightly negative MDA of −2.03; however, the shallow EC data
was a moderately strong prediction variable with an MDA of 23.86. Full predictor
importance data from the model is detailed in Table 4.4 below.

Table 4.3: This table presents confusion statistics for the prediction of soil textural
classes using different predictor models. The accuracy, Kappa statistic, and the range
for accuracy (lower and upper bounds) are provided for the combined model (GRS +
EC) and the individual GRS model. Additionally, the accuracy based on null models
and associated p-values from hypothesis tests (Accuracy p-value and McNemar’s p-
value) is included. Values marked as NA indicate that the McNemar test was not
applicable for the comparison.

Predictor Model Accuracy
Kappa

(κ)
Accuracy
(Lower)

Accuracy
(Upper)

Accuracy
(Null)

Accuracy
(PValue)

Mcnemar
(PValue)

GRS + EC Textural Class 0.86 0.72 0.42 1.0 0.57 0.12 NA
GRS Textural Class 0.57 0.22 0.18 0.9 0.57 0.65 NA
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Table 4.4: Random Forest machine learning algorithm predictor importance for the
electrical conductivity (EC) and the gamma-ray spectrometry (GRS) scanning soil
texture prediction model. Mean Decrease Accuracy measures how much accuracy a
random forest model loses when a variable is permuted, or its values are changed to
random values. Mean Decrease Gini is a measure of how important a variable is in a
Random Forest model by quantifying its contribution to the model output.

Predictor Model
Mean Decrease

Accuracy (MDA)
Mean Decrease

Gini (MDG)

EC Shallow Clay 23.86 5.45
EC Deep Clay -2.03 5.53
GRS Clay Clay 27.08 3.47
GRS Sand Clay 26.45 3.44
GRS Silt Clay 25.26 3.40

EC Shallow Sand -10.83 4.50
EC Deep Sand 17.56 6.38
GRS Clay Sand -17.99 3.39
GRS Sand Sand -16.63 3.62
GRS Silt Sand -17.13 3.35

EC Shallow Silt 36.26 5.64
EC Deep Silt 33.69 5.51
GRS Clay Silt 10.93 4.07
GRS Sand Silt 10.69 4.10
GRS Silt Silt 10.95 4.06
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Figure 4.4: A: Interpolated prediction of soil textural variation in the experimental
site. The interpolation was performed using Inverse Distance Weighting (IDW). B:
The commercial produced model of soil texture variation from GRS scanning. C: The
Random Forest (RF) model of soil textural variation using GRS data as a predictor.
D: The random forest (RF) model of soil textural variation using GRS and EC data
as predictors. Colours indicate soil textural classification using the Soil Textural
Classification of England and Wales, adapted from Avery (2006).
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4.4 Discussion

Understanding the spatial variability of soil texture is essential for tailoring manage-
ment practices during the transition to CA. This study aimed to assess the utility
of two commercially available soil proximal sensing technologies: gamma-ray spec-
trometry (GRS) and electrical conductivity (EC), for predicting soil texture at the
field scale. The discussion that follows interprets the results of spatial correlation
and machine learning analyses, evaluates the relative performance of EC and GRS
scanning in estimating sand, silt, and clay content, and considers the implications
of these findings for the adoption of precision agriculture practices. In doing so, it
critically examines the extent to which these technologies can provide reliable, high-
resolution soil texture maps to inform agronomic decision-making and highlights the
limitations of current sensor-based approaches. The potential benefits of combining
sensor outputs in a multi-sensor “soil sensor fusion” framework are also explored.

This section addresses the tests of the following hypotheses (H ):

• H1: Commercially available soil scanning technologies are effective estimators
of soil textural variation to aid farmers in the transition to CA.

• H2: A soil texture prediction model which combines data derived from several
soil proximal sensors will exceed the accuracy of a model with data from a single
source.

The results of the correlation and error analysis presented in this study (Table
4.2) indicate that both commercially available soil proximal sensing services—electro-
conductivity (EC) and gamma-ray spectrometry (GRS)—predicted soil texture poorly
overall when compared to sampled field data. Prediction accuracy varied considerably
between soil texture components.

The site was predominantly sandy loam and sandy clay loam (Natural England,
2008); however, GRS scanning classified it as silty clay loam. This discrepancy sug-
gests that GRS scanning may be less effective at detecting sand particles. For clay
content, GRS scanning performed moderately well, with a root mean squared error
(RMSE) of 3.09 and a moderate positive correlation (r = 0.39) with sampled values.
In contrast, EC showed lower accuracy for clay (RMSE = 7.65, r = 0.3). For sand,
both methods performed poorly. GRS had a moderate positive correlation (r = 0.49)
with sampled sand content, but high prediction errors (RMSE = 38.1). EC scanning
showed a negative correlation (r = -0.33), indicating an inverse and unreliable rela-
tionship, although with slightly lower error (RMSE = 33.99). For silt content, the
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results were mixed. GRS scanning showed a stronger correlation with sampled values
(r = 0.46), but the associated RMSE was high (35.75), suggesting large deviations
from actual values. EC scanning, while showing a weaker correlation (r = 0.3), had
much lower prediction errors (RMSE = 3.35), indicating better absolute accuracy.
Overall, GRS scanning tended to capture spatial trends in clay and sand content
more effectively (as shown by higher correlation coefficients), but EC scanning pro-
duced lower prediction errors for silt. Both methods were inadequate for accurate
sand prediction and should be interpreted with caution.

It has been suggested that machine learning methods may outperform linear
regression approaches for calibrating models on soil data; this is because machine
learning algorithms are capable of determining complex and non-linear relationships
(Wehrle and Pätzold, 2024). Therefore, this study employed a Random Forest (RF)
machine learning algorithm to assess which scanning technology was a more accu-
rate predictor of soil texture in the experimental site. The results of the RF model
highlight the different predictive power of EC and GRS variables in the classification
of soil texture. When assessing model predictor variable importance, there are two
key outputs to a RF model: Mean Decrease Accuracy (MDA) and Mean Decrease
Gini (MDG). MDA quantifies how much the accuracy of the model decreases when a
particular feature is permuted, which disrupts its ability to contribute to the model
prediction. This helps in understanding which features have the most influence on
the model’s predictions. Whereas, MDG is a quantification method of a variable’s
importance in a Random Forest model. It quantifies how much a variable decreases
impurity as classification is performed. Therefore, the higher the MDG score, the
more important the variable is to the model. In this study, model parameter impor-
tance was assessed using both metrics for the random forest model with both GRS
and EC included as model predictors.

For clay content prediction, GRS predictors consistently demonstrated high MDA
values, with the GRS clay predictor (27.08), GRS sand predictor (26.45), and GRS silt
predictor (25.26) being the most influential variables. This indicates that GRS-based
variables are particularly well-suited for identifying clay particle content. Whereas
EC predictors resulted in mixed accuracy for clay classification. The deep EC data
exhibited a slightly negative MDA of -2.03, indicating that it did not contribute pos-
itively to model accuracy for clay content. On the other hand, the shallow EC data
exhibited a moderately strong predictive capacity, with an MDA of 23.86. However,
the deep EC variable emerged as the most important predictor of sand content with
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an MDA of 17.56, indicating its relevance in detecting coarse-textured soils. Con-
versely, the GRS-based predictors exhibited negative MDAs, suggesting that GRS
scanning methodologies may be inadequate or even misleading when applied to sand
content prediction. For silt content classification, both shallow and deep EC predic-
tors demonstrated the highest variable importance, with MDAs of 36.26 and 33.69,
respectively. Additionally, MDG values were generally lower than MDA values but
followed a similar trend, reinforcing the relative dominance of GRS predictors for
clay classification and EC predictors for silt and sand. These findings suggest that
the combination of both GRS and EC predictors could enhance the overall model
accuracy.

Although GRS and EC have both been shown to be able to predict soil texture
variation with some accuracy in some cases (Mahmood et al., 2013; Heil and Schmid-
halter, 2012), demonstrating the potential of both technologies. Much of the success
or failure of prediction accuracy is attributed to the model that the scanning data
is used in, and the covariate parameter of that model. Accurate models of soil tex-
tural variation underpin the very idea of precision agriculture, as this is the tool for
identifying areas of farm land which require different management (e.g variable rate
nutrient application and seeding). However, investment in this technology is only
worthwhile for farmers if the underlying soil mapping is accurate and sufficiently
precise enough to support effective spatially variable management application rates
(Rhymes et al., 2023). Unfortunately, the widespread application of these technolo-
gies within an agricultural setting is complex, as the correlation between soil textural
properties and the directly measured variables (soil electrical conductivity, gamma
ray emission, etc.) varies greatly between sites, soil types and management practices.

The GRS data in particular was found to have high prediction error for sand
(RMSE = 38.1) and silt (RMSE = 35.75) concentration in particular when com-
pared to the samples analysed by laser diffraction. The high error in this prediction of
soil texture is possibly due to insufficient representative calibration data; the scan was
calibrated against three samples ha−1. However, the results of this chapter demon-
strated that five samples ha−1, combined with another predictor variable, were not
sufficient to train an accurate machine learning model to predict the spatial soil tex-
tural accurately in one site. Rhymes et al. (2023) highlighted concerns regarding the
lack of commercial regulations to ensure accurate data is provided by soil mapping
agribusinesses. They compared this to commercial soil testing laboratories, which of-
fer more accurate services and require mandatory ISO accreditation (ISO/IEC, 2019).
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They recommend that businesses that provide soil scanning also be required to pro-
vide independent accuracy estimates for analysis, which will help the farmer or end
user to critically assess the accuracy of the services provided. They also recommend
that future commercial services should include a multi-proximal sensor approach, as
a combination of these technologies has been shown to have the potential to signifi-
cantly improve prediction accuracy (Ji et al., 2019; Vasques et al., 2020; Rhymes et al.,
2023). The effects of “soil sensor fusion” were shown in this small machine learning
model in this chapter, where EC and GRS were both found to be important for the
model in different ways; GRS improved the model’s contribution to the homogeneity
of the nodes and leaves in the random forest, whereas EC improved the accuracy of
the model. Both variables showed promise for accurate modelling of clay (GRS), silt
and sand (EC) in combination. However, each scan in isolation did not predict soil
texture with sufficient accuracy that it would likely be useful for a farmer to make
evidence-based decisions on the implementation of precision agriculture operations.

Hypothesis H1 was only partially supported by the results. While both GRS and
EC scanning technologies showed some capacity to predict soil texture, their effective-
ness was highly variable depending on the soil property in question. GRS performed
moderately well in predicting clay content but failed to accurately estimate sand and
silt, with high RMSE values and poor correlation with sampled data. Conversely, EC
scanning performed relatively better in predicting sand and silt content but had in-
consistent results for clay. Random Forest modelling highlighted that GRS predictors
were more important for clay classification, while EC predictors contributed more to
accurate predictions of sand and silt. These findings indicate that neither scanning
technology alone provided reliable soil texture maps, and prediction accuracy was
likely limited by the low density of calibration samples and site-specific variability.

Hypothesis H2 was supported by the results of this study, as the findings sug-
gest that the combination of both GRS and EC predictors could enhance the overall
model accuracy. The study supports the idea that a multi-sensor “soil sensor fusion”
approach may enhance predictive power, but also emphasises that, in their current
form, these commercial scanning tools lack the accuracy required for informed preci-
sion agriculture decision-making at the field scale.

4.5 Conclusion

The study assessed the potential of commercial scanning technologies, Gamma-Ray
Spectrometry (GRS) and Electrical Conductivity (EC) to predict soil texture. The
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hypothesis was only partially supported. GRS performed moderately well for pre-
dicting clay content, while EC was more accurate for sand and silt. However, pre-
diction errors remained high, particularly for sand, and the low density of calibration
samples likely limited model performance. Random Forest modelling showed that
both technologies contributed complementary information, supporting a multi-sensor
“soil sensor fusion” approach. Nonetheless, neither scanning method, in isolation
or combination, delivered the precision necessary for robust application in precision
agriculture. Furthermore, the adoption of sensor technologies in agriculture should
be accompanied by robust validation protocols and greater calibration sample density
to ensure the reliability of their outputs for on-farm decision making. In the short
term, farmers should continue to use physical sampling for soil texture analysis, as
this study has shown that there is poor accuracy for two commonly used commercially
available soil proximal sensors for soil textural prediction.
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Chapter 5

Soil Health and Function Under
Conservation Agriculture

5.1 Introduction

Soil health underpins the productivity and resilience of agricultural systems, acting as
a critical interface between environmental processes and crop performance. Conser-
vation Agriculture (CA) has been increasingly promoted as a systems-based approach
to enhance long-term soil function by minimising disturbance, maintaining organic
cover, and promoting crop diversity (Kassam et al., 2014b). However, the outcomes of
CA are often context-dependent, particularly during the transition from conventional
(CON) practices. This chapter characterises the main effects of the transition to CA
on the soil biological, physical, and chemical characteristics, and compares this with
conventional agriculture (CON).

5.1.1 Soil Physics in Conservation Agriculture

This section seeks to assess the effects of the transition to CA on soil physical proper-
ties. During the initial transitional years to CA, many farmers and academic studies
reported rises in soil bulk density in CA systems (Soane et al., 2012; Pidgeon and
Soane, 1977; Li et al., 2020a). This is to be expected in the absence of mechanical
tillage; however, as the system develops over time, the bulk density of the soil typically
decreases as the effect of soil biology begins to naturally alter the physical structure
(Blanco-Canqui and Ruis, 2018; Mondal et al., 2019). Other common results from
the application of CA include improvements to soil mechanical strength, aggregate
stability, and improvements to vertical macro-porosity (Soane et al., 2012). This is
evidenced by Li et al. (2007), who presents data from a 15-year experiment in China,
comparing the long-term effects of no-tillage (NT) and residue cover with CON in
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a winter wheat (Triticum aestivum L.) monoculture. They found that long-term
residue removal in combination with CON resulted in poor cropping productivity
and soil structure. The NT system with residue retention had 1.5% reduction in bulk
density and 3.2 % greater capillary porosity.

5.1.2 Soil chemistry in Conservation Agriculture

Soil nutrient availability is a fundamental contributing principle of a productive crop-
ping system, especially nitrogen availability at key crop growth stages (AHDB, 2023b;
Dordas, 2015). Typically, CON systems have been designed to supply the growing
crop with available nutrients during the cropping season via synthetic fertiliser ap-
plications (AHDB, 2023b). However, as already detailed in this chapter, the soil
physical and biological conditions alter significantly in CA in comparison to CON
systems. For example, many studies have detected significant alteration of soil or-
ganic matter pools and the stratification throughout the soil profile, which in turn
can influence microbial biomass and community structure (Wacker et al., 2022). Such
changes in microbial biomass can result in alteration of plant nutrient availability and
the distribution of available nutrients in the soil profile (Page et al., 2020; Badagliacca
et al., 2021; Wacker et al., 2022).

Much of the change in nutrient availability in the two systems can be attributed to
greater plant residue retention in CA systems, as the residues contain nutrients which
result in higher quantities of soil nutrient stores, and the lack of tillage, which breaks
down organic material and incorporates it into the soil resulting in faster microbial
decomposition and mineralisation of plant nutrients. Hence, typically there is found
to be differences in total, organic, and inorganic N fractions with CA and CON
systems (Mukherjee et al., 2024). This was found by Li et al. (2007) where, after 15
years of NT and residue retention, the total N and P were 27.9% and 25.6% higher,
respectively, than the CON treatment, where residue removal had taken place. This
result was also found by Badagliacca et al. (2021), who found 20% higher extractable
N in the CA system than the CON after 23 years of application of both systems.
However, during the early stages of the transition to CA, the combination of tillage,
residue incorporation, N fertilisation, and the higher soil temperatures associated
with CON systems may cause higher N availability in the short term in CON systems
(Mukherjee et al., 2024). Conversely, in the early stages of the transition to CA, it
is not uncommon for the total soil N to increase, but the quantity of plant available
N to decrease (Page et al., 2020). This is due to a combination of slower rates of
N mineralisation and N immobilisation in response to higher quantities of C being
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added with crop residues. These factors combine to reduce available N supply in the
short term, although over longer durations, as the total N and C content increase, the
C:N ratio reaches an equilibrium, thus resulting in improvements to N supply (Page
et al., 2020; Wang et al., 2006).

The absence of mechanical mixing of the soil and crop residues in CA systems
can result in stratification of immobile nutrients in the upper soil layers (Dang et al.,
2018; Page et al., 2020). In most cases, this is of agronomic benefit as this results in
higher nutrient availability in the rhizosphere. However, this is sometimes considered
a problem in arid cropping regions, as the surface of the soil dries to the extent that
plants cannot access the stored nutrients, leading to interest in strategic tillage in
CA systems in certain regions to mix the nutrients to deeper areas of the soil profile
(Dang et al., 2018; Çelik et al., 2019; Lawrence et al., 2023). The study by Wacker
et al. (2022), who studies organic matter stratification patterns to 50 cm depth in
two Danish farms, found the C:N ratio in the top 5cm of soil was 1.86 in the CA
treatment and 1.04 in the CON treatment. However, in this study, they also found
significant differences in the C:N stratification at lower soil depths, for example, at 20
- 30 cm, the C:N ratio in the CA treatment was 1.61 compared to 1.06 in the CON
treatment.

When other nutrients are considered, Lv et al. (2023) used a global meta-analysis
to analyse the effects of conservation tillage systems on the stratification of soil nu-
trients. They found that compared to the CON agriculture control treatment that a
variety of combinations of conservation tillage and residue retention increased avail-
ability of N, P, and K in the topsoil.

5.1.3 Soil Biology in Conservation Agriculture

Agricultural intensification during the green revolution is often shown to have had
strong negative impacts on soil biota (Henneron et al., 2015; Postma-Blaauw et al.,
2010). Typically, during agricultural intensification, the soil ecosystem regulatory
functions of soil biodiversity are gradually replaced by regulation through chemical
and mechanical inputs (Giller et al., 1997). However, tillage and cropping system
intensity have a complex interaction with the soil biological environment. The diver-
sity, activity, and abundance of the soil biota are all affected by the degree of tillage,
agrochemical inputs, and the type and quantity of crop residues returned to the soil
(Kladivko, 2001).

Soil biology itself plays an integral role in the overall health and function of a soil.
For example, macrofauna, such as earthworms, are key to soil structural formation.
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They mix organic material throughout the soil profile, whilst forming large soil pores
which aid in improvements to crop root development, soil aeration, and water infiltra-
tion and storage (Kladivko, 2001). In comparison, soil microorganisms are important
for soil organic matter decomposition and nutrient cycling (Henneron et al., 2015),
although each species of soil organism affects the soil in a different manner.

Typically, soil organisms are divided between soil microflora (bacteria, fungi, and
algae), and soil fauna, which is in turn divided into three separate categories: A:
Microfauna, typically small organisms which dwell in the water-filled pore space of
the soil (e.g. protozoa and nematodes). B: Mesofauna, which typically have an
average size of 0.2 mm and live in air-filled pore space of soil and litter (e.g. micro
arthropods and springtails). C: Macrofauna, which are larger than 2 mm and have the
ability to burrow through the soil (e.g. termites, earthworms, and large arthropods)
(Kladivko, 2001).

Soil organic matter is an integral driver of many soil functions and processes, as the
organic material provides substrate to the soil biota, as well as contributing to nutrient
cycling, water retention and soil structural genesis and maintenance (Palm et al.,
2014). As discussed previously in this chapter (Section 5.1.1), there is debate amongst
the scientific community regarding the magnitude of soil organic matter accumulation
in CA systems (Gadermaier et al., 2012). However, typically, any improvements to
soil organic matter accumulation are generally confined to upper levels of the topsoil
and are not identified further down the soil profile (Blanco-Canqui and Ruis, 2018).

Soils under RT agricultural systems, such as CA or NT, are generally found to
have higher microbial biomass in the topsoil compared to CON systems (Wang et al.,
2006; Doran, 1987; Muhammad et al., 2021; Li et al., 2018). This is often attributed to
a combination of factors commonly associated with CA systems, including increased
soil organic matter, reduced physical disturbance, and greater crop diversity (Palm
et al., 2014). These changes typically lead to increased abundance, diversity, and
stratification of soil biota. In turn, the feedback between soil organisms and soil
processes can enhance soil physical properties such as structure and aggregate stability
(Li et al., 2018).

Due to the important role soil biology plays within the soil ecosystem, future
research must aim to quantify the effects of transitions to different agricultural sys-
tems on the soil. In recent years, there has been a significant advancement in the
standardisation of protocols for sampling, extraction and determination of soil inver-
tebrates in particular, which has resulted in improved ease of monitoring changes to
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soil biodiversity (Gardi et al., 2009). One of the principal difficulties when monitor-
ing soil biodiversity relates to the taxonomic classification of soil invertebrates, which
requires skill and in-depth knowledge of taxonomic classifications at the species level
(Parisi et al., 2005). As a result, there has been increased usage of soil biodiversity
indices, based on a broader taxonomic resolution, key species, or morphological char-
acteristics, which are used to quantify and compare the diversity within ecological
communities. These indices offer a standardised way to assess biodiversity, making it
easier to analyse patterns and/or monitor changes over time. This reduces the need
for specialist knowledge when determining taxonomic classifications (Gardi et al.,
2009; Parisi et al., 2005).

This chapter compares several soil biodiversity indices to compare the differences
in soil biological diversity between the experimental treatments. These are: The
“Qualità Biologica del Suolo” (Biological quality of the soil), which is usually abbre-
viated to the QBS-ar index Parisi et al. (2005). This index is based upon a simple
concept: the higher the soil quality, the higher the number of micro arthropod groups
well adapted to soil habitats (Parisi et al., 2005). It uses morphological character-
istics and assigns higher scores to organisms that exhibit greater adaptation to the
belowground soil environment, which will reflect habitat quality and stability. It does
not require a species-level diagnosis, meaning it is a fast method that does not re-
quire specialist skills in taxonomic identification. Thus, it is typically used for large
experiments with many samples.

Although the QBS-ar index has been designed to be user-friendly to non-experts in
taxonomy, there are still significant limitations for farmers in terms of the practicality
of using both of these indices to assess their own land. One of the key reasons for
this is that the organisms required for both indices require extraction using a Berlese-
Tüllgren extractor and are analysed under a stereomicroscope. This equipment is
specialist and therefore the methodologies are not particularly accessible to the aver-
age farmer. Therefore, this chapter also assesses one EMI based on earthworms, as
these are one of the most frequently used bioindicators to evaluate soil quality. They
are easy to sample, require no specialist equipment, and the eco-types are distinguish-
able to non-experts. In this chapter, a new earthworm abundance index based on the
QBS index system is used, known as QBS-e (Fusaro et al., 2018).

The eco-morphological indexes introduced above are compared to the Shannon
Diversity Index (Shannon, 1948). This is a widely used and well-established index
in soil ecology for quantifying biodiversity within a community, accounting for both
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species richness (the total number of species present) and species evenness (the dis-
tribution of individuals across these species) (Van Leeuwen et al., 2015). A higher
Shannon biodiversity index indicates greater diversity, including both a large number
of species and a more even distribution of individuals within the species. It is gen-
erally considered that higher levels of biodiversity are indicative of healthier soils or
ecosystems (Lehman et al., 2015a; Rose et al., 2016).

As the adoption of CA globally continues to increase, there is currently a lack of
understanding in the scientific literature on the effects of CA systems on soil fauna
communities. Many studies are available evaluating the individual principles of CA
(Li et al., 2020b; Muhammad et al., 2021; Venter et al., 2016), however, more systemic
approaches are needed to consider all CA principles as a whole at the cropping system
level for a fuller understanding of the effects of the system on soil biota (Dulaurent
et al., 2023; Henneron et al., 2015; Denier et al., 2022).

5.1.4 Research Aims and Hypotheses

The research aims (A) of this chapter are:

• A1: Analyse the effects of the transition to CA on the soil chemical environment
in comparison to a CON system.

• A2: Analyse the effects of the transition to CA on the soil physical environment
in comparison to a CON system.

• A3: Analyse the effects of the transition to CA on the soil biological environment
in comparison to a CON system.

This chapter tests the following hypotheses (H ):

• H1: CA results in significantly higher diversity and abundance of soil micro
arthropods and earthworms compared to CON practices.

• H2: CA increases soil organic carbon content over time compared to CON.

• H3: Soil bulk density and compaction are lower under CA, than CON, due to
reduced mechanical disturbance.
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5.2 Materials and Methods

5.2.1 Soil Sampling and Preparation

The standard sampling consisted of 50 samples from the experimental site (25 sam-
ples per treatment) taken at randomly generated points following the methodology
outlined in Chapter 3. The sampling points are presented in Table 5.1 and in Figure
5.1. However, the quantity of samples collected from each plot depended on the type
of analysis. Thus, the following sections detailing the specific soil sample analysis
also detail the quantity of samples taken.

Samples were prepared and dried following the standard operating procedure for
soil samples for chemical and physical analyses FAO (2019b). Samples were dried in
foil trays at 35 ± 5 ◦C in a soil drying room at Harper Adams University, Shropshire,
UK. The drying process was assisted by breaking up the soil’s large aggregates. The
dried samples were then disaggregated using a ceramic mortar and pestle in a well-
ventilated area and passed through a 2 mm stainless steel sieve, removing large stones
and plant material.

Figure 5.1: Soil sampling points during the experimental duration (n = 25). The
sampling zones, generated using the methodology outlined in Chapter 3, are also
presented.
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Table 5.1: Randomly generated soil sampling point coordinates with experimental
treatment and soil zone classification

Longitude Latitude Sample Plot Treatment Soil Zone

-2.60497394 52.91555848 2 1 Conservation 1
-2.60567013 52.9151764 8 1 Conservation 2
-2.60641565 52.91510095 11 1 Conservation 3
-2.60670045 52.91486498 19 1 Conservation 4
-2.60702974 52.91474819 22 1 Conservation 5
-2.60723424 52.91506616 28 2 Conservation 5
-2.60682046 52.91515785 33 2 Conservation 4
-2.60644411 52.91520737 40 2 Conservation 3
-2.60541382 52.91564033 44 2 Conservation 2
-2.60519641 52.91562634 48 2 Conservation 1
-2.60531422 52.91581217 51 3 Conservation 1
-2.60615086 52.91567413 58 3 Conservation 2
-2.60650305 52.91539601 64 3 Conservation 3
-2.60668698 52.91540406 66 3 Conservation 4
-2.60706456 52.91533377 72 3 Conservation 5
-2.60692161 52.91559476 78 4 Conservation 5
-2.60681713 52.91553725 81 4 Conservation 4
-2.60665621 52.91568972 88 4 Conservation 3
-2.6063768 52.9157305 92 4 Conservation 2
-2.60560688 52.91603044 96 4 Conservation 1
-2.60568222 52.91628565 103 5 Conservation 1
-2.6063992 52.91596317 110 5 Conservation 2
-2.60684083 52.91587669 114 5 Conservation 3
-2.60692782 52.91582384 116 5 Conservation 4
-2.60715622 52.91573972 122 5 Conservation 5
-2.60776209 52.91580854 126 6 Conservation 5
-2.60713123 52.91602907 135 6 Conservation 4
-2.60691328 52.91605611 136 6 Conservation 3
-2.60600544 52.91627966 145 6 Conservation 2
-2.60594246 52.91642491 148 6 Conservation 1
-2.60833057 52.91447029 154 7 Conservation 1
-2.60876278 52.91428819 158 7 Conservation 2
-2.60950852 52.9140496 165 7 Conservation 3
-2.60992644 52.9137257 167 7 Conservation 4
-2.61150515 52.91305053 173 7 Conservation 5
-2.61193212 52.91301373 177 8 Conservation 5
-2.61029275 52.91383847 183 8 Conservation 4
-2.60940362 52.91421718 186 8 Conservation 3
-2.60888236 52.91447639 194 8 Conservation 2
-2.60851254 52.91474912 200 8 Conservation 1
-2.60882623 52.91486601 201 9 Conservation 1
-2.60934382 52.9145568 208 9 Conservation 2
-2.609546 52.91445272 212 9 Conservation 3
-2.61059953 52.91391754 216 9 Conservation 4
-2.61166641 52.91340229 223 9 Conservation 5
-2.61208396 52.91349043 229 10 Conservation 5
-2.61080668 52.91410248 235 10 Conservation 4
-2.60986895 52.91457981 239 10 Conservation 3
-2.60984365 52.91471595 241 10 Conservation 2
-2.60922597 52.91488609 247 10 Conservation 1

5.2.2 Dry Bulk Density

Soil dry bulk density is the ratio of the dry mass to the bulk volume of soil particles
plus pore spaces in a sample (Blake, 1965). To calculate the quantity of observations
(n) required in this experiment to test the hypothesis, the effect sizes (Cohen’s d)
were taken from Brown et al. (2021) who examined the effects of reduced tillage on
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soil carbon and dry bulk density from three medium-term experiments in sites with
contrasting soil and climatic characteristics in the UK. The effect size and Cohen’s
d were calculated following the methodology outlined in Chapter 3, and the power
plotted as a function of effect size and observation number.

Fifty soil cores were taken for dry bulk density analysis on 09/10/2021, 23/08/2023
and 21/08/2024 to a depth of 5 cm following the methodology of Soto Gómez et al.
(2020). The Eijkelkamp sample ring kit model C53 was used, which consists of a steel
ring with a sharpened edge, with a height of 5.1 mm, an outside diameter of 53 mm,
and an internal volume of 100 cm3 (Eijkelkamp Soil & Water, 2019). The steel ring
is placed into a ring holder and inserted into the soil to the required depth. The ring
holder is then removed from the soil, and the ring is removed from the holder with
the undisturbed soil sample inside. The samples were placed into foil trays and dried
to a constant weight at 105 ◦C. The samples were cooled in a desiccator and then
weighed to determine the true dry bulk density using the following equation:

ρb = (m2 − m1)
V

(5.1)

Where ρb is the dry bulk density of the soil (g cm−3), m1 is the mass of the foil
tray (g), m2 is the mass of the foil tray with the soil after drying (g), and V is the
volume of the steel ring used for the sample extraction (g cm−3).

5.2.3 Organic Matter and Total Carbon

Soil samples were taken from the field using an auger on 09/10/2021, 23/08/2023
and 21/08/2024 to a depth of 20 cm. Five samples per plot were taken, resulting
in 25 samples per treatment. The samples were placed into bags and transported
to the lab, where they were dried and prepared as per the methodology detailed in
section 5.2.1. Soil organic matter content was determined using the Loss on Ignition
(LOI) methodology detailed by Soto Gómez et al. (2020). Firstly, 10 g of the 2 mm
sieved soil was placed into crucibles and dried at 105 ◦C until the sub-samples were a
constant weight. Then, the initial mass was recorded and the samples placed into a
muffle furnace at 450 ◦C for 4 hours and cooled in a desiccator and re-weighed. The
percentage of soil organic matter within the sample was then calculated with this
equation:

%SOM = (mDS − mBS)
mDS − mC

× 100 (5.2)
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Where mDS is the mass of the dry soil and the crucible (g), mBS is the mass of
the burnt soil and the crucible (g), and mC is the mass of the crucible (g).

The total carbon (C) concentration was analysed using the Dumas dry combustion
method (FAO, 2019c), which determines the content of all forms of C in the soil by
burning samples at a high temperature (between 900 and 1000 ◦C or 1400 and 1600
◦C) in an atmosphere of pure oxygen (FAO, 2019c; Soto Gómez et al., 2020). 1.5 g of
sieved and dried soil was ground using a pestle and mortar and placed into a foil wrap
and inserted into an element analyser (LECO FP-528), which was calibrated before
use with known C standards. Replicated blanks were also analysed to determine the
baseline according to the equipment procedure.

5.2.4 Penetration Resistance

Dry bulk density is usually considered to be the most accurate field measurement of
soil structure as it is directly related to soil porosity, as it expresses the relationship
between the soil mass and the volume it occupies (Hernanz et al., 2000). However,
dry bulk density sampling is labour-intensive and can be an especially slow process
if dry bulk density at multiple depths is required, as this requires taking deep soil
cores. Soil penetration resistance measures a soil’s resistance to deformation or com-
paction, which can be influenced by soil strength numerous factors, including soil
texture, compaction, structure, moisture content, dry bulk density, vegetation, and
agricultural history (Kumi et al., 2023). Soil penetration resistance in field conditions
is measured with cone penetrometers. A cone penetrometer consists of a steel cone
mounted on a steel rod, which is pushed vertically into the ground (Hernanz et al.,
2000).

An Eijkelkamp GPS-enabled penetrologger (Eijkelkamp Soil & Water, 2024) was
used to record at 20 sample points per plot on 10/05/2024. The sample locations were
randomly generated using the methodology outlined in Section 3.4. The penetrologger
was equipped with a 2 cm diameter cone with a 60◦ slope inserted at a rate of
2 cm s−1. Data normality and heterogeneity of variances were analysed using the
methodology outlined in Section 3.10. The penetration resistance data were analysed
using a generalised linear mixed-effects model following the model formula detailed
in Section 3.10 using the depth of the measurement as a random model effect. An
inverse link function was chosen as the penetration resistance data was continuous,
and negatively skewed as shown in Appendix A.2. The mean penetration resistance
was then calculated for 5 cm increments, and separate generalised linear mixed effects
models were then run for each 5 cm increment from 0 - 80 cm depths.
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5.2.5 Soil Chemical Analysis

Soil samples were sent to NRM Laboratories Ltd., Bracknell, UK (division of Ca-
wood Scientific Ltd.). The laboratories hold ISO/IEC accreditation (ISO/IEC 2017).
Samples were sent for standardised soil agronomic analysis as recommended by UK
nutrient management guidelines (AHDB, 2017). Measurements included soil pH and
soil indices P (Olsen P method (Olsen, 1954)), Mg and K (NRM, 2021a). Treat-
ment differences were modelled using generalised linear mixed-effects models using
the model formula outlined in Equation 3.8 in Section 3.10.5.3.

5.2.6 Earthworm Abundance

Earthworm abundance and ecotype sampling occurred on 04/03/2022, 26/04/2023,
and 13/05/2024 at random points in each plot following the methodology previously
outlined in Section 5.2.1. The hand-sorting technique was used following the method
of Soto Gómez et al. (2020). A 50 cm x 50 cm x 25 cm block was excavated from the
soil and placed upon a plastic tray, where it was sorted by hand. Earthworms were
then transferred to sealed plastic jars with a damp paper towel at the bottom. All
jars were labelled and moved from the field to the laboratory in a cool box.

In the laboratory, earthworms were washed and classified into ecotypes. Although
these are not functional groups, their habitats differ; therefore, they have different
effects on the ecosystem (Burton et al., 2024). After 24 hours, the total mass of
earthworms was then weighed and recorded, and the abundance of each ecotype was
recorded. These were then assigned an eco-morphological score (EMI). The EMI
method used was the QBS-e index, which is based on scoring each systematic group’s
adaptation level in the soil, as per the methodology of (Fusaro et al., 2018).

Earthworm abundance was checked for normality and homogeneity of variances
using the methodology outlined in Section 3.10. Overdispersion was assessed using
the methodology outlined in Section 3.10.4. The data were not normally distributed,
were not overdispersed, and had a positive skew. Therefore, to assess the effect of the
treatment on the response variable, a generalised linear mixed effects model (GLMM)
was fitted using a Gamma distribution with a log link function in the R package lme4
(Bates et al., 2015). The model was specified with the experimental treatment as the
fixed effect. The effects of Crop and Block were assessed and accounted for little of
the variation within the model; therefore, these were not included due to singularity.
Model convergence issues were identified; therefore, the models were fitted using a
bound optimisation by quadratic approximation (BOBYQA) model optimiser using
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the bobyqa control function (Powell, 2009) in lme4 (Bates et al., 2015). In addition,
diagnostic plots were generated to visually assess the fit of the model, verify model
assumptions, and identify potential issues, such as overdispersion or non-linearity.
Pairwise comparisons between the treatment levels, if applicable, were performed
using emmeans to assess the magnitude of differences between treatment groups.

Table 5.2: EcoMorphological (EMI) scores attributed to each ecological category and
age. Source: Fusaro et al. (2018); Paoletti et al. (2013).

Ecological category Age EMI score

Hydrophilic (HYD) Immature (Im) 1
Hydrophilic (HYD) Adult (Ad) 1
Coprophagic (COP) Immature (Im) 2
Coprophagic (COP) Adult (Ad) 2
Epigeic (EPI) Immature (Im) 2.5
Endogeic (END) Immature (Im) 2.5
Epigeic (EPI) Adult (Ad) 3
Endogeic (END) Adult (Ad) 3.2
Anecic/Deep-burrower (ANE) Immature (Im) 10
Anecic/Deep-burrower (ANE) Adult (Ad) 14.4

5.2.7 Micro-arthropod Abundance

Undisturbed soil cores with a diameter of 10 cm were taken on 09/10/2022, 23/08/2023
and 15/08/2024, to a depth of 10 cm from randomly generated points within the field
site (n = 25) shown in Figure 5.1. The samples were bagged and transported to
the laboratory, where they were placed into a Berlese-Tüllgren extractor within 24
hours after sampling. The extractor consisted of an incandescent lamp (60 W) situ-
ated 30 cm above the soil sample, a sieve (2 mm mesh) where the soil samples are
placed above a stainless-steel funnel. The samples were left in the extractor for 14
days, and the micro arthropods were collected in a solution of 70% industrial methy-
lated spirits. The extracted specimens were observed under a stereomicroscope at low
magnification in the preservative liquid, and the biological forms (morphotypes) were
characterised and assigned an eco-morphological score (EMI). The EMI method used
was the QBS-ar index, which is based on scoring each systematic group’s adaptation
level in the soil, as per the methodology of (Parisi et al., 2005).
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Table 5.3: Eco-morphological index (EMI) scores used to assess soil microarthropod
abundance. Adapted from Parisi et al. (2005).

Group EMI Score

Protura 20
Diplura 20
Collembola 1–20
Microcoryphia 10
Zygentomata 10
Dermaptera 1
Orthoptera 1–20
Embioptera 10
Blattaria 5
Psocoptera 1
Hemiptera 1–10
Thysanoptera 1
Coleoptera 1–20
Hymenoptera 1–5
Diptera (larvae) 10
Other holometabolous insects (larvae) 10
Other holometabolous insects (adults) 1
Acari 20
Araneae 1–5
Opiliones 10
Palpigradi 20
Pseudoscorpiones 20
Isopoda 10
Chilopoda 10–20
Diplopoda 10–20
Pauropoda 20
Symphyla 20

For the extracted and characterised soil micro arthropod morphotypes, the Shan-
non Diversity Index was also applied as a measure to characterise the diversity of
species within the morphotype communities as per the well-established methodol-
ogy (Shannon, 1948). The methodology is based upon communication theory where
the Shannon Function H ′ is a measure of uncertainty, corresponding to the entropy
concept defined by:

H ′ = −
S∑

i=1
pi log(pi)) (5.3)

Where H ′ is the Shannon-Wiener Index, S is the total number of species, pi is the
proportion of individuals belonging to species i.e., pi = ni

N
, where ni is the number of

individuals of species and N is the total number of individuals. The Shannon Index
was generated using the vegan package in R (Oksanen et al., 2024).

Data normality and heterogeneity of variances were analysed using the methodol-
ogy outlined in Chapter 3.10, and analysed using the generalised linear model formula
outlined previously (3.10). No transformations performed before modelling as is rec-
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ommended for count data (O’Hara and Kotze, 2010). A quasi-Poisson distribution
was chosen as there was a high amount of overdispersion in the data, which was tested
using the methodology outlined previously in Section 3.10. As a quasi-Poisson model
family was used, random effects could not be modelled; therefore, the experimental
year and block were included as fixed effects.

The data calculated using the Shannon Index was analysed using the lmerTest
R package (Kuznetsova et al., 2017), with Treatment and Year as fixed effects with
an interaction term and the experimental block included as a random effect to ac-
count for potential spatial correlation. A linear mixed-effects model was chosen for
this dataset as it met the normality assumptions of the model criteria and was not
over-dispersed. The model syntax followed the linear mixed effect model outlined pre-
viously in Section 3.10, with the exception of the experimental block being modelled
as a random effect to take into account spatial variation. Further multivariate anal-
ysis was conducted using principal component analysis (PCA) using the ggbiplot
package (Vu et al., 2024). This was performed to evaluate the change in the eco-
morphological community structure of individual treatments over the experimental
duration. PCA multivariate analysis was also performed for the different taxonomic
groupings within and between treatments. PCA was performed separately for each
year of the experiment, where individual variables were centred and scaled.

5.3 Results

5.3.1 Dry Bulk Density

The power analysis of the data from Brown et al. (2021) found an d value of 0.8
for detecting changes in dry bulk density between the tillage treatment at the 4 cm
depth, a d value of 0.58 at 9 cm depth, and a d value of 0.63 at 27 cm depth. At a d

value of 0.8, it was found that sufficient power (α = 0.05) is achieved with n = 120.
However, for statistically testing the hypothesis that CA alters the dry bulk density
at depths lower down the soil profile, it was found that an observation size of n = 160
would be sufficient for a simulated d value of 0.6. This is shown below in Figure
5.2, which is a simulation of the required sample sizes for reliable detection of soil
dry bulk density differences in agricultural tillage systems using a range of d values
ranging from 0.1 - 1.

Analysis of the soil dry bulk density identified that the CA treatment had a
significantly higher dry bulk density than the CON treatment for the experimental
duration (β = -0.05, SE = 0.02, Z = -3.45, p = 0.002). The baseline soil dry bulk
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Figure 5.2: Power (α) curve for detecting differences in soil dry bulk density across
various effect sizes and sample sizes. The curve illustrates the relationship between
the number of observations (x-axis) and statistical power (y-axis) for different effect
sizes (Cohen’s d).

density for the experimental site was 1.25 g cm−3, which increased in both the CA
treatment (1.39 g cm−3) and the CON treatment (1.29 g cm−3) during the first year
of the experiment. Following the second year of the experiment, the dry bulk density
had risen again to 1.37 g cm−3 in the CON treatment and also risen to 1.41 g cm−3

in the CA treatment. The final year of the experiment followed the same trend as
previous years, with the dry bulk density rising in both treatments to 1.44 g cm−3

in the CON treatment and to 1.53 g cm−3 in the CA treatment. Statistical analysis
identified no significant differences between the CON (β = -0.09, SE = 0.07, Z =
-1.33, p = 0.38) or CA treatments and the baseline values (β = -0.14, SE = 0.07, Z

= -2.14, p = 0.08). The results from the soil dry bulk density analysis are presented
below in Figure 5.3. Distributions and model diagnostics are presented in Appendix
A.1.
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Figure 5.3: Mean soil dry bulk density (g cm−3) for the baseline measurements and
each treatment presented by year (A n = 25) and by treatment for the total exper-
imental duration (B: n = 2). Error bars indicate the standard error of the mean.
Note: Y-axis truncated to highlight treatment differences.

5.3.2 Penetration Resistance

Overall, the CON treatment was found to have a significantly higher penetration
resistance from 0 - 80 cm in depth in comparison to the CA treatment (β = 0.039,
SE = 0.015, Z = 2.5, p = 0.013). When the 5 cm depth increments were analysed,
it was found to be no significant difference between the two treatments in the first
10 cm of the top soil; however, from 10 - 45 cm, the CON treatment was found to
have a significantly higher penetration resistance in comparison to the CA treatment.
There were no significant differences found from 45 - 50 cm; however, from 50 - 70
cm, the CA treatment had a significantly higher penetration resistance in comparison
to the CON treatment. No significant differences were then found further down the
soil profile. The penetration resistance for both treatments is presented in Figure 5.4.
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Figure 5.4: The results from the penetration resistance sampling measured in mega-
pascals (MPa). The CA treatment is shown in blue, and the CON treatment in red
(n=100). The ribbon indicates the standard error of the mean.

5.3.3 Soil Chemical Analysis
Total Carbon

Analysis of soil total carbon identified weak evidence of an increase in soil total carbon
in the CA treatment compared to the CON treatment for the experimental duration
(β = -0.04, SE = 0.02, Z = -2.33, p = 0.051). The mean baseline soil total carbon
was 1.66%, which was found to fall slightly in the first year of the experiment to 1.52%
in the CON treatment and to 1.62% in the CA treatment. In the second year of the
experiment, the mean soil total carbon increased in both treatments from the previous
year, to 1.6% in the CON treatment and to 1.64% in the CA treatment. Samples
were collected for the final year of the experiment, but due to time constraints, have
not been included in these results and analysis. The mean soil total carbon in the
CON treatment was not found to have statistically changed from the baseline value
(β = 0.07, SE = 0.1, Z = 0.64, p = 0.8), which was similar for the CA treatment (β
= 0.02, SE = 0.1, Z = 0.2, p = 0.97). The results from the soil total carbon analysis
are presented below in Figure 5.5. Distributions and model diagnostics are presented
in Appendix A.3.

Phosphorus

Analysis of soil available Phosphorus (P) identified a significant increase in soil avail-
able P (mg l−1) in the CA treatment throughout the experiment compared to the
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Figure 5.5: Mean soil total carbon (%) for the baseline measurements (n = 10)
and each treatment presented by year (A n = 25) and by treatment for the total
experimental duration (B n = 2). Error bars indicate the standard error of the
mean. Note: Y-axis truncated to highlight treatment differences.

CON treatment (β = -0.23, SE = 0.03, Z = -6.67, p < .0001). The baseline mean
available P was 19 mg l−1, this reduced in both treatments during the first year of
the experiment, to 12.8 mg l−1 in the CON treatment, and to 15.8 mg l−1 in the CA
treatment. During the second year of the experiment, the available P rose in both
treatments from the previous year to 14.2 mg l−1 in the CON treatment and to 18.3
mg l−1 in the CA treatment. During the final year of the experiment, the trend con-
tinued in both treatments, where the soil available P rose to 17.3 mg l−1 in the CON
treatment and to 22.2 mg l−1 in the CA treatment, the first mean available P results
above the baseline mean result. The mean soil available P in the CON treatment was
not found to have statistically changed from the baseline value (β = 0.26, SE = 0.25,
Z = 1.07, p = 0.53), or for the CA treatment (β = 0.04, SE = 0.25, Z = 0.15, p =
0.98). The results from the soil total carbon analysis are presented below in Figure
5.6. Distributions and model diagnostics are presented in Appendix A.5.

Potassium

Analysis of soil available Potassium (K) identified a significant increase in soil available
K (K mg l−1) in the CA treatment throughout the experiment compared to the CON
treatment (β = -0.46, SE = 0.04, Z = -11.78, p < .0001). The baseline mean available
K was 129 mg l−1, which reduced in the CON treatment during the first year of the
experiment to 97.8 mg l−1; however increased in the CA treatment to 185 mg l−1.
There was a similar result in the second year of the experiment, where the soil K
availability in the CON treatment reduced to 81.3 mg l−1, and the CA treatments’
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Figure 5.6: Mean soil available Phosphorus (P mg l−1) for the baseline measurements
(n = 10) and each treatment presented by year (A n = 25) and by treatment for the
total experimental duration (B n = 3). Error bars indicate the standard error of the
mean. Note: Y-axis truncated to highlight treatment differences.

mean available K content also reduced from the previous year to 142 mg l−1. During
the final year of the experiment, both treatments had increases in the mean available
K to 135 mg l−1 in the CON treatment, and to 168 mg l−1 in the CA treatment.
The mean soil available K in the CON treatment was not found to have statistically
changed from the baseline value (β = 0.24, SE = 0.27, Z = 0.87, p = 0.66), or for
the CA treatment (β = -0.23, SE = 0.27, Z = -0.83, p = 0.69). The results from the
soil available K analysis are presented below in Figure 5.7. Distributions and model
diagnostics are presented in Appendix A.6.

Figure 5.7: Mean soil available Potassium (K mg l−1) for the baseline measurements
(n = 10) and each treatment presented by year (A n = 25) and by treatment for the
total experimental duration (B n = 3). Error bars indicate the standard error of the
mean. Note: Y-axis truncated to highlight treatment differences.
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Magnesium

Analysis of soil available Magnesium (Mg) identified a significant increase in soil
available K (K mg l−1) in the CA treatment throughout the experiment compared to
the CON treatment (β = -0.46, SE = 0.04, Z = -11.78, p < .0001). The baseline
available Mg mean was 60.2 mg l−1, which rose in both treatments after the first year
of the experiment to 72.6 mg l−1 in the CON treatment and to 79.5 mg l−1 in the CA
treatment. There were similar results identified in the second year of the experiment,
where the CON treatment had a mean available Mg of 73.3 mg l−1 and the CON
treatment had a mean of 77.3 mg l−1. In the final year of the experiment, there were
increases in mean available Mg identified in both treatments, 75.6 mg l−1 in the CON
treatment, and 81.6 mg l−1 in the CA treatment. The mean soil available Mg in the
CON treatment was not found to have statistically changed from the baseline value
(β = -0.2, SE = 0.14, Z = -1.48, p = 0.3), or for the CA treatment (β = -0.27, SE

= 0.14, Z = -1.98, p = 0.12). The results from the soil available Mg analysis are
presented below in Figure 5.8. Distributions and model diagnostics are presented in
Appendix A.7.

Figure 5.8: Mean soil available Magnesium (mg l−1) for the baseline measurements
(n = 10) and each treatment presented by year (A n = 25) and by treatment for the
total experimental duration (B n = 3). Error bars indicate the standard error of the
mean. Note: Y-axis truncated to highlight treatment differences.

Total Nitrogen

Analysis of soil total Nitrogen (N) identified a significant increase in soil total N (%)
in the CA treatment throughout the experiment compared to the CON treatment
(β = -0.05, SE = 0.02, Z = -2.86, p = 0.01). The mean baseline total N for the
experimental site was 15.8%, which was found to reduce in both treatments during
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the first year of the experiment to 14.2% in the CON treatment, and to 15% in the
CA treatment. During the second year of the experiment, there were mild increases in
the mean total N in the CON treatment to 14.9%, whilst the mean total N in the CA
treatment remained relatively unchanged from the previous year at 15.5%. Samples
were collected for the final year of the experiment, but due to time constraints, have
not been included in these results and analysis. The mean soil total N in the CON
treatment was not found to have statistically changed from the baseline value (β =
0.09, SE = 0.1, Z = 0.9, p = 0.64), and for the CA treatment (β = 0.04, SE = 0.1,
Z = 0.4, p = 0.9). The results from the soil total N analysis are presented below in
Figure 5.9. Distributions and model diagnostics are presented in Appendix A.

Figure 5.9: Mean soil available Nitrogen (N mg l−1) for the baseline measurements
(n = 10) and each treatment presented by year (A n = 25) and by treatment for the
total experimental duration (B n = 2). Error bars indicate the standard error of the
mean. Note: Y-axis truncated to highlight treatment differences.

pH

Analysis of soil pH identified a significant decrease in soil pH in the CA treatment
throughout the experiment compared to the CON treatment (β = 0.03, SE = 0.01, Z

= 3.7, p < 0.001). The mean baseline pH was 6.26. In the CA treatment, this reduced
gradually throughout the experiment from 6.19 in 2022, 6.00 in 2023, and finally to
5.89 in the final year of the experiment, 2024. In contrast, the CON treatment
was found to have an increased pH of 6.39 in 2022 in comparison to the baseline
measurement. From 2022, this gradually declined, following a similar trend to the
CA treatment, to 6.25 in 2023 and to 5.93 in 2024. When statistically analysed,
neither CA (β = 0.04, SE = 0.04, Z = 0.89, p = 0.64) or CON (β = 0.01, SE

= 0.04, Z = 0.29, p = 0.95)were found to be significantly different to the baseline
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measurement. The results from the soil total N analysis are presented below in Figure
5.10. Distributions and model diagnostics are presented in Appendix A.

Figure 5.10: Mean soil pH for the baseline measurements (n = 10) and each treatment
presented by year (A n = 25) and by treatment for the total experimental duration (B
n = 3). Error bars indicate the standard error of the mean. Note: Y-axis truncated
to highlight treatment differences.

5.3.4 Earthworm Abundance
5.3.4.1 Juvenile Earthworms

There were no significant differences detected in the abundance of epigeic earthworms
in both experimental treatments during this study (β = 0.24, SE = 0.3, Z = 0.82, p

= 0.41). During the first year of the experiment, the extrapolated mean of juvenile
earthworms m−2 for the CA treatment was 240, compared to the CON treatment,
which had a lower abundance of 169 juvenile earthworms m−2. During the second
year of the experiment, a low abundance of juvenile earthworms was identified in
both treatments, with both treatments having the same mean quantity of juvenile
earthworms; 37.2 m−2. However, during the final year of the experiment, the mean
abundance rose in both treatments to 128 m−2 in the CA treatment and to 90.9 m−2

in the CON treatment. Mean abundance of juvenile earthworms is shown in Figure
5.11 by year (A) and for the duration of the experiment (B). Model diagnostics are
presented in Figure A.18.

5.3.4.2 Epigeic Earthworms

There were no significant differences detected in the abundance of epigeic earthworms
in both experimental treatments during this study (β = 0.1, SE = 0.27, Z = 0.4, p =
0.69). In the first year of the experiment, the CA treatment had an extrapolated mean
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Figure 5.11: Extrapolated mean abundance of juvenile earthworms (m−2) for each
treatment presented by year (A, n = 5) and by treatment for the total experimental
duration (B, n = 3). Error bars indicate the standard error of the mean.

abundance of 66.1 Epigeic earthworms m−2, and the CON treatment had a mean of
49.6 m−2. In the second year, mean abundance for both treatments was similar, with
a mean of 70.2 m−2 in the CA treatment and 57.9 m−2 in the CON treatment. During
the final year of the experiment, both treatments had similar mean abundance of 70.2
m−2 in the CA treatment and 78.5 m−2 in the CON treatment. Mean abundance of
Epigeic earthworms is shown in Figure 5.12 by year (A) and for the duration of the
experiment (B). Model diagnostics are presented in Figure A.19.

Figure 5.12: Extrapolated mean abundance of juvenile earthworms (m−2) for each
treatment presented by year (A, n = 5) and by treatment for the total experimental
duration (B, n = 3). Error bars indicate the standard error of the mean.
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5.3.4.3 Endogeic Earthworms

There were no significant differences detected in the abundance of Endogeic earth-
worms in both experimental treatments during this study (β = 0.02, SE = 0.42, Z

= 0.04, p = 0.97). During the first year of the experiment, the CA treatment had a
higher mean abundance of Endogeic earthworms (90.9 m−2), compared to the CON
treatment (41.3 m−2). However, during the second year of the experiment, the in-
verse was observed, where the mean abundance of Endogeic earthworms in the CON
treatment was 74.4 m−2 compared to 16.5 m−2 in the CA treatment. The final year
of the experiment had the highest mean abundance of endogenic earthworms during
the experiment for both treatments, 124 m−2 in the CA treatment and 112 m−2 in
the CON treatment. Mean abundance of Endogeic earthworms is shown in Figure
5.13 by year (A) and for the duration of the experiment (B). Model diagnostics are
presented in Figure A.20.

Figure 5.13: Extrapolated mean abundance of juvenile earthworms (m−2) for each
treatment presented by year (A, n = 5) and by treatment for the total experimental
duration (B, n = 3). Error bars indicate the standard error of the mean.

5.3.4.4 Anecic Earthworms

There were no significant differences in the mean abundance of Anecic earthworms
identified in this study (β = 0.41, SE = 0.46, Z = 0.9, p = 0.37). In the first year of the
experiment, the CA treatment had a higher extrapolated mean abundance of Anecic
earthworms (37.2 m−2) compared to the CON treatment (12.4 m−2), however in the
second year the difference in mean abundance between the treatments was reduced
(Conservation = 20.7 m−2, CON = 16.5 m−2). In the final year of the experiment,
the CON treatment had a mean abundance of 37.2 m−2 and the CA treatment had
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a mean abundance of 33.1 m−2. Mean abundance of Anecic earthworms is shown in
Figure 5.14 by year (A) and for the duration of the experiment (B). Model diagnostics
are presented in Figure A.21.

Figure 5.14: Extrapolated mean abundance of juvenile earthworms (m−2) for each
treatment presented by year (A, n = 5) and by treatment for the total experimental
duration (B, n = 3). Error bars indicate the standard error of the mean.

5.3.4.5 Total Earthworms

There was no statistical difference in mean total earthworm abundance identified
in this study (β = 0.11, SE = 0.13, Z = 0.9, p = 0.36). During the first year of
the experiment, the CA treatment had a mean total earthworm abundance of 434
m−2, compared to the CON treatment, which had 272 m−2. In the second year, the
mean abundance of earthworms declined in both treatments to 145 m−2 in the CA
treatment and to 186 m−2 in the CON treatment. In the final year of the experiment,
the CA treatment had a mean of 355 total earthworms m−2 and the CON treatment
had 318 m−2. Mean abundance of Epigeic earthworms is shown in Figure 5.15 by year
(A) and for the duration of the experiment (B). Model diagnostics are presented in
Figure A.22.

128



Figure 5.15: Extrapolated mean abundance of juvenile earthworms (m−2) for each
treatment presented by year (A, n = 5) and by treatment for the total experimental
duration (B, n = 3). Error bars indicate the standard error of the mean.

5.3.5 Micro-Arthropod Abundance
5.3.5.1 Chelicerata

Analysis using a GLM identified no statistical differences in the mean abundance of
the taxonomic group Chelicerata in this experiment (β = 0.11, SE = 0.13, Z = 0.9,
p = 0.36). The extrapolated mean of abundance of Chelicerata in the CA treatment
was 18184 m−2 in the first year of the experiment, compared to a higher extrapolated
mean abundance of 21752 m−2 in the CON treatment. During the second year of the
experiment, mean abundance was much lower in both treatments, 3080 m−2 in the
CA treatment and 2272 m−2 in the CON treatment. This was similar in the final
year of the experiment, where the CA treatment had a mean of 4064 m−2 compared
to 3560 m−2 in the CON treatment 3560 m−2. Mean abundance of Chelicerata is
shown in Figure 5.16 by year (A) and for the duration of the experiment (B). Model
diagnostics are presented in Figure A.23.

5.3.5.2 Crustacea

There were very low numbers of Crustacea in all years between both treatments,
and as a result, no statistical analysis was possible. The only incidence of Crustacea
abundance was identified in the first year of the experiment in the CA treatment (4
m−2), and in the second year of the experiment in the CON treatment (72 m−2). Mean
abundance of Crustacea is shown in Figure 5.16 by year (A) and for the duration of
the experiment (B).
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Figure 5.16: Extrapolated mean abundance of Chelicerata (m−2) for each treatment
presented by year (A, n = 5) and by treatment for the total experimental duration
(B, n = 3). Error bars indicate the standard error of the mean.

Figure 5.17: Extrapolated mean abundance of Crustacea (m−2) for each treatment
presented by year (A, n = 5) and by treatment for the total experimental duration
(B, n = 3). Error bars indicate the standard error of the mean.

5.3.5.3 Myriapoda

Statistical analysis using a GLM identified a significant increase in Myriapoda extrap-
olated mean abundance in the CON treatment in comparison to the CON treatment
(β = -0.51, SE = 0.25, Z = -2.01, p = 0.04). During the first year of the experiment,
both treatments had similar mean abundance of 120 m−2 in the CA treatment, and
112 m−2 in the CON treatment. The second year saw a higher extrapolated mean
abundance in the CON treatment of 232 m−2 and a reduction of abundance in the CA
treatment to 92 m−2. A similar trend was observed in the final year, where again, the
CON treatment had a higher mean abundance of Myriapoda of 180 m−2 compared
to 104 m−2 in the CA treatment. Mean abundance of Myriapoda is shown in Figure
5.18 by year (A) and for the duration of the experiment (B). Model diagnostics are
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presented in Appendix A.25.

Figure 5.18: Extrapolated mean abundance of Myriapoda (m−2) for each treatment
presented by year (A, n = 5) and by treatment for the total experimental duration
(B, n = 3). Error bars indicate the standard error of the mean.

5.3.5.4 Hexapoda

There were no statistical differences in Hexapoda mean abundance between the two
treatments identified in this study (β = 0.13, SE = 0.1, Z = 1.35, p = 0.18). Both
treatments had similar extrapolated mean abundance in the first year of experimen-
tation (Conservation = 44836 m−2, CON = 41308 m−2), and in the second year of the
experiment (Conservation = 6840 m−2, CON = 7144 m−2) where the mean abundance
for both treatments declined from the first year. In the final year of the experiment,
the CA treatment had a higher mean abundance (22976 m−2) than the CON treat-
ment (17264 m−2). Mean abundance of Myriapoda is shown in Figure 5.19 by year
(A) and for the duration of the experiment (B). Model diagnostics are presented in
Appendix A.24.

Principal components analysis (PCA) was performed to assess the differences in
soil micro arthropod taxonomic communities between conservation and CON agricul-
ture treatments over three years (2022–2024). During the experiment, the proportion
of the variance explained by the first two principal components gradually increases,
from 60.4% in 2022, 62.4 % in 2023, and 87 % in 2024. The full breakdown of PCA
dimensions and the percentage of explained is shown in the PCA scree plots in Figure
A.17. In 2022 and 2023, the variance in the PCA was explained in four dimensions,
and 2024, this was reduced to three dimensions. While there is substantial overlap
between the treatments, indicating similarities in the community composition, there
is a slight increase in differentiation between the treatments over the experimental
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Figure 5.19: Extrapolated mean abundance of Hexapoda (m−2) for each treatment
presented by year (A, n = 5) and by treatment for the total experimental duration
(B, n = 3). Error bars indicate the standard error of the mean.

duration. This is evidenced in the increasing variance explained by PC1 and PC2
throughout the course of the experiment. The CA treatment exhibits more variability
compared to the CON treatment, as shown by the wider spread of points and the
larger confidence ellipses, particularly in 2024.

132



Figure 5.20: Principal Component Analysis (PCA) for soil organisms based on mea-
sures of four taxonomic groupings. Ellipses show the 95% confidence intervals for
each treatment. Treatment mean eigenvalues are shown with error bars (±1 standard
deviation in red). The standardised Principal Component 1 (PC1) is displayed on
the x-axis, and PC2 on the y-axis. Both PC’s are displayed with the proportion of
the total variation in the data that is explained by each component. Analyses are
shown separately for 2022 (A), 2023 (B), and 2024 (C).

5.3.6 Soil Biodiversity Indexes
5.3.6.1 QBS-e eco-morphological score

Statistical analysis using a quasi-Poisson Generalised Linear Model identified no sig-
nificant differences in the QBS-e eco-morphological score between the experimental
treatments (β = 0.18, SE = 0.17, Z = 1.06, p = 0.29). In the first year of the
experiment, the CA treatment had a higher mean QBS-e score of 1025, compared to
460 in the CON treatment. However, during the second year of the experiment, the
CON treatment had a higher mean QBS-e score of 650, and the CA treatment had a
score of 561. Both treatments had higher mean QBS-e scores in the final year of the
experiment, 1083 in the CA treatment and 1128 in the CON treatment. Mean QBS-e
score is shown in Figure 5.21 by year (A) and for the duration of the experiment (B).
Model diagnostics are presented in Appendix A.26.
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Figure 5.21: Mean QBS-e score for each treatment presented by year (A, n = 5) and
by treatment for the total experimental duration (B, n = 3). Error bars indicate
the standard error of the mean. Note: Y-axis truncated to highlight treatment
differences.

5.3.6.2 QBS-ar eco-morphological score

Statistical analysis using a quasi-Poisson generalised linear model identified a marginal,
but non-significant increase in the mean QBS-ar in the CON treatment compared to
the CA treatment in this study (β = -0.07, SE = 0.04, Z = -1.89, p = 0.059). Both
treatments had a similar mean QBS-ar score in the first year of the experiment (108);
however, in the second year, the CON treatment was found to have a higher mean
QBS-ar score of 97.2 compared to 83.4 in the CA treatment. This was also seen in
the final year of the experiment, where the CON treatment had a higher mean of 77.8
in comparison to 70.6 in the CA treatment. Mean QBS-ar score is shown in Figure
5.22 by year (A) and for the duration of the experiment (B). Model diagnostics are
presented in Appendix A.27.

134



Figure 5.22: Mean total QBS-ar score for each treatment presented by year (A,
n = 25) and by treatment for the total experimental duration (B, n = 3). Error
bars indicate the standard error of the mean. Note: Y-axis truncated to highlight
treatment differences.

5.3.6.3 Shannon Diversity Index

Statistical analysis using a linear mixed-effects model identified a significant increase
in the mean Shannon Biodiversity Index in the CON treatment competitively to the
CA treatment (β = -0.08, SE = 0.03, Z = -2.62, p = 0.01). The CON treatment
was found to have a higher mean Shannon Biodiversity Index in all experimental
years. During the first year of the experiment, the CA treatment had a mean of 1.21,
compared to an increased mean of 1.28 in the CON treatment. During the second
experimental year, both treatments had higher mean indexes of 1.4 in the CA treat-
ment and 1.53 in the CON treatment. This trend continued in the final year of the
experiment, where the CA treatment had a lower mean Shannon Biodiversity Index
of 1.35, compared to 1.4 in the CON treatment. Mean Shannon Biodiversity Index
scores are shown in Figure A.15 by year (A) and for the duration of the experiment
(B). Model diagnostics are presented in Appendix A.28.
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Figure 5.23: Mean Shannon Biodiversity Index for each treatment presented by year
(A, n = 25) and by treatment for the total experimental duration (B, n = 3). Error
bars indicate the standard error of the mean. Note: Y-axis truncated to highlight
treatment differences.

5.4 Discussion

This chapter examined the effects of CA practices on soil health and function, with a
focus on biological, chemical, and physical indicators of soil quality. The transition to
CA is often promoted as a means to enhance long-term soil function and resilience, yet
its outcomes can vary depending on site conditions, soil type, and management his-
tory. Through a multi-year comparison of CA and CON systems, this study assessed
key soil health metrics—including organic matter content, biological activity, and
physical structure—to determine whether CA delivered measurable improvements.
This discussion interprets those findings in light of existing literature, evaluates the
consistency of responses across indicators and years, and considers the implications
for the wider adoption of CA in temperate arable systems. Limitations of the study
and areas for future research are also addressed.

5.4.1 Soil Biology

This section addresses the test of the following hypothesis (H ):

• H1: CA results in significantly higher diversity and abundance of soil micro
arthropods and earthworms compared to CON practices.

Intensive agriculture strongly affects the soil ecosystem diversity in many cases
(Giller et al., 1997; Postma-Blaauw et al., 2010). Although this chapter mainly fo-
cuses on evaluating the effect of CA on the soil mesofauna and macrofauna, it was
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shown by Postma-Blaauw et al. (2010) that the taxonomic groups with larger body
size are the most negatively affected by intensive agriculture in comparison to smaller
organisms. This is mainly due to the disruption of the soil structure and changes to
the soil moisture and temperature associated with tillage (Kladivko, 2001). Although
the negative effects of tillage are usually more pronounced in larger-bodied organ-
isms, it is worth noting that there are usually negative impacts on total microbial
biomass detected in agricultural systems which utilise more tillage (Kladivko, 2001);
unfortunately, this chapter does not analyse microfauna abundance.

Although there is information available about soil biological abundance and diver-
sity in established CA systems, there is little research on the effects of the transition to
CA on soil biological communities (Christel et al., 2021). For example, Henneron et al.
(2015) compared the long-term effects of CA, organic farming, and CON on major
soil organisms. They found that both CA and organic systems increased the abun-
dance and biomass of all soil organisms, except predatory nematodes. Overall, they
found that CA showed a higher overall improvement than organic farming, increasing
the abundance of phytophagous and rhizophagous arthropods, anecic earthworms,
bacteria, and fungi. They suggest that in their study, the combination of long-term
NT and cover cropping in the CA system had greater beneficial effects on soil biota
in comparison to the CON and organic systems. This conclusion is widely accepted
in the literature; however, the response of soil biota in CA systems is thought to vary
greatly depending on the age of the system and the quality and biomass production
of cover crops (Dulaurent et al., 2023).

There was no significant difference detected in individual ecotypes or total earth-
worm abundance in this study between the two experimental treatments. Earthworms
are one of the most important soil macrofaunal groups, which play a major role in
agricultural ecosystems. Previous research has shown that the principles of CA are
generally beneficial to earthworm abundance in agricultural ecosystems (Baldivieso-
Freitas et al., 2018; Soane et al., 2012; Pelosi et al., 2009). The study by Pelosi et al.
(2009) found that Anecic and Epigeic earthworm abundance was 3.2 - 7.2 times higher
in a CA system compared to CON and organic systems, respectively. This was also
the case for total Anecic and Epigeic earthworm biomass, which were 3.4 - 12.5 times
higher in the CA system. However, they also found that Endogeic earthworms were
significantly less numerous in some years of the study in the CA system compared to
the CON and organic treatments. Endogeic species are thought to be more favoured
in agricultural systems which utilise tillage, as this results in the incorporation of
organic matter throughout the top soil (Baldivieso-Freitas et al., 2018; Pelosi et al.,
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2009). The abundance of earthworms in previous research studies is highly variable
depending on the year and timing of sampling (Pelosi et al., 2009). However, in this
study, earthworm samples were taken on progressively later dates each year due to
logistical constraints, and the sampling did not have a high quantity of replicates (n
= 5); therefore, it could also be concluded that this study did not have the statisti-
cal power to identify treatment differences. Future research could perform sampling
several times per year, and over a longer duration, to identify treatment effects.

Statistical analysis of soil micro-arthropod taxonomic groups found no significant
differences in the abundance of Chelicerata or Hexapoda groups in this study. An
abundance of micro-arthropods from the Crustacea taxonomic group was not possible
to statistically analyse due to low abundance throughout the experiment. However,
statistical analysis identified a significant increase in Myriapoda mean abundance
in the CON treatment in comparison to the CA treatment. The Myriapoda taxo-
nomic group includes Pauropoda and Symphyla; it is considered to be one of the least
abundant groups of soil arthropods, and is considered to have been poorly studied re-
garding the research on other soil micro-arthropod taxonomic groups (Bedano et al.,
2006). Typically, Symphylans and Pauropods are characteristic of undisturbed habi-
tats, mainly grassland, where the soil is high in organic matter and has high porosity
(Curry and Momen, 1988; Davis and Sutton, 1978; Bedano et al., 2006). Pauropoda
are highly susceptible to desiccation from extreme temperatures and are considered
to be a group of soil animals most susceptible to harm from agrochemicals (Lagerlöf
and Scheller, 1989). Therefore, it could be hypothesised that Pauropoda would be
more likely to be more abundant in CA than in CON systems. However, in this study,
the inverse was identified, with a significant increase in Myriapoda in the CON treat-
ment. As Bedano et al. (2006) states, the effect of tillage systems on Symphylan and
Pauropod populations has not been investigated thoroughly; therefore, there is little
literature on the subject. In their study on soil micro-arthropod abundance in differ-
ent tillage systems, Bedano et al. (2006) found that CON management decreased the
abundance of Pauropoda; however, it increased the abundance of Symphyla. More
analysis of individual micro-arthropods is required in this study to identify which
class within the subphylum Myriapoda is the key driver of the significant increase in
total Myriapoda abundance.

Although the PCA found substantial overlap in soil biota diversity and abundance
between the two treatments. There was found to be an increased explanation of
the variance in the first principal component from 10.1% in 2022 to 16.3% in 2024.
This would indicate that the differences in soil micro-fauna community structure
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are becoming more pronounced between the treatments. However, this is still a
low percentage of the total variance explained by the treatments; therefore, we can
hypothesise that although CON and CA create contrasting soil physical environments,
soil fauna may take longer to adapt to those changing conditions during the transition
to CA.

When statistical analysis of the soil biodiversity indices was undertaken, there
were found to be no statistical differences in QBS-e scores were found between the
two experimental treatments. However, there was found to be weak, non-significant
(p = 0.059) evidence of an increase in the QBS-ar index in the CON treatment in
comparison to the CA treatment. QBS-e was hypothesised to be an EMI where
statistically significant differences were likely, as larger biota are more affected by
tillage systems in comparison to smaller biota (Postma-Blaauw et al., 2010; Dulau-
rent et al., 2023). However, this was not found to be the case in this study, where
there was a significantly higher Shannon biodiversity index in the CON treatment.
This result suggests that the presence of a lack of tillage is not the only factor which is
a strong driver of soil biodiversity, for example, in this case, both treatments utilised
different pesticide and fertiliser programmes throughout the experiment, which could
have a strong influence on soil biodiversity and abundance (Lehman et al., 2015b).
However, as previously mentioned, low numbers of replicates in the earthworm sam-
pling in comparison to the soil micro-arthropod sampling could be influencing the
statistical power of the study and therefore increasing the likelihood of a Type II
error. Increasing the sample size and including other covariates, such as soil moisture
and temperature, may be appropriate methodologies to improve the ability to detect
significant treatment effects across years in this study.

Hypothesis H1 was not supported by the results. No significant differences were
detected between CA and CON in the overall abundance or diversity of soil micro-
arthropods or earthworms. While literature typically reports increased abundance
of larger soil fauna under CA, particularly in long-term systems, this study found
no significant treatment effect, possibly due to low replication, short study duration,
and inter-annual variability. Notably, the abundance of Myriapoda was unexpectedly
higher in the CON treatment, contradicting expectations based on their typical habi-
tat preferences. In addition, the biodiversity indices QBS-e and QBS-ar showed no
consistent pattern in favour of CA; QBS-ar and Shannon index values were signifi-
cantly higher under CON. These results suggest that soil biotic responses to CA may
require longer timeframes to become evident and may also be influenced by other
management factors such as pesticide and fertiliser use.
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5.4.2 Soil Chemistry

This section addresses the test of the following hypothesis (H ):

• H2: CA increases soil total carbon content over time compared to CON.

There was weak evidence (β = -0.04, SE = 0.02, Z = -2.33, p = 0.051) for an
increase in soil total C was identified in the CA treatment in this study in comparison
to the CON treatment; however, there was no significant increase identified from
the baseline samples. Both treatments were found to have slightly lower total C
than the baseline in this study. Therefore, the significant effect of the experimental
treatment should be presented with caution, as this study does not show evidence
of C sequestration in CA; rather, it shows a significant difference in the rate of C
loss from the soil in each treatment. A slower rate of C decomposition would be
hypothesised in CA, as tillage is shown to rapidly accelerate the process of C loss
due to the breaking of soil aggregates, which exposes soil organic matter to microbial
decay (Hendrix et al., 1986; Beare et al., 1994).

This study identified significant increases in available P, K, Mg, and total N in
the CA treatment compared to CON. As previously discussed in the introduction to
this chapter, common changes to the soil’s physical and biological properties under
CA typically result in significant differences in nutrient availability in comparison to
conventionally managed cropping systems. This is commonly reported in the previous
literature in regards to N, where the total N can increase due to reduced rates of
N decomposition and reductions in N leaching (Shelton et al., 2017; Soane et al.,
2012). However, plant available N is commonly not found to increase as rapidly
as total N during the transition to CA, again, which is due to slower rates of N
mineralisation and great C inputs to the system (Page et al., 2020). As this study does
not test for N availability, no conclusions can be made about the crop productivity
potential of the systems, as it could be possible that the CA treatment has significantly
higher total N but lower plant-available N. However, it could be hypothesised that
during the years following the adoption of CA, the abundance of soil microorganisms
will have significantly increased, improving the rate of N mineralisation, resulting in
the reduction of N fertiliser requirements (Dordas, 2015; Wang et al., 2006; Soane
et al., 2012). This study could have been improved by studying the availability of
N throughout the experiment to identify if the significant rise in total N in the CA
treatment could result in agronomic benefit.
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This study also observed a marginal, but non-significant increase in soil total C
content, which can affect plant nutrient availability due to both changes to the quan-
tity of nutrients available and their distribution in the soil profile (Page et al., 2020).
Although this trend approached statistical significance (p = 0.051), neither treatment
showed a significant change from the baseline value when considered independently.
These findings suggest a potential benefit of CA practices for SOC improvements,
yet these results are inconclusive and require a larger dataset to draw conclusions.
It remains unclear if these early trends reflect long-term SOC trends or short-term
fluctuations.

This study identified a significant overall decline in soil pH under the CA treatment
compared to the CON treatment over the three-year experimental period. While both
treatments exhibited a gradual acidification trend from 2022 to 2024, the decline was
more pronounced in the CA plots. Despite this trend, statistical comparisons to
the baseline pH revealed no significant change within either treatment across the
study period. The consistently lower pH observed in the CA treatment may reflect
cumulative impacts of changes in nutrient cycling due to residue retention or NT. This
is commonly observed in previous literature, as increased SOC at the surface of the
profile in CA systems is commonly associated with greater acidity relative to CON
systems due to the accumulation of plant residues and organic acids at the soil surface
(Page et al., 2020; Limousin and Tessier, 2007; Sithole and Magwaza, 2019). Although
these pH shifts were not statistically significant relative to baseline, the overall pattern
requires further monitoring, particularly as continued acidification under CA could
influence nutrient availability and microbial activity over time (Goulding, 2016).

Hypothesis H2 was only partially supported by the results. Although a marginal,
but non-significant increase in total soil C was observed in the CA treatment relative
to the CON treatment, neither treatment showed an increase compared to baseline
levels. Instead, both treatments exhibited slight declines in total C over the study
period. This suggests that while CA may slow the rate of soil C loss, possibly due to
reduced soil disturbance and slower organic matter decomposition, it does not lead to
measurable soil C sequestration within the time frame of this study. These findings
align with existing literature, which reports that increases in soil organic C under
CA typically require longer periods to become evident. Caution should therefore be
exercised in interpreting the treatment effect as evidence of C accumulation.

5.4.3 Soil Physics

This section addresses the test of the following hypothesis (H ):
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• H3: Soil bulk density and compaction are lower under CA due to reduced me-
chanical disturbance.

Both treatments in this study resulted in an increased soil dry bulk density in
comparison to the baseline data. This was attributed to higher than average rainfall
throughout the experimental duration, where in this three-year study, there have
been multiple incidences of higher than average rainfall, particularly in 2023 and
2024, where some parts of the UK received more than a third more rainfall than
the historic average (Met Office, 2025). Raindrop impact is considered a main factor
increasing topsoil bulk density, as the raindrops detach particles and soil aggregates,
modifying the soil surface structure, thus causing compaction (Todisco et al., 2022).
The CA treatment was found to have significantly increased the soil bulk density in
comparison to the CON treatment. This result is in line with previous literature,
where the bulk density in CA has risen in the early years of the transition to the
system (Soane et al., 2012).

Hypothesis H3 was not supported by the results. Contrary to expectations, soil
bulk density was significantly higher under CA compared to CON. This outcome
is attributed in part to above-average rainfall during the study period, which likely
contributed to surface compaction through raindrop impact. The findings are consis-
tent with previous studies reporting increased bulk density during the early years of
transition to CA.

5.5 Conclusion

This chapter evaluated the effects of CA compared to CON for soil biology, soil chem-
istry, and soil physics. The hypotheses tested were partially or not supported by the
data, highlighting the complexity of soil system responses and the challenges asso-
ciated with detecting meaningful treatment effects within short-term experimental
timescales.

In terms of soil biology, the results did not support the hypothesis that CA in-
creases the diversity and abundance of soil fauna. No significant differences were
observed in total earthworm or soil micro-arthropod abundance between treatments.
Contrary to expectations, Myriapoda abundance and the Shannon index were sig-
nificantly higher under CON. These findings suggest that short-term transitions to
CA may not produce immediate benefits for soil biological communities, and that
other management practices such as pesticide and fertiliser regimes may confound
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treatment effects. Low replication and limited temporal sampling may have resulted
in treatment impacts not being detected.

Regarding soil chemistry, only partial support was found for the hypothesis that
CA increases SOC. While there was weak non-significant evidence of total C increases
in the CA treatment compared to the CON treatment, neither treatment showed gains
relative to baseline levels, suggesting a slower rate of C loss under CA rather than
active sequestration. Notably, the CA treatment exhibited significantly higher con-
centrations of total N, P, K, and Mg, aligning with expectations based on reduced
nutrient leaching and increased organic matter inputs. However, without correspond-
ing data on plant-available N or microbial activity, it is difficult to infer agronomic
benefit or nutrient cycling efficiency.

In terms of soil physics, the hypothesis that CA reduces soil compaction was
not supported. Soil bulk density increased in both treatments over time, but was
significantly higher under CA. This is consistent with literature on the early stages
of CA transition, and was likely exacerbated by above-average rainfall during the
study period, which can increase surface compaction through raindrop impact. These
findings emphasise that improved soil structure under CA may only emerge over
longer timescales and under stable climatic conditions.

Overall, this study suggests that while CA holds promise for improving soil prop-
erties and ecosystem functioning, the benefits may take longer to materialise and
are influenced by multiple interacting factors, including climate variability and man-
agement intensity. Future research should prioritise longer-term monitoring with
increased replication, finer temporal resolution, and integrated measurements of bio-
logical, chemical, and physical soil parameters.
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Chapter 6

Agronomy and Crop Productivity
Under Conservation Agriculture

6.1 Introduction

The major challenge of feeding a growing global population, with an increasing dietary
preference for resource-intensive food, is a significant consideration for the future and
prosperity of humanity (Foley et al., 2011; Pittelkow et al., 2015). The evaluation of
agricultural cropping systems needs to consider environmental effects to reduce future
environmental impacts, as well as agricultural output, to produce enough food to feed
a growing population. There is evidence to suggest that Conservation Agriculture
(CA) may be successfully implemented in a variety of contexts with no or only minor
reductions in yield (Pittelkow et al., 2015; Kassam et al., 2022), thereby potentially
achieving the aim of maintaining food security while reducing environmental impacts.

The adherence to the three principles of CA is not the only factor which dictates
the success of the system; productivity and sustainability are also dependent on
several tailored agronomic management strategies that optimise system performance.
The transition from CON to CA usually requires different management strategies
to be implemented for control of weeds, pests, and diseases, as well as overall crop
nutrition strategy (Derrouch et al., 2020; Kassam et al., 2022; Farooq and Siddique,
2015; Page et al., 2020). This chapter aims to evaluate the key differences in the
agronomic approach to management of a CA system in the UK, and analyse the key
differences in crop growth and productivity.

6.1.1 Crop Management

One of the key changes with the agronomic management of CA systems is weed man-
agement. This is due to the absence of tillage, which means that typically there are

144



changes to weed expression, including seed bank status, distribution, dispersal mech-
anisms, diversification, growing patterns and competition trends within CA systems
(Bajwa, 2014). CON systems can use rotational ploughing to bury weed seeds to a
depth that restricts germination, so tillage can create a “stale seed bed”. This is a
technique where surface cultivation is used to encourage germination of weeds before
crop drilling, which can be sprayed off with a non-selective herbicide (Riemens et al.,
2007). Typically, any system which utilises no-tillage (NT) will exhibit a distinct weed
ecology and weed management in comparison to CON systems (Bajwa, 2014; Triplett
and Dick, 2008). Previously agronomically unimportant and non-dominant weeds in
a CON system can become more problematic and dominant in NT systems; their
germination and dormancy characteristics are different when there is no mechanical
inversion of the soil (Soane et al., 2012). In general, populations of dicotyledonous
weeds in NT systems are similar to tillage-based systems, or in some cases, reduced.
This is because many dicotyledonous agricultural weeds produce seeds with a long
dormancy period, resulting in improved adaptation to inversion tillage-based sys-
tems, where repeated ploughing can result in them being brought back to depths
where they can germinate (Morris et al., 2010). However, grass weed populations
are usually greatly increased in NT systems (Soane et al., 2012; Morris et al., 2010).
In colder climates, perennial grass weeds can exert significant pressure, whereas in
warmer climates, which prevent or reduce perennial grass growth, problems can occur
from annual grass weeds (Soane et al., 2012; Morris et al., 2010).

Another factor that influences the weed burden in CA systems is the surface crop
residue. Crop residues have been shown to suppress the emergence of some weed
species (Nikolić et al., 2021; Morris et al., 2010). However, crop residues have been
shown to reduce herbicide efficacy (Flower et al., 2021; Bajwa, 2014), with negative
effects on weed control. Both these factors need to be considered by farmers and
agronomists when managing weeds in a CA system as the magnitude of these effects is
dependent on the quantity (Nikolić et al., 2021), type (Flower et al., 2021), and spread
uniformity of the crop residue (Flower et al., 2022), as well as the weed population
and species present in the system (Morris et al., 2010).

The combination of surface crop residues and CA systems can also cause issues
with crop establishment due to pest damage (Richard et al., 1995; Earl and Spoor,
1994). Slugs are a significant problem, as they thrive in the low-disturbance, residue-
rich environments characteristic of no-till fields (Morris et al., 2010; Douglas and
Tooker, 2012). Slugs can be a significant pest of many field crops, reducing crop
establishment by a sizeable degree. Many CA farmers use multiple applications of
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molluscicides, which are effective at reducing slug populations. However, these appli-
cations can cause water course pollution, dependent on the active ingredient of the
molluscicide (Douglas and Tooker, 2012). Soil managed with CA can also contain
improved habitats for natural enemy populations for slugs such as Carabid Beetles
(Howlett, 2012). Therefore, this approach has the potential to improve the contri-
bution of predators to improve slug control in comparison to CON systems (Douglas
and Tooker, 2012).

6.1.2 Pesticide usage

Commercial, large-scale CA relies on the availability of herbicides suitable for control
of a wide range of dicotyledonous and monocotyledonous weed species (Soane et al.,
2012). As previously discussed in Section 2.5, the introduction of the broad-spectrum
herbicide Paraquat and, more recently, Glyphosate in 1971, made weed management
in NT systems easier. Currently, many commercial CA systems utilise a combination
of broad-spectrum herbicides and selective herbicides during crop growth to manage
weeds before and during the growing season (Soane et al., 2012). As such, a signifi-
cant threat to the success of CA adoption is the concern of increasing weed resistance
to herbicide groups (Soane et al., 2012; Morris et al., 2010; Hull et al., 2014). Her-
bicide resistance has been identified in several species of grass weeds across multiple
countries. Alopecurus myosuroides (black-grass) is the major herbicide-resistant weed
problem and is estimated to occur on virtually all of the 20,000+ farms in 35 coun-
tries where herbicides are applied regularly, including in the UK (Hull et al., 2014).
In addition, herbicide resistance has been detected in wild oats (Avena fatua), and
Italian ryegrass (Lolium perenne L.) to commonly used herbicides atrazine, simazine
and glyphosate for numerous weed species on no-till farms in the USA (Triplett and
Dick, 2008). This has led to speculation that CA may not be an appropriate course
of action for long-term agricultural weed management (Morris et al., 2010).

Widespread dependence on regular applications of herbicides in CA has raised
concern regarding the fate of applied herbicides and the environmental consequences
(Soane et al., 2012). There are mixed reports on the application rates of herbicides in
CA systems, with some literature reporting that herbicide application rates are similar
for CA and CON systems (Bajwa, 2014), some report significantly higher herbicide
usage in CA (Zentner et al., 1991), and other reporting significantly higher usage
of pre-emergence herbicides in CA, with no significant differences in post-emergence
usage (Dong et al., 2024; Morris et al., 2010; FAO, 2001). Whereas, some studies
suggest that although initial usage of herbicides is increased in CA, this declines over
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time to a level equal to that of CON systems (FAO, 2001). There is concern that
some herbicides that are primarily used in CA have substantial persistence in soil
that has the potential to cause harm to microorganisms in the rhizosphere, as well as
contamination of groundwater (Bajwa, 2014).

6.1.3 Research Aims and Hypotheses

This chapter aims to investigate the main effects of the transition to CA on crop
establishment, growth, and yield, and assess pesticide usage and risk in CA agronomic
management using the systems-level experimental site, detailed in Chapter 3.

The research aims (A) of this chapter are:

• A1: Monitor variability of crop responses during the transition to CA in com-
parison to CON.

• A2: Monitor variability of crop inputs during the transition to CA in comparison
to CON.

This chapter tests the following hypotheses (H ):

• H1: CA will result in a significant reduction in crop establishment compared to
CON.

• H2: CA will result in significant alterations to the total quantity of pesticide
and fertiliser used compared to CON.

• H3: CA will result in a significantly lower yield than the CON treatment.

• H4: CA agronomy will result in a reduced risk to the environment and human
health compared to CON.

6.2 Materials and Methods

The experimental site location, experimental design, and management are detailed in
Chapter 3. This section details the monitoring methodology for crop establishment
and productivity and the analysis methodology for the crop input data.
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6.2.1 Crop application analysis

The total pesticide (active ingredient kg ha−1 year−1) and fertiliser (chemical element
kg ha−1 year−1) data were assessed for normality and homogeneity of variances using
the methodology outlined in Section 3.10. Data distributions are presented in Ap-
pendix B.3. All data were non-normally distributed; therefore, a generalised linear
mixed effects model with a Gamma link log function was used to analyse the effects
of the experimental treatments (Ng and Cribbie, 2017), using the experimental year
as random model effects following the methodology outlined in Section 3.10. The
crop was removed as a random effect in the model as issues with model singularity
were identified. Model diagnostics are presented in Appendix B.4. The model was
implemented using the package lme4 in R (Bates et al., 2015; R Core Team, 2023).

6.2.2 Crop Establishment and Biomass

Crop establishment was assessed by counting plants using a 33 cm2 quadrat in the
first year of the experiment, which was then subsequently changed to a 1 m2 quadrat
for the remaining experimental years. During crop senescence, crop biomass was
assessed using the methodology of Franks and Goings (1997). All crop vegetation
was cut to the soil surface, bagged, and transported to the laboratory. All non-crop
biomass was then removed from the sample, and the total fresh mass of crop biomass
was weighed using an analytical balance. The fresh samples were then dried at 60 ◦C
for 24 hours, and re-weighed to determine the moisture content of the biomass and
the crop dry-matter biomass per the sampled area. The crop samples per the sampled
area were then extrapolated to kg/biomass ha−1 using the following equation (6.1):

Biomass ha−1 = Biomass m−2 × 10, 000 (6.1)

Where applicable, yield components (tillers, shoots, ears, pods etc.) were quanti-
fied for each sample. They were then processed using a HALDRUP LT-21 laboratory
thresher (HALDRUP, 2024) to separate the straw and grain. Once the grain yield
per sample had been analysed, the harvest index was calculated using the following
equation (6.2):

Harvest Index = Harvestable Biomass
Total Biomass (6.2)
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All crop establishment variables were evaluated for distribution normality and ho-
mogeneity of variances using the methodology outlined in Section 3.10. The results
of this evaluation are shown in Appendix B. The majority of the crop establishment
data was not normally distributed. Therefore, all variables were analysed using a
generalised linear mixed effects model following the methodology outlined in Section
3.10, and plotted using the ggplot2 package (Wickham, 2016). Treatment was in-
cluded as a fixed effect, with the experimental block, crop, and year all included as
random effects. Most data was positively skewed. Therefore, a Gamma log link was
applied as the model family to account for this (Ng and Cribbie, 2017).

To assess the performance of the treatments with national averages, the percentage
of target plant populations achieved for each crop in the UK was quantified. The
target plant populations used in this analysis were;

• 50 plants m−1 for spring beans (PGRO, 2024),

• 260 plants m−1 for winter wheat (Sylvester-Bradley et al., 2015).

• 30 plants m−1 for oilseed rape (Berry et al., 2015).

• 305 plants m−1 for spring barley (AHDB Cereals & Oilseeds, 2018).

6.2.3 Normalised Difference Vegetation Index

Ortho-rectified, surface reflectance-corrected raster imagery for the experimental site
was sourced from Planet Labs PBC (Planet Labs PBC, 2024) services throughout the
experiment. The data had a 3 m resolution and contained four spectral bands (Blue:
455–515 nm, Green: 500–590 nm, Red: 590–670 nm, Near-Infrared (NIR): 780–860
nm). Each image was trimmed to the extent of each experimental plot using the sf
R package (Pebesma et al., 2024), and the Normalised Difference Vegetation Index
(NDVI) was calculated using the following equation, and plotted using ggplot2:

NDVI = NIR − Red
NIR + Red (6.3)

Where NIR represents the reflectance of near-infrared light, and Red represents
the reflectance of red light. This equation produced the NDVI values for each pixel
of the dataset between -1 and 1. Low values in this index range suggest sparse crop
cover, and conversely, high values indicate dense, healthy crops.
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To reduce short-term fluctuations in NDVI values caused by variations in im-
age quality and atmospheric conditions, a moving average smoothing technique was
applied. The 5-point centred moving average was computed separately for each treat-
ment group to highlight temporal trends while retaining meaningful seasonal varia-
tions. NDVI data were grouped by treatment and arranged chronologically. A mov-
ing average was calculated using the rollmean() function from the zoo package in R
(Zeileis, A and Grothendieck, G, 2005) using the following equation:

NDVIsmoothed,i = 1
k

i+ k−1
2∑

j=i− k−1
2

NDVIj (6.4)

where k = 5 is the window size, and i represents each time point. The function
was applied with align = "center" to ensure that the smoothed value at each time
point incorporated data from both preceding and following observations, minimising
phase shifts. For dates at the beginning and end of the dataset where fewer than
five observations were available within the window, missing values (NA) were assigned
to maintain data integrity. To indicate variability, the standard error (SE) was also
smoothed using the same 5-point moving average using the following equation:

SEsmoothed,i = 1
k

i+ k−1
2∑

j=i− k−1
2

SEj (6.5)

This ensured that the error ribbon in the visualisation reflected a representative
measure of uncertainty while preventing artificially inflated variability in sparsely
sampled periods.

Smoothed NDVI values were plotted over time with the original raw data points
overlaid for reference. A ribbon representing the smoothed standard error was in-
cluded to illustrate variability in NDVI estimates across sampling dates. Data was
tested for normality and homogeneity of variances using the methodology in Section
3.10. The data had a non-normal distribution. Therefore, a generalised linear mixed
effect model was implemented using the mean NDVI as the response variable and the
experimental treatment as a fixed effect using the lme4 package in R (Bates et al.,
2015) with no transformations applied before modelling.

6.2.4 Crop Yield

To calculate the quantity of yield sampling points required in this experiment, the
effect sizes (Cohen’s d) were taken from the 6000 paired yield observations from
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the global meta-analysis from Pittelkow et al. (2015) and the power was plotted as
a function of effect size and observation number. Effect size and Cohen’s d were
calculated following the methodology outlined in Section 3.

The mechanical harvest of the crops was done using a CLAAS Lexion 750 combine
harvester with a CLAAS V900 header (9.14 m). Data was recorded using a weigh
bridge to assess the mass of grain harvested from individual experimental units, taking
into account the total mass of the tractor and trailer combination by weighing with
a full load and then subsequently weighing when the trailer had been tipped. Data
normality was assessed as per the methodology detailed in Section 3.10.

In addition to the mechanical harvest, hand harvesting was done using a 1 m2

quadrat to assess spatial yield variation throughout the site for each treatment. Sam-
pling points were generated using the methodology outlined in chapter 3, with 150
sampling points used in the first cropping year (n = 75 ). This was then reduced to
100 samples (n = 50 ) in subsequent years, due to time constraints. Grain and straw
samples were cut approximately 5 cm from the soil surface, bagged, and transported
to the laboratory. They were then processed using a HALDRUP LT-21 laboratory
thresher (HALDRUP, 2024) to separate the straw and grain. Grain samples were
individually weighed to assess crop yield m−1 and analysed using a DICKEY-john
GAC™ 2700-UGMA (DICKEY-john, 2024) to quantify the moisture content and
specific weight of the individual samples. If required, the samples were dried to the
recommended moisture contents for storage (AHDB, 2023a).

The crop yield data were tested for normality and homogeneity of variances using
the methodology in Section 3.10. The data had a normal distribution, which is
detailed in Appendix B.3. Therefore, it was statistically assessed using Gaussian
family linear mixed effects models as per the method in Section 3.10. To assess the
performance of each treatment with national averages, the percentage achieved of the
UK average yield was assessed by using national average crop yield data from 2017
to 2020, obtained from the AHDB (AHDB Cereals & Oilseeds, 2021).

To statistically assess crop yield t ha−1 and the percentage achieved compared
to the UK average yield for each treatment during the experiment, Gaussian family
linear mixed effects models were used, following the methodology outlined in Section
3.10. The treatment was included as a fixed effect, with the experimental block, crop,
and year all included in the model as random effects.

To estimate spatially distributed crop yield at unsampled locations, the spatial
correlation between the individual hand-harvest yield samples was modelled using
variograms. This was done to quantify the semi-variance against the distance between
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data points. The models fitted to the variogram were automatically generated using
the automap package in R (Hiemstra et al., 2009). All crop yields were modelled
using automatically fitted semi-variogram models with varying values for the nugget,
sill, and range. The semi-variograms were then used to perform Ordinary Kriging
using automap and gstat (Pebesma, 2004), and plotted using ggplot2 (Wickham,
2016). The statistics from the interpolated models are detailed in Appendix B.15.
The interpolated datasets for each treatment’s crop yield were used to calculate the
predicted yield for each treatment throughout the experimental site. These treatment
yield datasets were then subtracted from each other to produce spatial yield difference
maps to assess spatial yield variation between the experimental treatments.

6.2.5 Pesticide Risk Assessment

To assess the environmental and health risks of the agronomic approaches to the
experimental treatments in this study, the chemical identity, physicochemical, human
health and ecotoxicological data for all pesticide active ingredients was acquired from
the Pesticide Properties Database (PPDB) (Lewis et al., 2016). A custom R-based
web scraper was developed to extract data for specific pesticide active ingredients
from the PPDB. The web scraper was implemented using the rvest package in R,
which facilitates parsing and extracting data from HTML content. For each active
ingredient, the scraper accessed the corresponding pesticide report page on the PPDB
and extracted the pesticide properties of interest for analysis (e.g degradation half-life
in soil (DT50), acute toxicity (LD50), and pesticide physicochemical properties). The
web scraper was executed for all active ingredients used in the experiment. Extracted
data were validated by comparing a subset of results with manual extractions from
the PPDB. This process ensured the accuracy and reliability of the acquired data,
which were subsequently used for calculating pesticide risk assessment indexes.

6.2.5.1 Danish Pesticide Load Indicator

To evaluate the environmental impact of pesticide applications in this study, the Dan-
ish Pesticide Load Index (PLI) was used (Kudsk et al., 2018; Lewis et al., 2021). The
PLI outlined by Kudsk et al. (2018) is a composite indicator designed to assess the po-
tential environmental and human health risks associated with pesticide applications.
The index comprises three sub-indicators: Human Health Load, Environmental Fate
Load, and Ecotoxicology Load. These sub-indicators are calculated separately and
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summed to obtain the total PLI score. In this study, the approach used here in-
corporates the application rate to account for potential exposure risks between the
experimental treatments.

Human Health Load

The Human Health Load evaluates operator exposure risk based on hazard classifi-
cations (H-phrases), as per EU Classification, Labelling and Packaging (CLP) Reg-
ulation No. 1907/2006 (European Commission, 2008). The human health indicator
focuses largely on operator exposure and is determined by assigning a score between
10 and 100 for the risk phrases for each pesticide active substance. Each H-phrase
score was assigned as follows:

• 10 points = Low hazard (e.g., skin irritant, H302)

• 50 points = Moderate hazard (e.g., toxic if inhaled, H331)

• 100 points = High hazard (e.g., fatal if swallowed, H300; carcinogenic, H350)

The Human Health PLI sub-indicator was calculated as follows:

PLIHH =
∑H-phrase scores

300 (6.6)

Where:

• PLIHH is the Human Health PLI sub indicator.

• ∑H-phrase scores is the sum of the H-phrase scores

• The total score is converted to pesticide load points by dividing the score by
300. The value 300 was used to ensure that the contribution of PLHH to the
overall PL was close to 1/3 in the reference year, following the methodology of
(Kudsk et al., 2018).

Environmental Fate Load

The Environmental Fate sub-indicator (PLIF AT E) assesses pesticide persistence and
mobility using three key parameters: the soil degradation half-life (days) (DT50),
the SCI-GROW index (which is an indicator of mobility and leaching risk (USEPA,
2016)), and bioaccumulation using the bio-concentration factor (USEPA, 2015). Each
factor is normalised by dividing it by a respective reference value for each pesticide.
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In this study, the UK reference pesticides were acquired from Lewis et al. (2021) and
the PLF AT E was calculated as follows:

PLIF AT E = DT50

DT ref
50

+ SCI-GROW
SCI-GROWref + BCF

BCFref (6.7)

Where:

• PLIF AT E is the Environmental Fate Load.

• DT50 is the soil degradation half-life (in days).

• SCI-GROW is the indicator of mobility and leaching risk.

• BCF is the bio-concentration factor.

• DTref
50 , SCI-GROWref , and BCFref are the reference values used for normaliza-

tion.

Ecotoxicology Load

The Ecotoxicology Load quantifies pesticide toxicity to non-target organisms. It
is calculated using the LC/LD/EC50 values for mammals, birds, fish, daphnia, al-
gae, aquatic plants, earthworms and bees following the methodology of Kudsk et al.
(2018). The calculation of the Ecotoxicology Load is calculated in a similar way to the
PLIF AT E; however, instead of the maximum values, the lowest values are used (i.e.
greatest toxicity), and an inverse relationship is used to devise the loading points. In
this study, the UK reference pesticides were acquired from Lewis et al. (2021) and
the PLIF AT E was calculated as follows:

Normalized Toxicity = 1(
Active Substance Value

Reference Minimum Value

) (6.8)

The “Pesticide Loading Points” for each measure are then determined by multi-
plying this value by a weighting factor. The weighting value varies from parameter to
parameter, allowing weighting for issues or policy concerns, such as loss of pollinators
or groundwater contamination, to be given greater relative significance within the
sub-indicators. The weighting factors used in this study are outlined by Lewis et al.
(2021), who applied the Danish PLI to arable agriculture in the UK. They are as
follows:

• Mammals = 1
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• Birds = 1

• Fish = 30

• Daphnia = 30

• Algae = 3

• Aquatic plants = 3

• Earthworms = 2

• Honey bees = 100

The weighting factors were then used to calculate the Ecotoxicology Load indicator
(PLECO) using the following equation:

PLIECO =
∑

(Normalized Toxicity × Weighting Factor) (6.9)

Where:

• PLIECO is the total Ecotoxicology sub-indicator PLI.

Total PLI

To ensure comparability across different pesticide impact categories, all pesticide load
indicator components were scaled between 0 and 1 using min-max normalisation.
Min-max normalisation was performed as follows:

Xscaled = X − min(X)
max(X) − min(X) (6.10)

where:

• Xscaled is the normalized value,

• X is the original value of the indicator,

• min(X) and max(X) are the minimum and maximum observed values for each
indicator across all pesticides.
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This transformation preserves the relative differences between pesticides while
ensuring that all indicators are expressed on a common scale ranging from 0 to 1,
where 0 represents the lowest observed impact and 1 represents the highest observed
impact. The scaled values were then used in subsequent calculations of the total
Pesticide Load Indicator (PLI), incorporating pesticide application rates.

The total Pesticide Load Index (PLI) is calculated as the sum of the three sub-
indicators:

PLI = PLIHH + PLIF AT E + PLIECO (6.11)

Where:

• PLI is the total Pesticide Load indicator score.

• PLIHH is the total Human Health sub-indicator PLI.

• PLIF AT E is the total Environmental Fate sub-indicator PLI.

• PLIECO is the total Ecotoxicology sub-indicator PLI.

Since exposure risk also depends on the quantity of the pesticide applied, the final
application rate-adjusted PLI is computed as:

PLIadj = PLI × R (6.12)

Where:

• PLIadj is the Pesticide Load Indicator score adjusted for the application rate.

• PLI is the total Danish Pesticide Load indicator score.

• R is the application rate of the pesticide (kg ha−1).

6.2.5.2 Statistical analysis

The PLI and all PLI sub-indicator data (PLHH , PLF AT E, PLECO) were assessed for
normality and homogeneity of variances using the methodology outlined in Section
3.10. Data distributions are presented in Appendix B.3. All data were non-normally
distributed, with a positive skew; therefore, a generalised linear mixed effects model
with a Gamma link log function was used to analyse the effects of the experimental
treatments (Ng and Cribbie, 2017). The model was fitted using the experimental year
as random model effects following the methodology outlined in Section 3.10. Model
diagnostics are presented in Appendix B.4.
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6.3 Results

6.3.1 Crop Establishment

The CON treatment achieved a higher mean percentage of the target plant population
(84%) than the CA treatment (66%) for the duration of the experiment; however, this
was not found to be a statistically significant difference (β = 3.14, SE = 3.27, Z =
0.96, p = 0.34). During the first year of the experiment in the crop of spring beans, the
CON treatment achieved a mean plant population of 36.4 plants m−2, falling below the
target plant population of 50 plants m−2. This was similar in the CA treatment, which
achieved a plant population of 37.7 plants m−2. Despite the lower plant population,
the CON treatment had a higher mean amount of spring bean shoots, 6.0 shoots m−2,
compared to the CA treatment, which had a mean of 5.6 shoots m−2. In the second
year of the experiment, the CA treatment had a mean winter wheat plant population
of 283.4 plants m−2, which was 109% of the target plant population of 260 plants
m−2. The CON treatment had a lower plant population of 245.4 plants m−2, thus
achieving 94.4% of the target plant population. The CA treatment also had a higher
mean quantity of shoots/tillers m−2 in this crop, 750.8 shoots m−2, compared to the
CON treatment, which had a mean shoot quantity of 666.4 m−2. In the final year
of the experiment, the CON treatment had an oilseed rape mean plant population
of 17 plants m−2, which was 85% of the target plant population of 20 plants m−2.
Conversely, the CA treatments oilseed rape crop failed, the following spring barley
crop achieved 243 plants m−2, which was 81.1% of the 300 plants m−2 target plant
population.

The CA treatment had a significantly higher percentage of seed loss than the CON
treatment (β = 0.03, SE = 0.06, Z = 0.51, p = 0.001). The CA treatment had a mean
loss of 49.7% for all years of the experiment, and the CON treatment had a reduced
mean seed loss of 45.6%. In the first year of the experiment, the CA treatment had a
mean loss of 37.7% of the beans planted, and the CON treatment had a mean loss of
34.5%. During the second year of the experiment, the CON treatment had a higher
mean loss (36.3%) of wheat seeds than the CA treatment (22%). The final year of the
experiment saw the complete loss of the CA treatments’ oilseed rape crop (100%).
However, while the CON treatments crop survived, there were higher losses of the
seeds planted than in previous years (66%). The spring barley grown to replace the
failed oilseed rape crop in the CA treatment had a mean loss of 39.1% of the seeds
planted. The mean seed loss for each crop (C) and by treatment (D) is shown below
in Figure 6.1.

157



Figure 6.1: The mean plant population achieved in each treatment expressed as a
percentage (%) of the national recommended plant population for that crop (A, n
= 25) and the full experimental duration (B, n = 3). The mean losses (%) of seeds
from the seeds planted for that crop (C, n = 25) and the full experimental duration
(D, n = 3).

6.3.2 Normalised Difference Vegetation Index

The output of the evaluation of the data normality and homogeneity of variances
is detailed in Appendix B. There was no statistically significant difference in mean
NDVI during the spring bean crops (β = 0.01, SE = 0.06, Z = 0.09, p = 0.93), the
winter wheat crop (β = 0.04, SE = 0.03, Z = 1.22, p = 0.22), or the final year of
the experiment between the oilseed rape and spring barley crops (β = -0.02, SE =
0.02, Z = -0.84, p = 0.4). The smoothed mean NDVI throughout the experimental
duration is shown in Figure 6.2.
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Figure 6.2: Temporal trends in Normalised Difference Vegetation Index (NDVI) for
CA and CON treatments (n = 5). Solid lines represent the 5-point moving average of
NDVI values over time, smoothing short-term fluctuations. Shaded ribbons indicate
the smoothed standard error (SE) around the mean NDVI. Faded points show the
original, unsmoothed NDVI measurements for reference.

6.3.3 Crop Applications
6.3.3.1 Pesticides

There were no significant differences identified in total pesticide active ingredient
application between the two treatments for the experimental duration (β = -0.02,
SE = 0.01, Z = -1.03, p = 0.3). For the three-year experiment, the CON treatment
applied 10.1 kg ha−1 of pesticide active ingredient, compared to the CA treatment,
which applied 9.3 kg ha−1. When this was analysed by year, the total quantity of
agrochemical active ingredient used in the production of the spring bean crop was 13%
higher in the CON treatment (3.82 kg ha−1) than the CA treatment (3.38 kg ha−1).
However, the quantity of agrochemicals used in the second year of the experiment was
10% higher in the CA treatment (3.85 kg ha−1) than in the CON (3.47 kg ha−1). In
the final year of the experiment, the CA treatment used 2.07 kg ha−1 of agrochemical
in comparison to the CON treatment, which used 2.83 kg ha−1, a 37% increase. All
pesticide mass applications by year and treatment are shown in Figure 6.3.

The CA treatment applied significantly more herbicide active ingredient per year
than the CON treatment (β = 0.87, SE = 0.39, Z = 2.3, p = 0.03). Throughout the
experiment, the CA treatment used 6.34 kg ha−1 of herbicide active ingredient, which
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Figure 6.3: Total pesticide application throughout the experiment (active ingredient
kg ha−1 treatment−1).

was a 36% increase on the usage of the CON treatment, which applied 4.04 kg ha−1.
During the first year of the experiment, both treatments used the same quantity of
herbicide active ingredients (3.6 kg ha−1), however during the second year, the total
herbicide application in the CA treatment (1.37 kg ha−1) was 85% higher than the
CON treatment (0.21 kg ha−1). During the final year, there was again higher usage
(63%) of herbicide active ingredients in the CA treatment (1.81 kg ha−1) compared to
the CON treatment (0.67 kg ha−1). All herbicide applications by year and treatment
are shown in Figure 6.4.

The CON treatment applied significantly more fungicide active ingredient per year
than the CA treatment (β = -0.19, SE = 0.07, Z = -2.8, p = 0.004). During the
first year of the experiment, fungicide usage in the CON treatment (0.65 kg ha−1)
was 195% higher than the CA treatment (0.22 kg ha−1). During the second year, the
quantity of fungicide active ingredient application was similar across both treatments
(CON - 1.58 kg ha−1, CA - 1.61 kg ha−1). In the final year of the experiment, the
CA treatment did not use any fungicide active ingredients, and the CON treatment
used 0.34 kg ha−1 of fungicide. All fungicide applications by year and treatment are
shown in Figure 6.4.

The CA treatment applied no insecticides throughout the experiment, whilst the
CON treatment applied 0.1 kg ha−1 of insecticide during the spring bean crop in the
first year, 0.005 kg ha−1 during Year 2, and 0.225 kg ha−1 in the final year of the
experiment. All insecticide applications by year and treatment are shown in Figure
6.4.

There was only PGR usage in 2023 in both treatments, where the PGR active
ingredient application rate was 94% higher in the CON treatment (1.67 kg ha−1)
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Figure 6.4: The total application of active ingredient (AI kg ha−1 treatment−1) by
each year of the experiment for; Herbicides (A), Fungicides (C), and Insecticides
(E), and the mean application of active ingredient (AI kg ha−1 treatment−1) for the
experimental duration for; Herbicides (B), Fungicides (D), and Insecticides (F).

compared to the CA treatment (0.86 kg ha−1). However, no statistical differences
were detected overall in PGR usage between the treatments (β = 0.12, SE = 0.08, Z

= 1.5, p = 0.13). All PGR applications by year and treatment are shown in Figure
6.5.

During the final year of the experiment, molluscicides were used in both treat-
ments, with the CON treatment (0.42 kg ha−1) using 68% more molluscicide active
ingredient than the CA treatment (0.25 kg ha−1). All molluscicide applications by
year and treatment are shown in Figure 6.5.
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Figure 6.5: The total application of active ingredient (AI kg ha−1 treatment−1) by
each year of the experiment for; Molluscicides (A), Desiccants (C), and Plant Growth
Regulators (PGRs) (E), and the mean application of active ingredient (AI kg ha−1

treatment−1) for the experimental duration for; Molluscicides (B), Desiccants (D),
and Plant Growth Regulators (PGRs) (F).

6.3.3.2 Fertiliser

The CON treatment applied significantly more fertiliser (kg ha−1 year−1) than the
CA treatment (β = -0.17, SE = 0.06, Z = -3.04, p = 0.003). During the first year of
the experiment, both treatments applied very similar quantities of fertiliser (CON =
215.9 kg ha−1, CA = 212.5 kg ha−1). During the second year of the experiment, the
CON treatment applied 226 kg ha−1 of fertiliser compared to 187.5 kg ha−1 in the
CA treatment. The final year saw the highest quantities of fertiliser being applied,
where the CON treatment applied 423.4 kg ha−1 of fertiliser compared to 312.5 kg
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ha−1 in the CA treatment. All fertiliser mass applications by chemical element are
shown in Figure 6.6.

Figure 6.6: Total plant nutrient application throughout the experiment (chemical
element kg ha−1 treatment−1).

There was significantly higher N usage in the CON treatment (N kg ha−1 year−1)
than the CA treatment (β = -0.19, SE = 0.07, Z = -2.77, p = 0.006). There were no
applications of N in the first year of the experiment, as both treatments grew spring
beans. During the crop of winter wheat, the CON treatment applied 186 kg ha−1 of N
and the CA treatment applied 152 kg ha−1, a 22 % increase. During the final year of
the experiment, the CON treatment received 185 kg ha−1 of N for the crop of oilseed
rape and the CA treatment received 129 kg ha−1 in the crop of spring barley. This
was an increase in N application in the CON treatment of 43%. For the duration of
the experiment (3 years), the CA treatment was applied with 281 kg ha−1 of N and
the CON treatment was applied with 370 kg ha−1; a 32 % increase of N usage in the
CON treatment. Total N applications for each experimental year are presented in
Figure 6.7.

The first year of the experiment saw a blanket application of 36 kg ha−1 K, in
solid form, across both treatment This was followed by smaller foliar applications of
3.16 kg ha−1 in the CA treatment and 0.13 kg ha−1 in the CON treatment in the
second year. During the final year, both treatments received the same quantity of K
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(83 kg ha−1). There were no applications of P in the first year of the experiment and
very low levels of application during the second year (CA = 0.7 kg ha−1, CON = 0.13
kg ha−1). In the final year of the experiment, both treatments received 83 kg ha−1

of P. In total, across the experimental duration, both treatments received the same
amount of P (83 kg ha−1) and K (121 kg ha−1). There were no significant differences
in the quantity of P (β = 0.13, SE = 0.09, Z = 1.52, p = 0.13), or K (β = 0.38, SE

= 0.29, Z = 1.32, p = 0.19). Total K and P applications for each experimental year
are presented in Figure 6.7.

There were no significant differences detected in the quantity of S applied to both
treatments (β = -0.5, SE = 0.28, Z = -1.8, p = 0.07). However, throughout the
experiment, the CON treatment applied 231.3 kg ha−1 compared to 168.2 kg ha−1.
During the first year of the experiment both treatments received the same application
rate of polysulphate (120 S kg ha−1), and there was also similar application rates of S
in the second year of cropping (CON = 38.9 kg ha−1, CA = 30.5 kg ha−1). However,
in the final year of the experiment, the CON treatment received 71.9 kg ha−1 of
S compared to 17.6 kg ha−1 in the CA treatment. Total S applications for each
experimental year are presented in Figure 6.7.

Throughout the experiment, both treatments received applications of micronutri-
ents. Both treatments received similar quantities of Ca (42.5 kg ha−1), Mg (CON
= 16.5 kg ha−1, CA = 15.6 kg ha−1), and Zn (0.04 kg ha−1). However, the CON
treatment applied 300% more B (0.56 kg ha−1) than the CA treatment (0.14 kg ha−1)
(β = -0.13, SE = 0.07, Z = -1.67, p = 0.09). The full macro and micro nutrient
application data for the duration of the experiment are detailed in Tables 3.8, 3.9,
and 3.10 and Figures 6.7 and 6.8.
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Figure 6.7: The total application of fertiliser chemical element (kg ha−1 treatment−1)
by each year of the experiment for; Nitrogen (A), Phosphorus (C), Potassium (E),
and Sulphur G, and the mean application of fertiliser chemical element (kg ha−1

treatment−1) for the experimental duration for; Nitrogen (B), Phosphorus (D), Potas-
sium (F), and Sulphur H.
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Figure 6.8: The total application of fertiliser chemical element (kg ha−1 treatment−1)
by each year of the experiment for; Calcium (A), Magnesium (C), Boron (E), and
Manganese G, and the mean application of fertiliser chemical element (kg ha−1

treatment−1) for the experimental duration for; Calcium (B), Magnesium (D), Boron
(F), and Manganese (H).
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6.3.4 Pesticide Load Indicator
6.3.4.1 Ecotoxicology

The analysis of the ecotoxicology pesticide load sub-indicator found no significant
difference in the PLIECO for both treatments during the experimental duration (β =
0.01, SE = 0.01, Z = 0.96, p = 0.33). Despite the lack of a statistical difference,
there were higher PLIECO values in the CON treatment during all experimental years.
During the first year of the experiment, the CON treatment had a PLIECO score
of 0.28, compared to the CA treatment’s PLIECO score of 0.16. There was a less
pronounced difference in the PLIECO score in 2023, where the CON treatment had
an increased PLIECO of 0.68, compared to the CA treatment, which had a PLIECO

of 0.67. The CA treatment had a reduced PLIECO score in 2024 of 0.32; however,
the CON treatment had an increased PLIECO of 0.41. For the entire experimental
duration, the CON had a higher mean PLIECO of 0.46, compared to 0.38 in the CA
treatment. The total PLIECO score for the experimental duration and for each year
of the experiment is presented below in Figure 6.9.

The pesticide group that contributed the most to the PLIECO in the CON treat-
ment was insecticides, which contributed 91% to the PLIECO. In the CA treatment,
the largest contribution was from herbicides, accounting for 87% of the PLIECO. In
comparison, herbicide usage only accounted for 3% of the PLIECO in the CON treat-
ment. Fungicides were a minor contributor to both the CON and CA treatments,
accounting for 4% and 8% of the PLIECO, respectively. The contribution proportions
for different pesticide groups to PLIECO are presented in Figure 6.13.

Figure 6.9: A:The mean ecotoxicology pesticide load indicator for all experimental
years (PLIECO year−1 treatment−1) and; B: the mean PLIECO for the entire experi-
mental period.
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6.3.4.2 Environmental Fate

Analysis of the environmental fate pesticide load sub-indicator found a significant
increase in the PLIF AT E for the CA treatment compared to the CON treatment
during the experimental duration (β = 2.3, SE = 0.49, Z = -4, p = 0.0001). There
were similar PLIF AT E scores for both treatments during 2022 (CA = 0.89, CON =
0.9); however, the following years of the experiment exhibited large differences in the
PLIF AT E score. In 2023, the CA treatment had a PLIF AT E score of 1.16 compared
to the far lower score of 0.13 in the CON treatment. This was similar in 2024, where
the CA treatment had a far higher PLIF AT E score of 0.64, compared to the CON
treatment’s score of 0.08. The mean PLIF AT E score for the CA treatment was 0.9
(SE = 0.15) and 0.37 for the CON treatment (SE = 0.27). The total PLIF AT E score
for the experimental and each year of the experiment is presented below in Figure
6.10.

The pesticide groups that contributed the most to PLIF AT E in the CON treatment
were insecticides (64%), herbicides (24%), and fungicides (10%). The largest groups to
contribute to the CA treatments PLIF AT E value were: herbicides (82%) and fungicides
(17%). The contribution proportions for different pesticide groups to PLIF AT E are
presented in Figure 6.13.

Figure 6.10: A:The mean environmental fate pesticide load indicator for all experi-
mental years (PLIF AT E year−1 treatment−1) and; B: the mean PLIF AT E for the entire
experimental period.

6.3.4.3 Human Health

Analysis of the human health pesticide load sub-indicator found no significant differ-
ence in the PLIHH for both treatments during the experimental duration (β = 0.03,
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SE = 0.02, Z = 1.05, p = 0.29). There were similar PLIHH scores for both treatments
in 2022 (CA = 0.42, CON = 0.53) and 2023 (CA = 1.34, CON = 1.21). However, in
2024, the CON treatment had a higher PLIHH score of 0.39, compared to the score
of 0.3 in the CA treatment. The total PLIF AT E score for the experimental duration
and each year of the experiment is presented below in Figure 6.11.

The pesticide group that contributed the most to the PLIHH for both treatments
was fungicides. In the CA treatment, this accounted for 60% of the PLIHH , and in the
CON treatment, this accounted for 44%. The second largest contribution by pesticide
group was 30% from herbicides in the CA treatment, and 29% from insecticides in the
CON treatment. Herbicides contributed to 15% of the PLIHH in the CON treatment.
The contribution proportions for different pesticide groups to PLIHH are presented
in Figure 6.13.

Figure 6.11: A:The mean human health pesticide load indicator for all experimental
years (PLIHH year−1 treatment−1) and; B: the mean PLIHH for the entire experi-
mental period.

6.3.4.4 Total Pesticide Load Indicator

Analysis of the total Pesticide Load Indicator (PLI) identified a significant increase
in the CA treatment PLI, compared to the CON system during the experimental
duration (β = -0.09, SE = 0.04, Z = -2.24, p = 0.02). The mean PLI of the CA
treatment was 1.57 (SE = 0.47) and the mean of the CON treatment was 1.08 (SE

= 0.3). There were similar PLI scores for both treatments in 2022; the CA treatment
had a PLI of 1.29, and the CON treatment had a PLI of 1.42. However, in 2023,
the largest difference in the PLI between the treatments was exhibited, with the CA
treatment having a far higher PLI value of 2.48, compared to a PLI value of 1.34 in
the CON treatment. A similar trend was observed in 2024, both treatments had lower
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PLI values; however, the CA treatment had a PLI of 0.95 and the CON treatment a
PLI of 0.48. The total PLI score for the experimental duration and each year of the
experiment is presented below in Figure 6.12.

Figure 6.12: A:The mean pesticide load indicator for all experimental years (PLI
year−1 treatment−1) and; B: the mean PLI for the entire experimental period.

The largest contributor pesticide group to the total PLI in the CA treatment
was found to be herbicides, which contributed to 58% of the total PLI. However,
in the CON treatment, the largest contributor to the PLI was insecticides, which
accounted for 57% of the PLI. The CA treatment did not use any insecticides during
the experiment; therefore had no contribution from insecticide active ingredients. The
second highest contributor to the PLI was fungicides, which accounted for 37% of the
PLI, compared to the CON treatment, where fungicides contributed more (22%)
to PLI than herbicides (15%). The contribution proportions for different pesticide
groups to PLI are presented in Figure 6.13.
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Figure 6.13: The proportional contributions of pesticides for the crop rotation to the
A: The Ecotoxicology Pesticide Load Indicator (PLIECO), B: The Environmental
Fate Pesticide Load Indicator (PLIF AT E), C: The Human Health Pesticide Load
Indicator (PLIHH), D: The total mass of pesticides applied (kg ha−1), and E: The
total Pesticide Load Indicator (PLI). Data source: Lewis et al. (2016).

6.3.5 Crop Yield

The results from the power analysis from the 6000 paired yield observations from the
global meta-analysis from Pittelkow et al. (2015) found that the expected effect size
for detection of crop yield differences was low (d = 0.02). Figure 6.14 suggests that,
to achieve a simulated power (α) of 80 % +, over 1000 observations (n) would be
required, at a d value of 0.14. Figure 6.14 is a simulation of the required sample sizes
for reliable detection of yield differences in agricultural tillage systems using a range
of d values ranging from 0.04 - 0.14.

During the first year of the experiment, the CON treatment had a mean yield
of 6.03 t ha−1 and the CA treatment had a lower mean yield of 5.31 t ha−1. Both
treatments yielded higher than the national average yield of 3.5 t ha−1, the CON
treatment yield exceeded the national average by 172.3% and the CA treatment by
148.8%. In second year of the experiment, the CON treatment had a higher mean
yield of 10.9 t ha−1 achieving 121.1% of the national average yield for winter wheat
(9 t ha−1), and the CA treatment yielded 9.3 t ha−1, 103.8% of the national average.
During the final year of the experiment, the CON treatments crop of oilseed rape had
a mean yield of 2.1 t ha−1, and therefore only achieved 63.5% of the national average
oilseed rape yield (3.4 t ha−1). In comparison, the CA treatment oilseed rape crop
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Figure 6.14: Power curve for detecting differences in crop yield across various effect
sizes and sample sizes. The curve illustrates the relationship between the number of
observations (x-axis) and statistical power (y-axis) for different effect sizes (Cohen’s
d).

failed; therefore, spring barley was planted instead. This crop had a mean yield of
5.3 t ha−1, and only achieved 84.4% of the national average spring barley yield of 6.3
t ha−1.

No statistically significant differences were observed in the percentage achieved of
the UK average yield between the CON and CA treatment (β = -17.8, SE = 11.1, Z

= -1.6, p = 0.12). The pairwise comparison indicated that the percentage achieved of
the UK national average crop yield during the experiment was on average 104% (SE

= 2.7) for the CA treatment, and 122% (SE = 8.71, 95% CI : 19.32% to 225%) for
the CON treatment. There was substantial uncertainty in this model output, which
is indicated by a high SE in both treatments. Most of the variability in the achieved
crop yield percentage can be attributed to random spatial and temporal differences,
as indicated by the high variance of the random effects (Block: V = 207.5, SD =
14.41, Crop: V = 651.1, SD = 25.52, Year: V = 1381, SD = 37.16). The sum
of the random effect variances (207.5 + 651.1 + 1381.0 = 2239.6) was much larger
than the residual variance (515.6). This indicates that the random effect grouping
factors explain a significant portion of the total variability in yield percentages. Model
diagnostics are presented in Appendix B.

When the yield difference maps were assessed, there was high spatial variability
in crop yield between the two treatments in the first year of the project. There were
large areas of the smaller field which were estimated to have a higher crop yield in
the CON treatments, whereas the inverse was detected in the larger field, where the
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Figure 6.15: A: The mean yield of each experimental treatment (t ha−1 year−1) (n
= 5). B: The mean yield of each experimental treatment (t ha−1) (n = 3). C: The
percentage of the national average for the previous five years (%) (n = 5). D: The
mean percentage of the national average for the previous five years (%) (n = 3).
National average crop yield data from 2017 to 2020 were obtained from the AHDB
(AHDB Cereals & Oilseeds, 2021). Error bars signify standard error.

CA treatment was estimated to have a higher crop yield in a larger proportion of the
field. This trend was not identified in 2023 in the winter wheat crop. Here, the yield
difference map identified less spatial variability between the two treatments, as the
majority of both fields were estimated to have a similar or higher yield in the CON
treatments. The spatial crop yield difference between both treatments is shown in
Figure 6.16.
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Figure 6.16: A figure containing: A: A yield difference map for the crop of spring
beans in 2022. B: A yield difference map for the crop of winter wheat in 2023.
Green indicates a prediction of higher yield in the CA treatment, red indicates a
higher predicted yield in the CON treatment. Semi-variogram statistics are detailed
in Appendix B.15

6.4 Discussion

This discussion section interprets the agronomic results of the three-year field experi-
ment previously outlined in this chapter. The analysis focused on crop establishment,
nutrient and pesticide input use, environmental risk, and crop yield. Each hypothesis
is discussed in turn, regarding both the study findings and broader literature. The
practical implications of CA are discussed, including the operational challenges expe-
rienced during crop establishment and the complexities of managing inputs in an NT
system. Where relevant, the limitations of the experimental design are acknowledged
to provide context for the interpretation of results.

6.4.1 Crop Establishment and Growth

This section addresses the tests of the following hypotheses (H ):

• H1: CA will result in a significant reduction in crop establishment compared to
the CON system.

One of the most notable differences in the agronomic management during this
study was the failure of the oilseed rape crop in 2024. The poor establishment of
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the oilseed rape crop is shown in Figures 6.17 and 6.18, both of which were taken
on the same day and show oilseed rape seedling emergence in the CON treatment
and no seedling emergence in the CA treatment. This was attributed to poor crop
establishment due to sub-optimal seed to soil contact, due to difficult weather and
soil conditions. As a result, the CA plot had to be re-drilled later in the season
to avoid a complete loss of crop data. While this ensured continued crop cover
and management continuity, it introduced a confounding factor in the interpretation
of agronomic and soil biological responses in 2024. Therefore, caution should be
exercised when interpreting the results, and they should not be directly compared to
earlier years without considering this limitation.

Figure 6.17: An example photo of the
oilseed rape establishment in the CON
treatment. Source: Author’s own

Figure 6.18: An example photo of the
oilseed rape establishment in the CA
treatment. Source: Author’s own

As discussed previously in Section 6.1, drilling operations are a key concept to
successful crop establishment in CA. This result highlights some of the operational
difficulties farmers can experience when implementing NT systems. This is because
tillage is typically used in agriculture to create a seedbed that promotes uniform and
efficient crop establishment (Triplett and Dick, 2008). In CA, tillage cannot be used
to create preferable soil conditions for crop establishment; therefore, drill opener type
and timeliness of drilling are key factors to successful crop establishment. In this
study, a John Deere 750a direct drill was used for all crop planting operations in
the CA treatment. The 750a is a disc-based opener drill, utilising a 460mm diame-
ter single disk with 7-degree bevelled edge (John Deere, 2024). During the drilling
operations of the oilseed rape crop in the CA treatment, the soil conditions were
wet, and the drill struggled to close the seeding slot following planting, resulting in
poor establishment. If it were logistically possible, a tine-based NT drill would have
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been the most preferable option in this scenario (Baker et al., 2006). In general, it
has been shown that machinery work rates are much improved under non-inversion
tillage systems offering greater flexibility and timeliness for weather-dependent oper-
ations (Morris et al., 2010). However, the presence of surface crop residues in CA
systems can also reduce solar radiation to the soil surface, and reduce the rate of soil
evaporation, which can result in wetter and colder soils, which can delay the sowing
of crops in wet and cold conditions (Soane et al., 2012). The results in this study
emphasise the benefit for farmers in the UK who are practising CA to have access to
disc and tine-based opener drills. This can greatly improve the flexibility and success
of crop establishment, as in some cases, challenging drilling conditions cannot be to-
tally avoided even with improvements to work rate efficiency that are associated with
NT systems.

The CA treatment used a higher seed rate in this study, which is a common and
recommended methodology for farmers practising CA in the UK to account for higher
losses within the system (DEFRA, 2024; Allison, 2023). This was found to be the
case in this study, where the CA treatment had significantly higher seed losses in
comparison to the CON treatment. However, this result was heavily influenced by
the complete loss (100%) of the CA treatment’s oilseed rape crop in 2024. For the
other crops in the CA rotation, losses were in the region of 20-30% of the planted
seeds, which were similar to the CON treatment. This illustrates the importance of
the initial stages of management to achieve a good crop establishment in CA, as once
the crop is established, losses are then similar to the CON systems. During 2023, the
CA treatment was drilled at a lower seed rate than the CA treatment, but also had
higher seed losses throughout the growing season. This resulted in a sub-optimal plant
population of 94% of the recommended plants m−2 according to Sylvester-Bradley
et al. (2015). This is compared to the CA treatment, which was drilled at a higher
seed rate (220 kg ha−1), and achieved a plant population of 109% of the recommended
plants m−2. Although visually, there were some differences in crop colours observable
during 2022 and 2023 when the same crops were being grown in both treatments,
there were no statistical differences detected in the NDVI throughout the experiment
for the experimental treatments. One hypothesis for this not being detectable in the
data is the quality of the satellite imagery that was used in this study, which was not
of the resolution needed to quantify small differences in the NDVI of the same crops.
This is evidenced by this dataset, where the only observable differences in the mean
NDVI were in 2024, when different crops were being grown in each treatment; despite
this, no significant differences in treatment mean NDVI were identified.
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Hypothesis H1 was partially supported by the results. The CA treatment ex-
perienced significantly greater challenges in crop establishment, most notably the
complete failure of the oilseed rape crop in 2024 due to poor seed-to-soil contact
under wet conditions. This outcome illustrates the vulnerability of NT systems to
adverse drilling conditions and highlights the importance of appropriate equipment
and timing. However, for other crops in the CA rotation, seed losses were compara-
ble to the CON treatment (20-30%), and plant population targets were largely met.
While higher seed rates were used in the CA treatment, as is standard practice to off-
set expected establishment losses, these adjustments were only partially effective. No
statistically significant differences in NDVI were detected between treatments across
the study, though this may reflect limitations in satellite image resolution rather than
an absence of agronomic differences. Overall, the results support the hypothesis that
CA can reduce establishment success, especially under suboptimal conditions. How-
ever, this also shows that with appropriate management, establishment can be similar
to CON systems for some crops.

6.4.2 Crop Nutrition

This section addresses the tests of the following hypotheses (H ):

• H2: CA will result in significant alterations to the total quantity of pesticide
and fertiliser used compared to CON Agriculture.

Nutrient management in CA has received little attention in research, despite its
key importance to a range of crop health metrics (Dordas, 2015). This has led to
calls for more research on the topic, and proposals for nutrient management to be
included as the fourth principle of CA by some (Dordas, 2015). The combination of
all of the management practices associated with CA (tillage, residue retention, and
crop rotation) is a key driver of changes in nutrient availability and distribution in
the soil. This is evidenced by the results presented in Section 5.3, where there were
significant increases in P, K, Mg availability and soil total N content after just three
years of CA. Whilst during this period, the CA treatment applied significantly less
fertiliser chemical elements (kg ha−1), compared to the CON treatment. There was
also a significant reduction in N fertiliser application in the CA treatment throughout
the experiment.

Despite not being a core principle of CA, many farmers and agronomists practising
CA are also trying to reduce their crop inputs with the goal to reduce costs and to
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create a more resilient soil system, which requires less synthetic nutrient applications
(Impey, 2022b). This is a topic of debate amongst farmers and researchers, as some
CA practitioners state that during the transition phase of CA, it is important to raise
the N fertiliser application rates to account for increased rates of N immobilisation in
CA, as previously discussed in Section 5.1 (Oyeogbe, 2021; Soane et al., 2012; Ehlers
and Claupein, 1994). N immobilisation is one of the major limitations to CA systems
during the transition to the system, due to the increase in organic matter being
returned to the soil and the absence of tillage, which can accelerate the breakdown
of organic matter and therefore hasten the mineralisation of plant nutrients (Page
et al., 2020). After this initial period of increased N usage to compensate for lower N
availability, there may be opportunities for farmers to reduce overall N rates, as there
is a body of evidence to suggest that the total N can increase in CA over time in
comparison to CON systems (Mukherjee et al., 2024; Page et al., 2020; Wang et al.,
2006). The increase in soil organic carbon, which is associated with CA, has the
potential to reduce N leaching; when this is combined with a higher total N content,
it could result in higher N use efficiency. Therefore, established CA systems could
require lower N fertiliser rates for a similar productivity of CON (Soane et al., 2012).

In this study, the CA treatment used significantly less N fertiliser throughout the
experimental duration. This is partially attributed to the different crop rotations used
in this study, where, in the final year, the CA treatment grew spring barley and the
CON treatment grew oilseed rape. Both crops require different N fertiliser plans, for
example, the recommended N fertiliser rate for spring barley for animal feed is 110 kg
ha−1 at a soil N supply index of 2 (AHDB, 2017). In comparison, the recommended
N fertiliser rate for a winter-sown oilseed rape crop is 190 kg ha−1 at a soil N supply
index of 2. Another reason for the reduced N application rate in the CA treatment
was the choice of fertilisers used in the winter wheat crops during the second year of
the experiment. Here, the CA treatment used foliar N, as opposed to the usage of soil-
applied N in the CON treatment. Foliar fertilisation provides more rapid utilisation
of the applied fertiliser as well as improvements to nutrient usage efficiency compared
to soil-applied equivalent fertilisers (Fageria et al., 2009). In the UK, foliar applied
N is typically applied by farmers targeting economic premiums from increasing grain
protein for milling purposes (Woolfolk et al., 2002). However, in some cases, farmers
are opting to use foliar N earlier in the season to try to improve N use efficiency,
reduce costs, and reduce total N applied to their crops (Gillbard, 2024). No organic
fertiliser was applied during this study due to logistical reasons with availability and
application. Both agronomists tried to supplement their synthetic fertiliser plans
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with organic fertilisers throughout the experiment; however, this did not prove to be
possible. This was disappointing, as many farmers practising CA in the UK aim to
reduce synthetic N input in favour of organic fertilisers, which have been shown to
contribute to a more efficient soil available N under long-term CA systems (Oyeogbe,
2021).

Hypothesis H2 was supported by the results. The CA treatment resulted in a
significant reduction in the total quantity of fertiliser applied, particularly N, com-
pared to the CON system. This reduction was influenced both by management
choices—such as the use of foliar N in place of soil-applied fertilisers—and by the
differing crop rotations, with lower-N-demand crops grown in the CA system. De-
spite lower fertiliser inputs, soil nutrient availability (P, K, Mg, and total N) increased
under CA over the three years, indicating improved nutrient cycling and retention.
These findings are consistent with the literature suggesting that CA systems can,
over time, reduce dependency on synthetic fertilisers due to improved soil structure,
increased organic matter inputs, and reduced nutrient leaching. Although no organic
fertilisers were used in this study, the results highlight the potential for CA to achieve
more nutrient-efficient crop production with lower synthetic input use.

6.4.3 Pesticide Usage

This section addresses the tests of the following hypotheses (H ):

• H2: CA will result in significant alterations to the total quantity of pesticide
and fertiliser used compared to CON.

• H4: CA agronomy will result in a reduced risk to the environment and human
health compared to CON.

In this study, there were no statistical differences identified in total pesticide
application between the treatments, although the CON treatment did apply a higher
quantity of pesticide active ingredients than the CA treatment. When this was broken
down by pesticide category, the CON treatment used significantly higher quantities
of fungicide and insecticide active ingredients per hectare throughout the experiment
than the CA treatment. Conversely, the CA treatment used significantly higher
quantities of herbicide active ingredients per hectare. There was limited data on the
usage of crop desiccants, molluscicides, and PGR usage in this study due to only three
years’ worth of data, as these inputs are not typically used in all crops. Therefore,
robust conclusions on treatment effects were not possible. In addition, differences in

179



the total usage of fungicides (and to some extent, herbicides) are also dependent on
the crop being grown; therefore, conclusions about pesticide usage need to be made
with caution in this study, due to different crops being grown. In addition, both
experimental treatments were managed by different agronomists, and therefore, they
may have different opinions and recommendations for certain scenarios based on their
assessments and preferences. For example, in this systems-level study, significantly
higher herbicide usage may be an agronomic decision to opt for a risk-averse approach
to weed management, rather than a response to higher weed populations observed in
that treatment.

There are mixed results in the literature which discuss herbicide usage in CA in
relation to CON practice (Bajwa, 2014; Dong et al., 2024; Morris et al., 2010). Several
studies show that there is generally a higher use of pre-emergence herbicides in CA
agronomy (Dong et al., 2024; Morris et al., 2010; FAO, 2001). However, this was
not the case in this experiment, where the larger increases in the herbicide active
ingredient rates in the CA treatment compared to the CON treatment in 2023 and
2024 were applied post-emergence (1.37 kg ha−1) and pre-emergence (1.81 kg ha−1),
respectively. Due to no data being collected on weed abundance in this study, it was
not possible to conclude whether there were distinct differences in weed type and
abundance within the experimental treatments. Although much literature points to
higher weed abundance and changes to weed populations in CA systems due to the
lack of mechanical weed management (Triplett and Dick, 2008; Soane et al., 2012), it
cannot be concluded that higher herbicide usage in this study was a result of a higher
weed burden in the CA treatment. One explanation for higher herbicide usage is the
presence of surface residues in the CA treatment, which have been shown to reduce
the efficacy of some herbicide active ingredients (Nikolić et al., 2021; Flower et al.,
2021, 2022).

Both experimental treatments were managed with distinct differences in the chem-
ical approach to agronomy with respect to the chemistry used, the application rates
of pesticide active ingredients, and the application timings. Therefore, this study
also assessed the environmental and health risks of the agronomic approaches to
the experimental treatments. This was achieved by obtaining the chemical identity,
physicochemical, human health and ecotoxicological data for all pesticide active in-
gredients from the Pesticide Properties Database (PPDB), an online resource, hosted
by the University of Hertfordshire (Lewis et al., 2016) using the methodology out-
lined in Section 6.2.5. The pesticide properties data were then used to calculate the
Danish Pesticide Load Indicator (PLI), outlined by Kudsk et al. (2018); Lewis et al.
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(2021). The PLI does not try to account for damage to the environment but aims to
reflect the relative environmental pressure that occurs due to the differing hazardous
nature of the pesticides used and the variability in quantities applied (Lewis et al.,
2021). The indicator is comprised of three sub-indicators that aim to measure the
potential pressure on human health (PLIHH), environmental fate (PLIF AT E), and
ecotoxicity (PLIECO). This indicator is designed to be used at a national level to de-
termine appropriate taxation of certain pesticides and to enable monitoring of usage
trends and environmental load over time. In this study, we used the PLI to assess
the environmental load of the experimental treatment agronomic decisions at a local
level. These results can be used as a general guide to estimate the potential pesticide
environmental load in CA systems, compared to CON. However, caution is advised
with extrapolating the data to wider systems, as the agronomic plans used in this
study are tailored to a local level, and as previously mentioned in this section, were
devised by different agronomists. Therefore, at a national scale, we would hypothe-
sise variability in the treatment pesticide load, due to local conditions and individual
agronomists’ opinions and assessments.

Overall, there was found to be a significantly higher PLI in the CA treatment
than in the CON treatment. Despite the CON treatment having a mildly higher
non-significant increases in PLIECO, PLIHH , and total mass of pesticide active ingre-
dients applied (kg ha−1), the main driver to the total PLI score, was derived from a
significant increase in the PLIF AT E in the CA treatment. Herbicides contributed 58%
to the total PLI in the CA treatment, compared to the CON treatment, where her-
bicide usage only accounted for 15% of the total PLI. As the study by Bajwa (2014)
discusses, herbicide active ingredients have substantial persistence in the soil, which
can have implications for groundwater pollution and harmful effects to soil microor-
ganisms. Therefore, higher usage of herbicides in the CA treatment in this study was
a key driver of higher PLIF AT E and the total PLI values. This result highlights the
importance for farmers and agronomists managing CA systems who want to reduce
the environmental risk of their crop management to take into account not only prod-
uct toxicity, but also environmental persistence. It also highlights the importance for
farmers and agronomists to use an Integrated Weed Management (IWM) approach
to CA, combining a variety of principles to control weed populations and not to rely
solely on a chemical approach (Farooq and Siddique, 2015; Bajwa, 2014).

Hypothesis H2 was supported by the results. While total pesticide application
rates (kg ha−1 of active ingredients) did not differ significantly between treatments,
there were notable significant differences in the composition and crop management
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programme. The CON treatment applied significantly higher quantities of fungicides
and insecticides, while the CA treatment applied significantly more herbicides. This
aligns with existing literature suggesting increased herbicide reliance in CA systems
due to the absence of mechanical weed control. However, due to differences in crop
rotations and agronomists managing each system, these findings should be interpreted
with caution.

Hypothesis H4 was not supported by the results of this study. Environmental risk,
assessed using the Danish PLI, was significantly higher in the CA treatment, primarily
due to elevated PLIFATE scores associated with herbicide persistence. These results
underscore the importance of integrating non-chemical weed control strategies within
CA systems to avoid potential negative environmental trade-offs and demonstrate
that reduced pesticide quantities do not necessarily equate to reduced environmental
risk.

6.4.4 Crop Yield

This section addresses the tests of the following hypotheses (H ):

• H3: CA will result in a significantly lower yield than the CON treatment.

There is currently mixed evidence on the effects of CA on crop yields (Pittelkow
et al., 2015; Rockström et al., 2009; Corbeels et al., 2014; Shakoor et al., 2021; Van
den Putte et al., 2010). Crop yield responses are highly dependent on a range of crop,
climate, soil, and management factors. For example, Pittelkow et al. (2015) found
that the response to crop yield in CA was highly dependent on crop choice. Yield
declines were observed in wheat (-2.6%), rice (7.5%), and maize (-7.6%); however, no
yield differences were detected in oilseed, cotton, and legume crops. Whereas, the
meta-regression analysis by Van den Putte et al. (2010) found that the soil type was
a significant factor in the crop yield response to CA. Typically, there is consensus
that yield declines in the initial years of the transition to CA are likely, which reduce
over time, and the magnitude of the observed yield declines can be minimised by
implementation of all three principles of CA and not just NT (Pittelkow et al., 2015;
Van den Putte et al., 2010).

Fear of reduced yields under CA is seen as a primary constraint to the uptake of
the system in Europe (Morris et al., 2010). Despite the likelihood of lower yields in
the initial years of CA, this has not stopped many farmers from adopting the system,
citing reductions in expenditure which balance the loss of yield. However, one of the
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key barriers to large-scale adoption of CA is the view that crop yields are more variable
than a CON system, as any lack of yield reliability will strongly influence farmer
acceptability of NT-based systems (Soane et al., 2012). This is of particular concern
in a wet climate like the UK, as already discussed in this chapter, crop establishment
can be more variable in CA in some cases (Cannell et al., 1986). For example, it has
been shown that in northern and western Europe crop yields in NT systems are lower
than those after ploughing in wet seasons, while there may be little or no difference
in dry seasons (Alakukku et al., 2009; Riley et al., 2017; Soane et al., 2012). This has
also been shown in the UK, where the study by Cannell et al. (1986) found that winter
wheat yields for drained and undrained ploughed treatments were more variable in
NT systems. The NT treatment established poorly in a wet autumn, resulting in
poor yields, whereas there was no difference detected in crop establishment or yield
for the tillage-based treatments. These results concur with the findings in this study,
where during a wet-autumn crop establishment in the CA treatment resulted in a
failed crop, compared to the CON treatment, which established an, albeit sparsely
populated, crop of oilseed rape. However, both treatments in this study exhibited
large yield variability when compared to the national average; the CON treatment
yield ranged from 172% to 63% of the national average. Whereas the CA treatment
yielded from 148% to 84% of the national average, this figure discounts the failed crop
of oilseed rape in the final year of the experiment. These results highlight that once
established, CA has similar variability in crop yield. Despite identifying higher yields
in the CON treatment in the first and second years of this experiment, no statistical
differences in crop yield between the experimental treatments were identified.

The results of the yield power analysis performed in this study found that the
expected effect size for the detection of crop yield differences was low (d = 0.02). This
suggests that detecting statistically significant differences in yield would require a very
large sample size to achieve sufficient power. This indicates that the average yield
differences between the agricultural systems analysed in this dataset are negligible
relative to the variability within the data. Such a large quantity of samples was not
possible within the constraints of this study, due to the experimental design. This
study uses only five true replicates and therefore for some variables, such as crop
yield, it poses limitations for detecting statistical differences even if they exist within
the experiment (e.i, a Type II error). In this study, the percentage difference from
the national crop yield for the experimental treatments was analysed for statistical
differences. As we failed to reject the null hypothesis that the experimental treatments
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did not affect crop yield, there remains a possibility of a Type II error, meaning that
a true effect may exist but was not detected due to limited statistical power.

The assessment of yield difference maps revealed notable spatial and temporal dy-
namics in the performance of the CON and CA treatments across the study fields. In
the first year, substantial spatial variability was observed, with contrasting patterns
between the two fields. The smaller field exhibited higher estimated yields under
the CON treatment across large areas, whereas in the larger field, the CA treat-
ment appeared to outperform CON management over a greater proportion of the
area. This suggests that the relative benefits of the two management systems may
be field-specific, possibly influenced by underlying biophysical heterogeneity such as
soil type, topography, or historical management, which may interact differently with
the treatments.

Interestingly, this field-specific trend was not maintained in the second year during
the winter wheat crop. The yield difference maps from Year 2 showed reduced spatial
variability, with most areas in both fields showing either similar yields or a slight
advantage under CON management. This shift could reflect several factors, including
seasonal climatic conditions, crop-specific responses to the treatment management,
or the cumulative effects of the treatments over time.

Overall, these findings highlight the importance of considering both spatial and
temporal factors when evaluating the performance of CA. The results suggest that CA
and CON practices do not have uniform effects in space or time, and that management
decisions should account for site-specific characteristics. Future research should aim
to identify the drivers of spatial crop performance in CA.

Hypothesis H3 was not supported by the results. Although the CA treatment
experienced a complete crop failure in one year due to poor establishment under wet
conditions, there were no statistically significant differences in crop yield between
the CA and CON treatments across the study period. Yield variability was high in
both systems, and the CA treatment showed comparable yield ranges to the CON
system, excluding the failed oilseed rape crop. Power analysis revealed a very low
expected effect size (d = 0.02), indicating that a much larger sample size would be
needed to detect meaningful differences. As such, the lack of statistical significance
may be due to insufficient replication (Type II error) rather than the absence of a real
treatment effect. These findings are consistent with broader literature, which suggests
yield declines may occur in the early years of CA adoption, particularly under wet
conditions, but that yield outcomes are highly context-dependent and may converge
with CON yields over time.
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6.5 Conclusion

This chapter has evaluated the agronomic outcomes of adopting CA compared to
CON over three years, addressing hypotheses related to crop establishment, input
usage, environmental impact, and yield.

CA presented significant challenges for crop establishment, particularly under ad-
verse weather conditions. The failure of the oilseed rape crop in 2024 highlighted
the vulnerability of NT systems to wet soil conditions and the importance of appro-
priate equipment and timing. However, for other crops, establishment losses in CA
were comparable to the CON system, indicating that with appropriate management,
reliable establishment is achievable. Thus, Hypothesis H1 was partially supported.

Regarding nutrient inputs, the CA treatment applied significantly less N fertiliser,
aided by both crop rotation choices and the use of foliar N. Despite these reductions,
soil nutrient availability (P, K, Mg, and total N) increased under CA, suggesting
improved nutrient cycling and retention. These results support Hypothesis H2 for
fertiliser use, demonstrating that CA can achieve more nutrient-efficient production
with lower synthetic inputs.

For pesticides, total quantities applied did not differ significantly between systems,
but the CA treatment relied more heavily on herbicides, while the CON system used
more fungicides and insecticides. The environmental risk, measured using the Dan-
ish Pesticide Load Indicator, was significantly higher under CA, driven by herbicide
persistence (PLIFATE). This finding underscores the importance of integrated weed
management strategies in CA systems. Therefore, Hypothesis H2 was only partially
supported for pesticide use: while overall inputs may not increase, their environmental
impact may be greater under CA if not managed carefully.

Finally, although crop yield variability was high in both systems, no statistically
significant differences were found between treatments. A complete crop failure in the
CA treatment in one year did not result in a significant overall treatment effect, likely
due to the low statistical power of the study (only five replicates). Power analysis
indicated that very large sample sizes would be needed to detect differences of the
magnitude observed. Hypothesis H3 was not supported, though the findings align
with literature suggesting that yield outcomes under CA vary by context and may
improve over time.

In summary, the results indicate that CA can reduce input use and maintain com-
parable yields under certain conditions, but poses challenges in crop establishment
and may increase environmental pesticide risks without careful management. These

185



findings highlight the importance of the continued development of site-specific agro-
nomic strategies to support the successful implementation of CA in the UK context.
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Chapter 7

Soil Greenhouse Gas Emissions in
Conservation Agriculture

7.1 Introduction

Human activities are driving climate change, principally through emissions of green-
house gases (GHG). Global surface temperature in 2011–2020 reached 1.1◦C above
temperature averages from 1850–1900 (IPCC, 2023). Urgent action is required, at
unprecedented scales and across all sectors, to meet the target of no more than 1.5
◦C of warming above pre-industrial levels, set out by the IPCC (Allen et al., 2022).

Net GHG emissions have increased since 2010 across all major sectors, with 22%
of total GHG emissions (13 Gt CO2−eq) attributed to the Agriculture, Forestry and
Other Land Use (AFOLU) sector (IPCC, 2023). The global agricultural industry faces
major challenges due to changing climates, whilst simultaneously being a significant
contributor to climate change itself (Guidoboni et al., 2023). Without action, it
is predicted that by 2050 the combination of climate change and soil degradation
will reduce global crop yields by approximately 10%, extending to up to 50% in
at-risk regions (Scholes et al., 2018). Therefore, there is a need for agriculture to
adapt to climate change whilst maintaining food security and minimising impacts to
the environment, such as reducing GHG emissions and sequestering CO2 in the soil
(Follett, 2001). In recent years, there has been a growing number of calls to redesign
the global food system (Giller et al., 2021).

Conservation Agriculture (CA) is proposed as an alternative to conventional agri-
culture (CON). It claims to improve production sustainability by conserving and
enhancing soil health and the associated biota (FAO, 2014; Page et al., 2020). It
therefore has the potential to mitigate the negative effects of traditional crop produc-
tion, such as soil organic matter depletion, soil erosion, and GHG emissions (Page
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et al., 2020).
CA consists of three crop management principles: 1) No tillage: defined as the

direct planting of crops with a minimum of soil disturbance (Derpsch et al., 2014).
2) Permanent soil organic cover: defined as the use of crop residues or cover crops
on the soil surface during the crop rotation, covering at least 30% of the soil between
harvest and seeding (Page et al., 2020). 3) Diversified crop rotation: defined as the
process of using a diversified complex crop rotation, sequence or association which are
specifically tailored to local environments and climatic conditions, with the inclusion
of leguminous crops and cover crops (Kassam et al., 2019; Derpsch and Friedrich,
2009; Knapp and van der Heijden, 2018).

Soil management practices are known to affect soil GHG fluxes, including carbon
dioxide (CO2), methane (CH4) and nitrous oxide (N2O) (Dendooven et al., 2012b).
In the UK, agriculture is a major source of GHG emissions, accounting for 1.7% of
total CO2 emissions, 69% of total N2O emissions, and 48% of all CH4 emissions in
2020 (DEFRA, 2022). Reducing these emissions is a major challenge for the sector
and is a key goal of the National Farmers Union (NFU) in the UK, which is aiming
for a net-zero agricultural sector by 2040 (NFU, 2023). This is also the goal set
by the Department for Environment, Food and Rural Affairs (DEFRA), which is
aiming to reduce net GHG emissions from the agriculture sector as much as possible
to aid meeting the goal of the UK government of a net-zero emission economy by
2050 (HM Government, 2023). For this to be achieved, it is necessary for researchers
to accurately estimate potential GHG emissions from any proposed changes to crop
management and tillage practices to be able to advise farmers on the most effective
methodologies under different environmental and soil conditions.

Reduced tillage is considered an effective technique for mitigating agricultural
contributions to climate change, especially when considering reducing soil degrada-
tion and energy usage in crop production, while potentially increasing C sequestra-
tion. However, the effects of reduced tillage on GHG emissions are still controversial
(Shakoor et al., 2021). Previous research reports increases (Shakoor et al., 2021; Val-
ujeva et al., 2022), decreases (Abdalla et al., 2016; Sainju, 2016; Zhang et al., 2010),
and no changes (Dendooven et al., 2012b; Tellez-Rio et al., 2015) in GHG emissions
in comparison to CON.

The retention of crop residues as soil cover can support many agronomic and
ecosystem service improvements, such as erosion control (Fryrear and Skidmore,
1985), enhanced nutrient cycling (Turmel et al., 2015), and soil C sequestration
(Blanco-Canqui and Lal, 2007; Chen et al., 2013). However, the effects of crop
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residue return on GHG emissions can also be variable, with previous research re-
porting increased emissions in treatments where crop residues are retained compared
to treatments where residues are removed (Zhang et al., 2016). A meta-analysis by
Hu et al. (2019) found that N2O emissions are significantly increased when high and
low quantities of biomass are added to the soil, but not significantly affected when
medium quantities are added. This is suggested by the authors to be related to the
C:N ratio and the lignin:N ratio of the biomass; when high amounts of C and N are
applied to the soil this promotes heterotrophic microbial respiration which depletes
soil O2 concentrations, thus promoting denitrification and N2O production (Gomes
et al., 2009). For example, a study by Garcia-Ruiz and Baggs (2007) found that soils
with the addition of legume crop residues can have N2O emissions of close to three
times that of a non-amended soil.

Crop sequence and crop type can also be important drivers of net GHG flux from
agricultural cropping systems, which is mainly thought to be driven by differences in
N availability and root biomass (Abdalla et al., 2016). The meta-analysis by Shakoor
et al. (2021) found that crop species showed significant positive and negative effects
on GHG fluxes, depending on the individual crop species. They found that non-
legume crops increased global warming potential (GWP) in comparison to legume
crops because non-legume crops required a high amount of N fertiliser to sustain
crop production, which stimulates increased N2O emissions. In addition, the global
meta-analysis by Sainju (2016) reported that GHG flux was 168 - 215% lower with
perennial than annual cropping systems, but 41 to 46% greater with crop rotation
than mono-cropping.

There are many studies investigating the effects of specific components of CA
practice on GHG fluxes. However, the effects of the simultaneous application of these
components via typical management on net GHG flux are less well studied. Many
previous studies are based on the reductive approach of evaluating soil GHG flux from
CA, where a single variable is changed. However, this approach is uninformative for
real-world scenarios where farmers must adopt all the principles of a given cropping
system to achieve the best performance. This is illustrated by the results from the
meta-analysis by Pittelkow et al. (2015) who show that adoption of no till in isolation
significantly reduces crop yield. They also reported that, when CA principles are
unanimously applied, the magnitude of yield decline is minimised and concluded that
all three principles must be adhered to for the best outcomes. Therefore, there is a
need for more ”systems-level” studies evaluating CA in realistic commercial settings
to assess the differences in GHG flux between CA and CON.
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7.1.1 Research Aims and Hypotheses

The objective of this research chapter is to evaluate the greenhouse gas (GHG) emis-
sions in winter wheat (Triticum aestivum var. Extase) managed using a CA compared
to a CON with a systems-level design. The aim is to evaluate the effectiveness of im-
plementing CA for in-field GHG flux reduction in the UK agricultural sector. To do
so, this paper will test the hypothesis that crop production utilising the CA principles.

The research aims (A) of this chapter are:

• Monitor in-field greenhouse gas emissions during the transition to CA in com-
parison to a CON and evaluate the effectiveness of CA as a methodology to
reduce soil-derived GHG emissions.

This chapter tests the following hypotheses (H ):

• H1: CA is an effective methodology for reductions of soil CO2 emissions in
comparison to CON.

• H2: CA is an effective methodology for reductions of soil N2O emissions in
comparison to CON.

• H3: CA is an effective methodology for reductions of soil CH4 emissions in
comparison to CON.

• H4: CA reduces the overall Global Warming Potential (GWP) compared to
CON.

7.2 Materials and Methods

The experiment was carried out at the field experiment detailed in Section 3, during
2023. A subset of 10 of the 150 randomly generated sampling points described in
Chapter 3 were taken using a random number generator, to include 1 sampling point
for each experimental plot. The positions of the randomly generated sampling points
are shown below in Figure 7.1.
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Figure 7.1: Experimental design - Sampling points are indicated by the black points
with the corresponding sample number labelled.

7.2.1 Greenhouse Gas Sampling

The sampling for GHG emission analysis was performed twice weekly, where possible,
from 10/03/2023 to 28/07/2023. Samples were manually taken from 10 static flux
chambers, with one chamber base allocated per plot. Chambers consisted of a cylin-
drical galvanised steel chamber (400 mm diameter x 300 mm height) with the top of
the chamber completely sealed. They were equipped with an internal fan at the top,
which was also fitted with a rubber butyl gas septa to allow for the extraction of gas
samples. Chambers were hermetically sealed on top of stainless-steel bases (diameter
399 mm x height 150 mm) which were inserted into the soil to a depth of 75 mm. The
chamber bases were inserted seven days before the first sample was collected to allow
time for the gas flux from the soil disturbance caused by insertion of the chamber
bases to subside. The chamber and base contained rubber seals on the inside of the
chamber and the outside of the base to create an airtight seal.
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Figure 7.2: The static chamber base,
which remained in the soil for the du-
ration of the sampling period. Source:
Author’s own

Figure 7.3: The static chamber top,
which was placed onto the chamber base
during individual samples. Source: Au-
thor’s own

The sampling order of all chambers was randomised every sampling date, with
samples collected between 15:00 and 17:00 each sample day when possible. Before
sampling, the internal fan was turned on for two minutes. All chambers were sampled
60 minutes after closing. Samples were extracted using a 60 ml polypropylene syringe
and transferred to pre-evacuated 20 ml crimp top vials, venting excess gas to ensure
samples were stored at atmospheric pressure. An additional three vials were filled with
atmospheric samples at equal times between soil flux samples, to allow for correction
of sampled gases for the atmospheric gas concentrations during the sampling period.
The samples were stored at room temperature and analysed as soon as possible after
collection.

7.2.2 Greenhouse Gas Flux Analysis

The concentration of GHGs was determined by gas chromatography using an Agi-
lent 7890A gas chromatograph fitted with a Hewlett-Packard automated head-space
sampler, and an Electron Capture Detector (ECD). Methane (CH4) and carbon
dioxide (CO2) were detected using a Flame Ionisation Detector (FID), fitted with
a methaniser (350◦C), and nitrous oxide (N2O) via an Electron Capture Detector
(ECD; 300◦C). Daily fluxes were measured in parts per million (ppm) and were con-
verted to mg CO2−C hr−1 m−2, mg CH4−C hr−1 m−2 and mg N2O−C hr−1 m−2

using the following equation (7.1):

mg x−Xhr−1m−2 =
ppm

h
× V H × U

T × R
(7.1)
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Where:

• x−X is the daily flux.

• V H is the total head-space volume (l).

• u is the atomic weight.

• T is the mean day temperature (K).

• R is the gas constant (0.0821 atm L−1 mol K−1).

Values were converted to cumulative fluxes, assuming linearity of flux rate between
each measurement day.

7.2.3 Environmental Data Collection

The chambers were fitted with an internal thermometer and hygrometer to monitor
internal temperature and humidity. Daily temperature and precipitation data were
obtained from a weather station located 20 km from the experimental site at Lat.
52.794, Lon. -2.663, 72 metres above sea level (Met Office, 2023). Soil temperature
and volumetric soil moisture content were acquired from https://cosmos.ceh.ac.
uk/ for a site 17 km from the experimental site (Lat. 53.0264, Lon. -2.7005, 78 metres
above sea level) collected as part of the COSMOS-UK project (Cooper et al., 2021).

7.2.4 Global Warming Potential

Global warming potential was calculated for all cumulative fluxes for the entire sam-
pling period using the global warming potential values reported in the IPCC Sixth
Assessment Report (CO2 = 1, CH4 = 27.2, N2O = 273; (IPCC, 2023)). The equations
for calculating the GWP CO2 equivalents are presented below in Equations 7.2, 7.3,
and 7.4.

CO2−e m−2day−1 = CO2 m−2day−1 × 1 (7.2)

CO2−e m−2day−1 = CH4 m−2day−1 × 27.2 (7.3)

CO2−e m−2day−1 = N2O m−2day−1 × 273 (7.4)
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Yield-scaled GWP was calculated by dividing the CO2 equivalent emissions by
the crop yield (harvested at 14.5% moisture) and expressed in units of kg CO2−e eq.
kg−1 following the methodology of O’Neill et al. (2021). A detailed methodology of
the crop growth and yield can be viewed in Chapter B.

7.2.5 Statistical Analysis

Statistical analysis was done using R version 5.1 (R Core Team, 2023). The lme4
package (Bates et al., 2015) was used to employ linear mixed-effect models to compare
CO2, N2O, and CH4 emissions in the experimental treatment systems. The basic
model formula was:

log(yi) = β0 + β1 · Treatmenti + ublocki
+ ubatch.datei

+ ϵi (7.5)

Where:

• β0 is the overall intercept of the model.

• β1 is the fixed effect of the treatment factor, estimating the effect of treatment
on log-transformed GHG emissions.

• ublocki
is the random intercept for block, accounting for variability between

experimental blocks.

• ubatch.datei
is the random intercept for batch date, accounting for variability

associated with sampling or measurement dates.

• ϵi is the residual error, representing unexplained variation in the response.

The model was fitted using REML (restricted maximum likelihood estimation), a
modification of maximum likelihood estimation that is more precise for mixed-effects
modelling (Baayen et al., 2008). Crop yield for both treatments was compared using
a generalised linear model using the glm function within the stats package (R Core
Team, 2023) using the total crop yield as the response vector and the treatment as
the linear predictor of the response variable. Yield-scaled Global Warming Potential
(GWP) was also compared using a generalised linear model, with the yield-scaled
GWP as the response variable and the treatment as the linear predictor.
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7.3 Results

7.3.1 Environmental Conditions

The mean daily temperature during the study period ranged from 0◦C on 08/03/2023
to 21.3◦C on 24/06/2023 (Figure 7.4). Total rainfall during the study period was 222
mm, with a mean of 1.73 mm per day (Figure 7.4). The highest daily rainfall was
on 09/03/2023, which recorded 12.57 mm. The mean relative humidity for the study
period was 75.7%, ranging from 54.1% to 93%. The climate data for the study period
is presented below in Figure 7.4 and the comparison with historic averages is presented
in Figure 3.2.

Figure 7.4: Daily mean temperature (◦C) (A), Daily precipitation (mm) (B), Daily
Relative humidity (%) (C).
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7.3.2 Soil Data

Soil samples ranged from 48% - 65% sand content, 16% - 21% clay content and 19%
- 32% silt content, classified either as a clay loam, sandy loam or sandy clay loam
(Figure 4.2). Soil organic matter ranged from 3.05% - 4.17%, with a bulk density from
1.14 g cm−3 – 1.58 g cm−3 (5.3), and a pH from 5.78 - 6.72. Soil available phosphorus
ranged from 9.6 mg l−1 - 17.2 mg l−1 (Figure 5.6), and available potassium from
79.75 mg l−1 - 234.85 mg l−1 (Figure 5.7). Soil temperature during the sampling
period ranged from 3.7 ◦C on 11/03/2023 to a maximum temperature of 19.6 ◦C on
19/06/2023 (Figure 7.5). Volumetric soil moisture ranged from the minimum of 6.8%
on 09/06/2023 to a maximum of 32.4% on 15/04/2023 (Figure 7.5).

Figure 7.5: Soil temperature (◦C) (A) and Volumetric Soil Moisture (B). Data col-
lected from (Cooper et al., 2021)

7.3.3 Carbon Dioxide Flux

The mean daily CO2 flux ranged from 0.04 g CO2−C m−2 day−1 to 29.22 g CO2−C
m−2 day−1 in the CON treatment and 0.06 g CO2−C m−2 day−1 to 30.41 g CO2−C
m−2 day−1 in the CA treatment (Figure 7.6). The lowest mean daily CO2 flux detected
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in both treatments occurred on 07/04/2023, and the greatest mean daily CO2 flux was
detected on 17/05/2023 in both treatments. The mean daily CO2 flux detected for
the whole sampling period was 14.70 g CO2−C m−2 day−1 in the CON treatment and
15.43 g CO2−C m−2 day−1 in the CA treatment. Cumulatively, the CON treatment
emitted 264.7 g CO2−C m−2 day−1 during the sampling period, compared to the CA
treatment which emitted 277.9 g CO2−C m−2 day−1 in total during the sampling
period (Figure 7.7).

The CA treatment did not significantly affect soil CO2 emissions in comparison
to the CON treatment (β = 0.02, SE = 0.06, Z = 0.05, p = 0.96). Additionally,
CO2 emissions were not affected by N fertiliser addition (β = -0.001, SE = 0.02, Z

= -1.27, p = 0.2), or volumetric soil moisture content (β = 0.08, SE = 0.05, Z = 1.7,
p = 0.1). However, soil CO2 emissions were significantly affected by mean daily soil
temperature (β = 0.68, SE = 1.67, Z = 4.1, p < 0.001).

7.3.4 Nitrous Oxide Flux

The mean daily N2O flux ranged from -0.25 mg N2O−N m−2 day−1 to 2.88 mg
N2O−N m−2 day−1 in the CON treatment and -0.16 mg N2O−N m−2 day−1 to 2.32
mg N2O−N m−2 day−1 in the CA treatment (Figure 7.6). The lowest mean flux
occurred on 03/04/2023 for both treatments, where the mean flux was found to be
negative for both the CON (-0.25 mg N2O−N m−2 day−1) and the CA (-0.16 mg
N2O−N m−2 day−1) treatments. The greatest N2O flux was on 16/04/2023 for both
treatments, 2.88 mg N2O−N m−2 day−1 in the CON treatment and 2.32 mg N2O−N
m−2 day−1 in the CA treatment. The mean daily N2O flux detected for the whole
sampling period was 0.51 mg N2O−N m−2 day−1 in the CON treatment and 0.31 mg
N2O−N m−2 day−1 in the CA treatment. The total cumulative flux for the CON
treatment was 9.27 mg N2O−N m−2 day−1 and in the CA treatment it was 5.59 mg
N2O−N m−2 day−1 for the entire sampling period (Figure 7.7).

The CA treatment significantly reduced N2O emissions when compared to the
CON treatment (β = -0.56, SE = 0.12, Z = -5.55, p < 0.001). When other variables
were considered, soil N2O emissions were not significantly effected by soil temperature
(β = -0.1, SE = 0.15, Z = -0.75, p = 0.46) or volumetric soil moisture (β = 0.02,
SE = 0.04, Z = 0.58, p = 0.56). However N2O emissions were significantly effected
by N fertiliser addition (β = 0.01, SE = 0.003, Z = 5.09, p < 0.001).
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7.3.5 Methane Flux

The mean daily flux in the CON treatment ranged from -0.68 – 0.15 mg CH4−C
m−2 day−1 and ranged from -0.59 – 0.05 mg CH4−C m−2 day−1 in the CA treatment
(Figure 7.6). The greatest flux in the CON treatment occurred on 10/03/2023 and
on 22/03/2023 for the CA treatment. The lowest CH4 flux in the CA treatment
occurred on 07/04/2023 and on 03/04/2023 in the CON treatment. The mean flux
for the sampling period was -0.14 and -0.17 mg CH4−C m−2 day−1 for the CON and
CA treatments, respectively. The total cumulative flux during the sampling period
for the CON treatment was -2.48 mg CH4−C m−2, and -3.04 mg CH4−C m−2 for the
CA treatment (Figure 7.7).

CH4 flux was not significantly affected by the treatment (β = 5.56 × 10−5, SE =
1.11 × 10−3, Z = 0.05, p = 0.96). When other variables were considered, CH4 flux
was not significantly affected by N fertiliser addition (β = -0.004, SE = 0.005, Z =
-0.69, p = 0.49), soil temperature (β = 0.14, SE = 0.13, Z = 1.16, p = 0.29), or
volumetric soil moisture content (β = 0.0006, SE = 0.03, Z = 0.02, p = 0.98).
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Figure 7.6: Daily GHG flux for CO2 (A), N2O (B), and CH4 (C). Lines signify the
mean (n = 5) and error bars show the standard error of the mean.
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Figure 7.7: Cumulative daily GHG flux for CO2 (A), N2O (B), and CH4 (C). Lines
signify the mean (n = 5) and error bars show the standard error of the mean.
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7.3.6 Global Warming Potential

CO2 emissions were the largest contributor to global warming in the CON treatment
(264.77 g CO2−e m−2 day−1) and the CA treatment (277.9 g CO2−C m−2 day−1)
during the experimental period (Figure 7.8). In comparison, the GWP of N2O emis-
sions was much lower than CO2. The N2O flux from the CON treatment emitted
2.53 g CO2−e m−2 day−1 (CO2−equivalent) and 1.53 g CO2−e m−2 day−1 in the CA
treatment. Both treatments had negative methane fluxes of CH4, which in the CON
treatment reduced the GWP by -0.06 g CO2−e m−2 day−1 and the CA treatment by
-0.08 g CO2−e m−2 day−1.

Overall, the GWP was not significantly affected by the treatment (β = 25.55, SE

= 29.15, Z = 0.88, p = 0.38), N fertiliser addition (β = -0.77, SE = 0.74, Z = -1.04,
p = 0.3), or soil volumetric moisture content ((β = 17.71, SE = 18.89, Z = 0.94, p

= 0.36). However, it was significantly affected by soil temperature (β = 177.6, SE =
69, Z = 2.57, p = 0.02). The CO2−equivalent emissions of the three gases in terms
of their GWPs, over a 100-year time horizon (IPCC, 2023), are shown in Figure 7.8.

Crop yield in the CON treatment ranged from 10.47 t ha−1 to 11.49 t ha−1, with a
mean of 10.96 t ha−1 (Figure 6.15 B). The crop yield in the CA treatment ranged from
7.08 t ha−1 to 10.78 t ha−1, with a mean of 9.4 t ha−1. The CA treatment produced
a significantly lower yield (p = 0.044) in comparison to the CON treatment.

CO2 emissions were the largest contributor to the yield-scaled GWP in both treat-
ments (Figure 7.8 B). The CA treatment produced more CO2 flux per unit of yield
(295.64 kg CO2−e ha−1 t−1 yield) in comparison to the CON treatment (241.58 kg
CO2−e ha−1 t−1 yield). However, the CON treatment produced more N2O flux per
unit of yield (2.31 kg CO2−e ha−1 t−1 yield) in comparison to the CA treatment (1.62
kg CO2−e ha−1 t−1 yield). In addition, the CA treatment oxidised more CH4 per unit
of yield (-7.78 kg CO2−e ha−1 t−1 yield) in comparison to the CON treatment (-7.38
kg CO2−e ha−1 t−1 yield). Overall, the CA treatment produced 289.48 kg CO2−e
ha−1 t−1 yield in comparison to the CON treatment which emitted 236.51 CO2−e
ha−1 t−1 yield. The yield-scaled GWP was significantly higher in the CA treatment
(β = 1.48 × 105, SE = 3.19 × 104, Z = 4.65, p < 0.001) when compared with the
CON treatment.
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Figure 7.8: A: Cumulative emissions of as CO2−equivalents for the sampling period
based on the GWP of soil GHG fluxes. B: Yield-scaled Global Warming Potential
(GWP) as CO2−equivalents. GWP values calculated using the values reported in the
IPCC Sixth Assessment Report (IPCC, 2023). Columns show means (n = 5), error
bars show standard errors.

7.4 Discussion

This discussion section interprets the results of the in-field soil GHG flux experiment
detailed in this chapter. The analysis focused on the effects of the CA and CON
on soil CO2, N2O, and CH4, as well as other factors that drive these fluxes. The
soil GHG fluxes are also presented in relation to the crop yield of the experimental
treatment as yield-scaled Global Warming Potential (GWP). The implications of
treatment differences are discussed. The hypotheses to be addressed are as follows:

• H1: CA is an effective methodology for reductions of soil CO2 emissions in
comparison to CON.

• H2: CA is an effective methodology for reductions of soil N2O emissions in
comparison to CON.

• H3: CA is an effective methodology for reductions of soil CH4 emissions in
comparison to CON.

• H4: CA reduces the overall GWP compared to CON.

The hypotheses are discussed with reference to both the study findings and broader
literature. The limitations of the experimental design are acknowledged to provide
context for the interpretation of results.
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7.4.1 Carbon Dioxide Flux in Conservation Agriculture

The CA treatment did not significantly affect soil CO2 emissions in comparison to
the CON treatment (β = 0.02, SE = 0.06, Z = 0.05, p = 0.96). Therefore, this study
rejects the hypothesis H1, as in this context CA was not found to reduce soil CO2

emissions in comparison to the CON treatment. Additionally, CO2 emissions were
not affected by N fertiliser addition (β = -0.001, SE = 0.02, Z = -1.27, p = 0.2), or
volumetric soil moisture content (β = 0.08, SE = 0.05, Z = 1.7, p = 0.1).

The most significant predictor of CO2 emissions was soil temperature (β = 0.68,
SE = 1.67, Z = 4.1, p < 0.001). This result is consistent with previous literature,
where soil temperature has been found to be a major driver of net GHG emissions.
Increases in soil temperature promote decomposition of soil organic C due to increases
in microbial activity and increased gas solubility, promoting greater loss of GHGs to
the atmosphere (Cosentino et al., 2013; Zhang et al., 2020). The review by Blanco-
Canqui and Ruis (2018) found that no-tillage (NT) reduced the soil temperature in
12 of 18 studies reviewed, which was suggested to be due to an insulating effect and
a reduction of evaporation because of the presence of surface crop residues. However,
the findings by Blanco-Canqui and Ruis (2018) suggest that the rate of change that
NT systems alter the soil physical environment is dependent on the duration of NT
implementation. Therefore, to fully assess the effects of CA on GHG emissions, 10
years of data or more is recommended to detect the consistent effects of CA (Cusser
et al., 2020; Valujeva et al., 2022). This was found by the meta-analysis by van
Kessel et al. (2013) who reported that yield-scaled N2O was increased significantly
when NT was implemented <10 years, however, decreased significantly after >10
years of implementation.

Another limitation of this study was that it did not study the effects of CA
on soil organic carbon (SOC) sequestration. Sequestration of SOC is an effective
methodology for reducing the net GWP from agriculture. However, even though
earlier reviews indicated that CA has improved potential to sequester C into the soil
due to the reduction in tillage (Kassam et al., 2009; Dendooven et al., 2012b), it
is now recognised that the magnitude of SOC sequestration is more variable than
previously thought (Palm et al., 2014; Abdalla et al., 2016). Reviews of CA and SOC
sequestration regularly conclude that it causes stratification of SOC in the upper 5
or 10 cm depth (Blanco-Canqui and Ruis, 2018), whereas the accumulation of SOC
lower down the soil profile is a matter of debate amongst researchers (Gadermaier
et al., 2012). This is because, in some studies, tillage is reported to have been a net
sink of CO2 by distributing SOC to lower soil horizons where it decomposes more
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slowly (Abdalla et al., 2016). In addition, increased SOC can lead to increased GHG
emissions, thus negating any benefit from improvements to C sequestration (Li et al.,
2005). This highlights that it is important for studies reporting GHG emissions to also
factor in C sequestration to the net GWP of the tillage system to understand the full
C balance. For example, Dendooven et al. (2012b) reported that the GHG emissions
were similar for both CA and CON treatments. However, when they considered the
SOC content in the 0 - 60 cm layer, it was significantly higher in CA (117.7 t C ha−1)
than in CON treatment (69.7 t C ha−1). When this was considered, combining the
direct and indirect GHG emissions, they found that the contribution of CA to the
GWP was significantly lower compared to that of the CON treatment.

7.4.2 Nitrous Oxide Flux in Conservation Agriculture

CA significantly reduced total N2O fluxes compared to the CON in this experiment
(β = -0.56, SE = 0.12, Z = -5.55, p < 0.001). N2O fluxes were similar in this
experiment across sampling points, except for 17/05/2023, where there was a spike
in N2O emissions in the CON treatment following N fertiliser application. Therefore,
the data collected in this study supports the hypothesis H2 as in this case, CA was
demonstrated to be an effective methodology for reductions of soil N2O emissions in
comparison to CON. These results align with previous literature where several authors
have reported lower N2O emissions in well-established NT systems (>10 years of NT
implementation) (van Kessel et al., 2013). However, some previous literature reports
no observed changes in N2O emissions in CA with emissions from CON treatments.
For example, Dusenbury et al. (2008) and Tellez-Rio et al. (2015) both found that
NT did not significantly affect N2O emissions in comparison to CON. This illustrates
the variability of soil-derived N2O emissions, which are strongly linked with crop
management, soil type, climate, and a variety of factors. For example, Rochette
(2008) found that NT generally increased N2O emissions in poorly aerated soils but
had no effect in soils with good to medium aeration. This could be the case in this
experiment, where the sandy clay loam soil type is well drained with field drains and
thus large N2O fluxes are unlikely as waterlogged conditions are generally avoided.

N fertiliser addition was found to be a significant driver of N2O flux in this ex-
periment. This result is consistent with previous studies where emissions of N2O
from agricultural soils are largely associated with N fertiliser application and organic
N-based fertilisers (Cosentino et al., 2013; Rees et al., 2013). Fertiliser applications
promote increased availability of mineralised N and thus the likelihood of occurrence
of microbially mediated nitrifier denitrification or denitrification resulting in N2O
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emissions (Montzka et al., 2011), and thus may be influenced by the adoption of CA
practices aimed at reducing nutrient inputs (Palm et al., 2014). In this experiment,
the total N applied for the CON system totalled 185 kg N ha−1, in comparison to
the CA treatment, which totalled 133 kg N ha−1, with 21 kg ha−1 being applied in
foliar N form in four different applications. This was done to reduce losses of N via
leaching and reduce the incidence of fungal crop diseases within the crop, which N
fertiliser is linked with (Maywald et al., 2023). This experiment found that in the
early stages of CA adoption, N fertiliser is a larger driver of N2O emissions than the
CA system. This highlights that reducing N fertilisation rates by improving Nitrogen
Use Efficiency (NUE) should be a focus of future methodologies for reducing in-field
GHG emissions in UK crop production. Agronomic management that can reduce N
fertiliser usage and improve N use efficiency without influencing crop yields has the
potential to reduce net GWP whilst maintaining current agricultural productivity
(Sainju et al., 2014).

Additionally, it could be hypothesised that the effects of CA on N2O emissions
would be more pronounced where there have been more significant changes to soil
properties, particularly to soil structure, which then has consequences for water and
gas exchange dynamics (Tellez-Rio et al., 2015). Therefore, it could be that the N2O
emissions reported in this study after two years of implementation of a CA system
are not representative of an established CA system. Where it would be hypothesised
that larger differences in the soil physical and chemical properties would have occurred
over time, influencing N2O emissions (Cusser et al., 2020).

7.4.3 Methane Flux in Conservation Agriculture

CH4 flux was not significantly affected by the treatment (β = 5.56 × 10−5, SE =
1.11 × 10−3, Z = 0.05, p = 0.96). Therefore does not support the hypothesis H2 as
CA was not shown to be an effective methodology for reductions of soil CH4 emissions
in comparison to CON crop production. The observed CH4 fluxes were consistently
negative across both CON and CA treatments, indicating that the soils acted as a net
sink for atmospheric methane during the sampling period. The mean daily fluxes were
slightly more negative in the CA treatment (-0.17 mg CH4-C m−2 day−1) compared to
the CON treatment (-0.14 mg CH4-C m−2 day−1), and the total cumulative flux was
similarly greater in the CA treatment (-3.04 vs. -2.48 mg CH4-C m−2). Although
these differences are modest, they suggest that the CA management may slightly
enhance methane uptake compared to the CON system. Importantly, while the CA
system showed a slightly greater methane sink strength, the magnitude of differences
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between treatments was small, and no statistical difference was observed. Therefore,
further data and replication would be necessary to robustly test the hypothesis. When
other variables were considered, CH4 flux was not significantly affected by N fertiliser
addition (β = -0.004, SE = 0.005, Z = -0.69, p = 0.49), soil temperature (β = 0.14,
SE = 0.13, Z = 1.16, p = 0.29), or volumetric soil moisture content (β = 0.0006, SE

= 0.03, Z = 0.02, p = 0.98).

7.4.4 The Global Warming Potential of Conservation Agri-
culture

Overall, the GWP was not significantly affected by the treatment (β = 25.55, SE

= 29.15, Z = 0.88, p = 0.38), therefore this study fails to support the hypothesis
H4: CA reduces the overall Global Warming Potential (GWP) compared to CON.
When the contributing components of GWP were analysed, it was identified that CO2

emissions were the largest contributor to GWP in both treatments. This concurs with
the findings of Dendooven et al. (2012b) who showed the cumulative GHG emissions
over two years were similar for both CA and CON production of maize (Z. mays
L.) in the central highlands of Mexico. However, this result was not consistent with
the results of a meta-analysis by Shakoor et al. (2021) who found that NT increased
CO2 by 7.1%, N2O emissions by 12%, and CH4 emissions by 20.8% in comparison to
CON tillage systems. However, their net GWP analysis found that NT significantly
reduced the GWP in comparison to CON by 7.5%. The significant drivers of reduced
GWP in NT were found to be soil physicochemical properties, crop types, climate
zones, N application rate and water management compared to CON.

One limitation of this experiment was that it did not consider the indirect emis-
sions (fuel, fertiliser, and pesticides) from the treatment systems to fully assess the
GWP of both treatments. In CA systems, it is commonly found that there is a reduc-
tion in use of machinery and in crop inputs in comparison to CON systems (Kassam
et al., 2009). For example, a seven-year energy audit of a CA system in India by
Parihar et al. (2018) reported 49.7 - 51.5% less energy used for land preparation and
16.8 - 22.9% less energy used for irrigation compared to the CON treatment. This can
result in reductions in indirect GHG emissions in comparison to CON agriculture due
to a lowering in fuel usage, synthetic input application and machinery usage, which
combine to reduce the overall GWP of CA systems (Ponce et al., 2022).

When the yield-scaled GWP was analysed, it was found that the yield-scaled GWP
was significantly higher in the CA treatment (β = 1.48 × 105, SE = 3.19 × 104, Z =
4.65, p < 0.001) when compared with the CON treatment. This was due to the CA
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treatment yielding significantly less than the CON treatment in this experiment. This
could be linked with the reported yield decline in NT systems in the first 1 − 2 years
of adoption reported by Pittelkow et al. (2015). As this experiment was conducted in
the second year of transition to CA, it could be hypothesised that yield decline was
likely in comparison to the CON treatment. The meta-analysis by Pittelkow et al.
(2015) also states that the magnitude of the yield decline diminishes from years 3 −
10 post-adoption on NT practices; therefore, as this experiment continues, there may
be less observable yield declines in the CA treatment and the yield-scaled GWP to
reduce in the CA treatment as production increases. The reduction in crop yield could
also be hypothesised to be linked to considerably less N fertiliser usage in the CA
treatment. Increased N fertiliser addition has a strong non-linear relationship with
increased cereal yields, where there is found to be a very strong response of grain
yield to N fertiliser addition up to an economic threshold which varies depending
on the cultivar (Hawkesford, 2014). Currently in the UK, farmers can legally apply
between 0 – 280 kg N ha−1 to a wheat crop depending on the soil type and soil
mineral N supply (AHDB, 2023b), with the average N application being under 200
kg ha−1 (Hawkesford, 2014). Therefore, it could be hypothesised that the 133 kg N
ha−1 applied in the CA treatment was unlikely to match the grain yield of the CON
treatment, which received 185 kg N ha−1.

7.5 Conclusion

This chapter evaluated the effects of CA on GHG emissions in a winter wheat crop
during the second year of transition from CON management. The findings showed
that, while CA significantly reduced soil N2O emissions compared to the CON sys-
tem, there were no significant differences in CO2 or CH4 fluxes between treatments.
Importantly, the overall GWP was not significantly reduced under CA, and when
scaled per unit of crop yield, the CA system had a significantly higher GWP due to
reduced grain yields in this early transition phase.

These results suggest that CA has the potential to lower direct soil-derived N2O
emissions, but that benefits for overall GHG mitigation and climate outcomes are
contingent on maintaining or improving crop productivity and considering indirect
emissions and soil C sequestration. The study highlights that the short-term effects
of adopting CA may not immediately deliver GHG mitigation benefits, aligning with
previous findings that long-term implementation (beyond 5–10 years) is often neces-
sary to achieve stable improvements in soil properties and productivity.
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In summary, while CA demonstrates promise as a climate-smart management
approach, its effectiveness in reducing net GHG emissions will depend on context-
specific management, duration of adoption, and integration with practices that sustain
yields and improve nitrogen use efficiency. However, there is a need for more research
to be performed across multiple soil and climate types, and crop species, as all are
known to be significant drivers in GHG emissions (Abdalla et al., 2016; Shakoor
et al., 2021). Future research should focus on long-term monitoring of both direct
and indirect GHG emissions, changes in soil C stocks, and yield performance to
provide a comprehensive assessment of CA’s potential for climate change mitigation
in UK arable systems, as the effects of CA on soil physicochemical properties take
time to change and thus may influence GHG emissions over time (van Kessel et al.,
2013; Cusser et al., 2020).

Agriculture is a key industry in the focus of future climate change mitigation,
and currently, policymakers are identifying support mechanisms that could be pro-
vided to farmers to reduce GHG emissions whilst maximising agricultural produc-
tion. However, before the introduction of any support mechanisms, it is necessary to
understand which management practices reduce GHG emissions in specific soil and
climatic conditions (Valujeva et al., 2022). Thus, there is a need for more research
on CA management components as well as systems-level studies which combine those
components, which focus on the effects of CA on net GHG emissions and net GWP.
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Chapter 8

Economic Analysis of Conservation
Agriculture

8.1 Introduction

Farmers in the UK and abroad have been encouraged to adopt Conservation Agri-
culture (CA) practices in recent years, with much support and promotion from large
organisations such as the Food and Agriculture Organisation (FAO, 2014). Many
of the promotional materials disseminate the associated environmental benefits that
can be achieved through CA adoption; however, many of these materials also claim
that CA can help farmers to reduce expenditure and improve the profitability of their
businesses (FAO, 2014, 2001; Syngenta, 2024). These claims have been substantiated
by research, where CA has been shown in some cases to lower energy requirements
(Parihar et al., 2018; Das et al., 2021), lower water usage (Kumara et al., 2020; Das
et al., 2021), reduce expenditure (Kumara et al., 2020; Lorenzetti and Fiorini, 2024;
Kumara et al., 2020), reduce machinery operation times and improve timeliness of
machinery operations (Kassam et al., 2014a; Morris et al., 2010), and improve system
gross profit margin (Lorenzetti and Fiorini, 2024). However, there is not a large body
of research to draw substantial conclusions about many of the economic effects of the
implementation of CA. The results of the research that has been published about CA
economics are highly heterogeneous, and therefore it is recommended that the effects
of CA on farm economics be considered on a case-by-case basis (Pannell et al., 2014).
That said, it is widely considered that in most cases there are economic benefits to
farmers to adopt CA (Pannell et al., 2014; Farooq and Siddique, 2015; Wang et al.,
2006).

Despite evidence suggesting that, in many cases, CA can be more profitable than
conventional practices (CON) (Wang et al., 2006), some farmers are still hesitant to
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adopt it. One suggested reason for this is that when the benefits and costs associated
with CA are modelled at the on-site and off-site levels, it is found that most benefit
to CA adoption is seen at the off-site level, where there is net-gain to society and
the environment in the form of improvements to surface hydrology, reductions in
water sediment loads, and carbon sequestration (Knowler and Bradshaw, 2007; FAO,
2001). However, much of the costs associated with CA adoption are at the farm-
level, in relation to changing farm practices and the initial costs of changing farm
machinery (Knowler and Bradshaw, 2007; FAO, 2001). For example, Mueller et al.
(1985) found that total production costs of CA were initially up to 18% higher than
a CON system; however, over time resulted in lower long-term production costs due
to savings in machinery and fertiliser costs.

These initial short-term costings and risks of lower yields are disincentives for
farmers to transition to a system, even when there is scientific evidence to suggest
improvements to long-term profitability under CA systems (Mueller et al., 1985; Pit-
telkow et al., 2015). Other economic disincentives of CA at the farm level include
the loss of crop residues as a revenue stream or as livestock feed or bedding. This
is a serious consideration for farmers in the UK, where in recent years the competi-
tion for cereal straw from bioenergy and agricultural markets has resulted in limited
availability of cereal straw and has led to higher prices for crop residues (Townsend
et al., 2018). Loss of this revenue stream during the CA transition could be a strong
disincentive for farmers to change their systems (Pannell et al., 2014).

One of the key drivers of long-term improvements to profitability in CA is the
reduction of expenditure. The major factor which influences reduced expenditure
in CA is no-tillage (NT), in comparison to CON systems, which incurs a great cost
financially in terms of machinery, fuel, and labour (Das et al., 2021). The results of
the meta-analysis by Kumara et al. (2020) using a total of 670 paired observations
from 147 studies representing 67 crops of South Asian countries, found that the cost
of production in all the selected crops was significantly lower under CA. They also
found that the net returns under CA compared to CON were significantly increased
for wheat, legumes and other crop categories. However, during this study, they also
found crop yield was significantly improved in CA, which is not always the case in
the literature on the subject of crop yields in CA (Pittelkow et al., 2015; Pittelkow
et al., 2015; Van den Putte et al., 2010).

As the effects of climate change become more severe in the future, this may also
influence the economics of CA with respect to CON. This is because CA is widely
thought to be more resilient to extreme weather conditions compared to CON systems
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due to a reduced vulnerability to effects of drought (Madejón et al., 2023; Thierfelder
and Wall, 2010; Kumara et al., 2020), reduce soil erosion (Du et al., 2022), and lesser
extremes of soil temperatures (Kassam et al., 2009; Blanco-Canqui and Lal, 2007).

The economic outcomes of CA are thought to be highly specific to an individual
farm business, as the economic performance is highly influenced by the region, soil
texture, farm size, and the existing business model and economic resources. This is
coupled with a range of variables which are based upon the individual farmer, e.g.
their attitude to business risk, and their interest and knowledge about CA (Pannell
et al., 2014; Knowler and Bradshaw, 2007). Therefore, a better understanding of
the economics would more extensively aid in guiding and advising farmers on the
transition to CA, and specifically, to help them adapt their system to local conditions
(Pannell et al., 2014).

8.1.1 Research Aims and Hypotheses

This chapter aims to identify the key differences in the on-farm expenditure and rev-
enue during the transition to a CA system using the experiment outlined in Chapter
3.

The research aims (A) of this chapter are:

• Assess the economic performance of CA during the experimental duration in
comparison to CON.

• Model the economic performance of both experimental treatment systems in a
variety of different scenarios.

The hypothesis to be tested is as follows:

• H1: CA reduces crop production expenditure in comparison to CON.

• H2: CA reduces the quantity of machinery operation passes ha−1 required.

• H3: CA has no significant effect on the gross margin of the system compared to
CON.
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8.2 Methods

The experimental design and agronomic management discussed in this chapter are
detailed in Chapter 3. The site is based in Shropshire in the West Midlands of the UK,
and situated in an area of traditionally mixed arable and livestock farms. Some of the
main agricultural enterprises throughout the region are dairy, beef, and sheep pro-
duction. Additionally, there are several anaerobic digesters located locally; therefore,
competition and price for crop residues are relatively high, proportionate to mainly
arable crop-producing areas of the UK. The following section outlines the method-
ology for the collection and analysis of the economic data relating to experimental
treatment management throughout the course of the project. All data analysis was
performed in R (version 4.3.0) (R Core Team, 2023).

8.2.1 Revenue

Crop yield was calculated using the methodology previously outlined in Chapter 6,
and the revenue for all agricultural produce sold was used in the analysis. The spring
beans were sold at a price of £300 t−1, the winter wheat crop at £190 t−1, the oilseed
rape at £403 t−1, and the spring barley at £160 t−1. The winter wheat straw sold in
2023 was sold for a price of £54 t−1.

The total revenue per hectare (TRha) is calculated as:

TRha = (Yg × Pg) + (Ys × Ps) (8.1)

where:

• TRha: Total revenue ha−1.

• Yg: Grain yield per hectare (t ha−1).

• Pg: Price per tonne of grain (£ t−1).

• Ys: Straw yield per hectare (t ha−1).

• Ps: Price per tonne of straw (£ t−1).
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8.2.2 Expenditure

All product and fertiliser expenditure data were sourced from the invoices from sup-
pliers. All machinery operations data was sourced from the National Association
of Agricultural Contractors Contracting Prices Survey 2022 (NAAC, 2022). In this
database, the contracting prices are based on a fuel cost of “red” (untaxed) diesel at
£1.00 per litre. All grain drying and handling expense data were sourced from the
invoices.

The total expenditure per hectare (TEha) was calculated as:

TEha = Ea + Eo + (Yg × (Cd + Ch)) (8.2)

Where:

• TEha: Total expenditure per hectare (£ ha−1).

• Ea: Expenditure on agri-chemical application per hectare (£ ha−1).

• Eo: Expenditure on machinery operations per hectare (£ ha−1).

• Yg: Grain yield per hectare (t ha−1).

• Cd: Drying cost per tonne of grain (£ t−1).

• Ch: Handling cost per tonne of grain (£ t−1).

This equation calculates the total cost of production per hectare, combining three
main components:

1. Fixed costs associated with applying inputs (Ea) and operating machinery (Eo).

2. Variable costs related to grain yield, including drying (Cd) and handling (Ch),
which are proportional to the quantity of grain produced (Yg).

8.2.3 Gross Margin

The gross margin per hectare (GMha) was calculated as:

GMha = TRha − TEha (8.3)

• GMha: Gross margin per hectare (£ ha−1).

• TRha: Total revenue per hectare (£ ha−1).

• TEha: Total expenditure per hectare (£ ha−1).
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8.2.4 Net Profit Margin

The net profit margin was calculated for each treatment year−1 and the entire ex-
perimental period. Expressed as a percentage, it measures the proportion of total
revenue that remains as profit after deducting total expenditures and indicates the
profitability of production relative to revenue. A positive net profit margin signifies
profitability, while a negative margin indicates that costs exceed revenue. The net
profit margin per hectare (NPMha) was calculated as:

NPMha = (TRha − TEha)
TRha

× 100 (8.4)

Where:

• NPMha: Net profit margin per hectare (%).

• TRha: Total revenue per hectare (£ ha−1).

• TEha: Total expenditure per hectare (£ ha−1).

Due to the presence of strong outliers in the data for revenue, the net profit mar-
gin was winsorized by capping its values at the 5th and 95th percentiles following a
methodology by Cornaggia (2013), ensuring that extreme values do not dispropor-
tionately affect the analysis while preserving the overall distribution of the data.

NPMwinsorized
ha =


5th percentile, if NPMha < 5th percentile
95th percentile, if NPMha > 95th percentile
NPMha, otherwise

8.2.5 Theoretical Field Capacity Calculation

The Theoretical Field Capacity (TFC) in hectares per hour was calculated follow-
ing the methodology outlined by Hanna (2016). The TFC is the rate at which an
agricultural machine can perform its primary function in perfect conditions with no
stoppages. This equation is detailed below:

TFC = widthm × speedkmh−1

10 (8.5)

Where:

• widthm is the working width of the machine in meters,

• speedkmh−1 is the operating speed in kilometres per hour,

• Dividing by 10 accounts for the conversion from square meters to hectares.
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8.2.6 Time Required per Hectare

The theoretical time required to manage each treatment ha−1 was calculated as:

Time per ha = 1
TFC

= 10
widthm × speedkmh−1

(8.6)

Where:

• widthm is the working width of the machine in meters,

• speedkmh−1 is the operating speed in kilometres per hour,

• TFC is the Theoretical Field Capacity.

This equation expresses the time (in hours) required to complete one hectare of
field operations.

8.2.7 Theoretical Fuel Consumption Calculation

The theoretical fuel consumption for each agricultural operation was estimated using
fuel consumption values obtained from the AGRIBALYSE database (Colomb et al.,
2014). The database provides fuel consumption in kg ha−1 for various field operations.
To convert these values into litres ha−1, the following conversion factor was applied:

Diesel Consumption (L ha−1) = Diesel Consumption (kg ha−1)
ρ

(8.7)

Where:

• ρ = 0.835 kg L−1 is the density of diesel.

8.2.8 Statistical Analysis

Economic data was assessed for normality and homogeneity of variances using the
methodology outlined in section 3.10. Total revenue, total expenditure, operational
expenditure, application expenditure, and gross margin were statistically analysed
using generalised linear mixed effects models following the methodology detailed in
section 3.10, using block, year, and crop as random effects within the model formula.
Distributions were analysed, positively skewed data were analysed using a generalised
linear mixed effects model with a Gamma log link applied, and negatively skewed
data were modelled with a Gamma inverse link function using the package lme4 in R
(version 4.3.0) (R Core Team, 2023).
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To interpret the results of any model generated using the Gamma inverse link,
the response scale, estimated marginal means and pairwise contrasts were calculated
using the emmeans package in R. Since the Gamma model with an inverse link func-
tion reports results on the inverse scale, back-transformation was applied to obtain
interpretable values using the regrid() function to force contrasts onto the response
scale. Therefore Gamma model with an inverse link function contrasts are displayed
in the response scale in this study.

8.2.9 Markov Chain Monte Carlo Simulation

To estimate future performance of the experimental treatments in different scenarios,
a series of Markov Chain Monte Carlo (MCMC) simulations (Amorim et al., 2024)
were performed using R (R Core Team, 2023) for key economic variables. The in-
dividual simulations are detailed in the sections below. The simulation algorithms
were performed to simulate 6 years’ worth of crop and economic data for both exper-
imental treatments. Each treatment was simulated 1000 times for the following crop
rotations:

Conventional (CON)

• Winter Wheat (Triticum aestivum)
• Winter Barley (Hordeum vulgare)
• Oilseed Rape (Brassica napus)
• Winter Wheat (Triticum aestivum)
• Winter Barley (Hordeum vulgare)
• Oilseed Rape (Brassica napus)

Conservation (CA)

• Winter Beans (Vicia faba)
• Winter Wheat (Triticum aestivum)
• Spring Barley (Hordeum vulgare)
• Oilseed Rape (Brassica napus)
• Feed Peas (Pisum sativum)
• Winter Wheat (Triticum aestivum)
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8.2.9.1 Yield Simulation

A global dataset for crop production under CON and NT systems was obtained
from Su et al. (2021). The dataset contains 4403 paired yield observations collected
between 1980 and 2017 for eight major staple crops in 50 countries. The data was
filtered using the R package dplyr for all studies that utilise a crop rotation with
at least three crops involved, and studies that utilised soil cover in the NT system.
These were selected based on the CA principles defined by FAO (2014). This resulted
in a database of 669 paired observations from 23 countries and 10 crop species. The
location of the studies is shown in Figure 8.1.

Figure 8.1: The locations of the 669 paired yield observations from studies which
utilise the CA principles defined by FAO (2014). Data sourced from the dataset by
Su et al. (2021).

The crop yield data were extracted from the filtered Su et al. (2021) database,
and the correlation between the duration of the CA system implementation and the
relative yield change in comparison to the CON treatment was calculated using a
Pearson correlation coefficient using the stats R package. The results from this
analysis are presented below in Figure 8.2.

In addition, mean yield data for a range of commonly grown crops in the UK
were extracted from AHDB (2022). This database is a summary of 11,584 CON
combinable crop enterprise performance results for the 2017 to 2021 harvest years.
The results are presented by AHDB (2022) in three performance groups: top 25%,
middle 50% and bottom 25%, which are based upon full economic net margin. The
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mean UK yield was obtained from the middle 50%, and the standard deviation used
was obtained by subtracting the top 25% yield from the bottom 25% yield.

A MCMC simulation was employed to predict the potential variation in crop yields
over multiple years under different agricultural systems. The simulation was based
on a stochastic growth model, where crop yield in each year was influenced by two
key parameters:

• Drift: A deterministic trend in yield change over time, representing the sys-
tematic effect of factors like farming practices and environmental changes.

• Volatility: A random, normally distributed variability around the drift, captur-
ing uncertainty due to factors such as weather fluctuations and soil conditions.

The following steps were implemented to simulate the yield trends for each crop
rotation under the CON and CA systems:

1. Initial Yield Variation: For each simulation run, the initial yield for the first
year was randomly adjusted based on a normal distribution, with a mean equal
to the observed average yield for the crop system and a standard deviation
determined by the estimated volatility. The initial crop yield for the CON
system was obtained from the middle 50% crop yield in the UK from the AHDB
(2022). A linear mixed-effects model was used to calculate the initial yield in
the CA, relative to the CON system. The intercept coefficient of the linear
model was extracted and used as the initial yield, and the slope coefficient was
used for the yield change rate. The CON yield was maintained at a constant
value for the entire simulation duration.

2. Yearly Yield Growth: Starting from the first-year yield, the crop yield for
each subsequent year was calculated as follows:

Yt = Yt−1 × (1 + drift + N (0, volatility)) (8.8)

where:

• Yt is the yield for year t,

• Yt−1 is the yield from the previous year,

• drift represents the deterministic change in yield from one year to the
next,
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• volatility introduces stochastic fluctuation around the drift, simulated
from a normal distribution N (0, volatility).

3. Simulations: This process was repeated for a total of 1000 simulation runs to
capture a wide range of possible future yield trajectories for both experimental
treatments.

Figure 8.2: The relative yield change data defined as YieldNT −YieldCON

YieldCON
from the 669

paired yield observations year−1 from the study by Su et al. (2021).

Table 8.1: Mean yield data for a range of commonly grown crops in the UK extracted
from AHDB (2022). This database is a summary of 11,584 conventional combinable
crop enterprise performance results for the 2017 to 2021 harvest years presented in
three performance groups: top 25%, middle 50% and bottom 25%, which are based
upon full economic net margin.

Top 25% Middle 50% Bottom 25% SD

Spring Barley 7 6.3 5.4 1.6
Winter Barley 8.5 7.6 6.7 1.8
Spring Beans 4.5 3.7 2.8 1.7
Winter Beans 4.3 3.6 2.8 1.5
Linseed 2.3 1.6 1.1 1.2
Spring Oats 6.7 5.5 4.8 1.9
Winter Oats 7.4 7 6 1.4
Winter Oilseed Rape 4.2 3.4 2.7 1.5
Feed Peas 4.3 3.1 2.9 1.4
Spring Wheat 6.7 5.8 4.9 1.8
Winter Wheat 9.9 8.9 8 1.9
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8.2.9.2 Revenue Simulation

A MCMC simulation was employed to model the potential variation in crop sale
prices over time. This approach was selected to capture the inherent uncertainty
in agricultural markets, driven by factors such as supply and demand fluctuations,
economic conditions, and policy changes. The simulation was based on a stochastic
price evolution model (Amorim et al., 2024), incorporating both deterministic and
random components:

• Drift: A systematic trend in price change over time, representing long-term
economic and market trends. In this study, the price drift for the simulation of
both treatments was set to 3.5%, corresponding with the current UK consumer
price inflation rate at the time of writing (Office for National Statistics, 2025).

• Volatility: A stochastic variation component capturing short-term price fluc-
tuations due to unpredictable market factors.

The simulation process for each crop was structured as follows:

1. Initial Price Variation: The starting price in the first year was randomly
adjusted using a normal distribution:

P1 = Pinitial × (1 + N (0, volatility)) (8.9)

where:

• P1 is the initial simulated price,

• Pinitial is the observed historical price for the crop,

• N (0, volatility) represents a random adjustment based on market uncer-
tainty.

2. Yearly Price Evolution: For each subsequent year, price evolution was mod-
elled using a multiplicative process:

Pt = Pt−1 × (1 + drift + N (0, volatility)) (8.10)

where:

• Pt is the price for year t,
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• Pt−1 is the price from the previous year,

• drift represents the long-term trend in price change,

• volatility introduces random fluctuations simulated from a normal distri-
bution.

3. Simulations: The process was repeated for 1000 independent simulation runs
over a time horizon of 6 years, generating a range of potential price trajectories
for each crop.

8.2.9.3 Expenditure Simulation

The trend of agricultural expenditure over a six-year crop rotation period was sim-
ulated using a MCMC algorithm. The simulation incorporated both inflation and
market volatility; the inflation rate was set to 3.5% annually, and the volatility was
set to 5%. The simulation was performed for 6 years and performed 1000 simulation
runs. The methodology is outlined as follows:

• Initial Expenditure: Which represents the expenditure at the start of the
simulation.

• Inflation: An annual inflation rate, inflation, is applied to simulate the gradual
increase in expenditure over time. In this study, an annual inflation rate of 2%
is assumed.

• Volatility: The model incorporates random market fluctuations, which are
simulated as a random normal variable with a mean of 0 and a standard devi-
ation of volatility. This volatility captures the unpredictable market dynamics
that affect agricultural expenditure. In this study, a volatility of 2% (volatility
= 0.02) is used.

• Simulation Years: The function simulates the expenditure trend over a period
of 6 years.

• Simulation Runs: 1000 independent simulation runs to generate a distribution
of possible expenditure trajectories.

The model for expenditure growth is defined recursively. At each time step, the
expenditure at year t is calculated as:
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Expendituret = Expendituret−1 × (1 + inflation + N (0, volatility)) (8.11)

Where:

• Expendituret is the expenditure at time t.

• Expendituret−1 is the expenditure at the previous time step (t − 1).

• inflation represents the deterministic inflation rate affecting expenditure.

• N (0, volatility) is a normally distributed random variable with a mean of 0 and
a standard deviation of volatility, accounting for stochastic fluctuations. This
process simulates both the expected annual increase due to inflation and the
random fluctuations.

• volatility represents the level of uncertainty or variability in the expenditure
growth rate.

8.2.9.4 Climate-driven Yield Shock Simulation

To incorporate climate shocks into the simulation, a probability of occurrence is
assigned, increasing over time for both CON and CA systems. The probability of a
climate shock in any given year follows a linear sequence from 5% in year one to 20%
in Year 6. The severity of yield reduction due to a climate shock is determined using
a random uniform distribution:

• Conventional agriculture (CON): Yield reduction ranges between 10% and 30%.

• Conservation agriculture (CA): Yield reduction ranges between 5% and 15%.

These distributions reflect the assumption that CA enhances resilience to climate
shocks, leading to reduced yield losses compared to CON (Madejón et al., 2023;
Thierfelder and Wall, 2010; Kumara et al., 2020; Du et al., 2022; Kassam et al., 2009;
Blanco-Canqui and Lal, 2007; Teng et al., 2024). For example, Teng et al. (2024)
found that climate warming increased wheat yield in CA by 9.3% in comparison to
CON.

Climate shocks are applied at the individual observation level as follows:

1. A climate shock indicator is generated based on a probabilistic comparison.
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2. A shock factor is computed to adjust the yield based on the severity of the
shock.

3. Yield is modified according to the presence or absence of a shock.

4. Revenue is recalculated by multiplying the adjusted yield by the crop price.

The simulation applies the following equation to determine the shocked yield
(Equation 8.12), revenue (Equation 8.13), and gross margin (Equation 8.14):

Yshocked = Y × (1 − S)I (8.12)

Rshocked = Yshocked × P (8.13)

GMshocked = Rshocked × Esim (8.14)

where:

• Yshocked is the shocked yield,

• Y is the original yield,

• S is the severity factor (sampled from a uniform distribution),

• I is a binary indicator (1 if a shock occurs, 0 otherwise),

• Rshocked is the shocked revenue, and

• P is the crop price.

• GMshocked is the climate-driven shocked gross margin.

• Esim is the simulated expenditure.

The implementation ensures that shocks are applied separately for CON and CA
while maintaining consistency within each simulation scenario.
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8.2.9.5 Sensitivity Analysis

Pearson Correlation Coefficients between simulated gross margin and crop price, crop
yield, and the severity factor of the climate shock were computed for each experimen-
tal treatment using the cor function from the stats package in R (version 4.3.0) (R
Core Team, 2023). To analyse system sensitivity to variation in key simulation inputs
(yield, price, and the severity factor of the climate shock), a differential effect mea-
sure was implemented based on selected quantiles of each treatment’s simulated gross
margin. For crop yield and crop price, the 75th percentile of the gross margin was
compared for observations above the median to the 25th percentile for those below
the median. This interquartile range captures the spread in gross margin responses
associated with higher versus lower values of the variable. The sensitivity effect for a
generic variable X on the simulated gross margin is defined as:

SX = Q0.75

(
GM | X > Q0.5(X)

)
− Q0.25

(
GM | X < Q0.5(X)

)
(8.15)

Where:

• SX: The sensitivity effect of the variable X on the gross margin outcome .

• Q0.5(X): The median (50th percentile) of the variable X.

• Q0.75

(
GM | X > Q0.5(X)

)
: The 75th percentile of simulated gross margin

calculated over observations where X exceeds its median.

• Q0.25

(
GM | X < Q0.5(X)

)
: The 25th percentile of the simulated gross margin

calculated over observations where X is below its median.

For the severity factor of the climate shock, data visualisation found that many
of the values were 1 (no shock applied); therefore, a different sensitivity analysis
quantile model was implemented. The difference between the 95th percentile of the
gross margin for observations with a severity factor of the climate shock at or above
the median and the 75th percentile for those below the median. This adjustment
is intended to capture the sensitivity of gross margin to extreme deviations in the
severity factor of the climate shock, particularly highlighting the influence of adverse
shocks.
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8.3 Results

8.3.1 Expenditure

Expenditure data was assessed for normality and homogeneity of variances using
the methodology outlined in section 3.10, and normality visualisation is displayed in
Appendix D. There was significantly higher expenditure on crop applications in the
CON treatment (β = 0.124, SE = 0.009, Z = 13.08, p = <.0001) for the experimental
period. During the first year of the experiment, the CON treatment spent £547.65
ha−1, and the CA treatment spent £508.28 ha−1, an 8% increase in crop application
expenditure. During 2023, the CON treatment also had an increased expenditure
(19%) in crop application expenditure (£827 ha−1) in comparison to the CA treatment
(£695 ha−1). This trend was also identified in the final year of the experiment,
however, with a lower magnitude change (6.6%) with the CON treatment spending
£790 ha−1 on crop application expenditure, and the CA treatment spending £742
ha−1. Crop application expenditure is presented in Figure 8.3 for each year of the
experiment (8.3 A), and the mean of the experimental duration (8.3 B).

Figure 8.3: A: Crop application expenditure (£ ha−1 year−1), B: Mean crop applica-
tion expenditure (£ ha−1) for the experimental duration (n = 3). Error bars signify
standard error.

There was also significantly higher operational expenditure in the CON treat-
ment (β = 0.419, SE = 0.021, Z = 19.98, p = <.0001) for the experimental period.
The CON treatment spent £466 ha−1 on machinery operations in the crop of spring
beans in comparison to the CA treatment, which spent £272 ha−1, a 71% difference
in operational expenditure. During 2023, there was a 37% increase in the operational
expenditure in CON treatment (£396.8 ha−1), compared to the CA treatment oper-
ational expenditure of £288.6 ha−1. There was also a similar percentage difference in
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operational expenditure in the final year of the experiment, with the CON treatment
operational expenditure 41.1% higher (£414.4 ha−1) than the CA treatment (£293.6
ha−1). Machinery operational expenditure is presented in Figure 8.4 for each year of
the experiment (8.4 A), and the mean of the experimental duration (8.4 B).

Figure 8.4: A: Machinery operation expenditure (£ ha−1 year−1), B: Mean machinery
operation expenditure (£ ha−1) for the experimental duration (n = 3). Error bars
signify standard error.

There were no significant differences detected in grain expenditure (β = 0.13, SE

= 0.166, Z = 0,79, p = 0.43). Whilst there were no significant differences detected,
grain management expenditure varied between the two treatments due to crop yield
and crop moisture content variation, coupled with variation in grain drying and stor-
age costs. Both treatments had similar grain expenditure in 2022 (CON = £36.4
ha−1, CA = £31.4 ha−1). During 2023, there was higher grain expenditure for both
treatments as winter wheat produces a larger gross yield ha−1 than spring beans,
therefore the grain in expenditure for the CON treatment was £186 ha−1, and £160
ha−1 for the CA treatment due to a lower crop yield. In 2024, the CON treatment’s
grain expenditure was £13 ha−1 for the crop of oilseed rape, and the grain expendi-
ture for CA was £59 ha−1 on the spring barley crop. Grain management expenditure
is presented in Figure 8.5 for each year of the experiment (8.5 A), and the mean of
the experimental duration (8.5 B).

There was significantly higher gross expenditure in the CON treatment (β =
0.233, SE = 0.006, Z = 35.9, p = <.0001) for the experimental period. For the 2022
cropping season, the CON treatment spent £1050 ha−1 and the CA treatment spent
29.2% less at £812 ha−1. This trend continued in 2023 where the CA treatment total
expenditure (£1143 ha−1) was 23.5% lower than the CON treatment (£1410 ha−1),
and in 2024 where the CA treatment gross expenditure (£1094 ha−1) was 11.3% lower
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Figure 8.5: A: Grain management expenditure (£ ha−1 year−1), B: Mean grain
management expenditure (£ ha−1) for the experimental duration (n = 3). Error bars
signify standard error.

than the CON treatment (£1218 ha−1). Gross expenditure is presented in Figures
8.6 and 8.7 for each year of the experiment (8.6 A), and the mean of the experimental
duration (8.6 B).

Figure 8.6: A: Gross expenditure (£ ha−1 year−1), B: Mean gross expenditure (£
ha−1) for the experimental duration (n = 3). Error bars signify standard error.
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Figure 8.7: A figure containing: A: Application expenditure (£ ha−1 year−1), B:
Operations Expenditure (£ ha−1 year−1), C: Total expenditure (£ ha−1 year−1).

Proportional Expenditure

The largest proportion of crop application expenditure (£ ha−1) for each treatment
was on fertilisers, with the CON treatment spending a higher proportion of appli-
cation expenditure (46%), compared to the CA treatment, which spent 42% of ap-
plication expenditure on fertilisers. The second-highest proportional expenditure for
both treatments was on seed. Here, the CA treatment spent a higher proportion
of application expenditure (29%) in comparison to the CON treatment (18%). The
next highest proportion of application expenditure for both treatments was then on
herbicides and fungicides. Here, the CA treatment spent 15% on herbicides and 14%
on fungicides, in comparison to the CON treatment, which spent 17% on herbicides
and 11% on fungicides.

The largest proportion of machinery operations expenditure (£ ha−1) for the CA
treatment was on the harvest (38% of operational expenditure). However, in the CON
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treatment, the highest proportional spend on machinery operations was on crop spray-
ing (28%), with the harvest of the crops accounting for 26% of the total machinery
operational spend. Crop spraying was the second-highest proportional spend in the
CA treatment, accounting for 27% of the total expenditure on machinery operations.
Cultivation was a significant expenditure for the CON treatment, accounting for 19%
of the total machinery operational expenditure. The proportion of crop application
expenditure is presented below in Figure 8.8 A, and the proportion of machinery
operations expenditure is presented below in Figure 8.8 B.

Figure 8.8: A summary of the proportion of expenditure of A: crop applications, and
B: machinery operations.

8.3.2 Operations

Data on the number of operational passes ha−1, theoretical machinery operational
time ha−1, and theoretical diesel consumption (l ha−1 year−1) was assessed for nor-
mality and homogeneity of variances using the methodology outlined in section 3.10
and normality visualisation is displayed in Appendix D. When the number of opera-
tional passes ha−1 was modelled with the generalised linear mixed effect model, there
was a significant reduction in the number of operational passes ha−1 needed in the CA
treatment identified in comparison to the CON treatment (β = 0.43, SE = 0.001, Z

= 38.32, p = <.0001). The CON treatment required 13 individual machinery passes
ha−1 during 2022, in comparison to the CA treatment, which required 8 machinery
passes ha−1. This was very similar in 2023, where the CON treatment required 13
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individual machinery passes ha−1 during 2022, in comparison to the CA treatment,
which required 9 machinery passes ha−1. In 2024, the CON treatment required 14
individual machinery passes ha−1, and the CA treatment which required 10 machin-
ery passes ha−1. The number of machinery passes ha−1 is presented in Figure 8.9 for
each year of the experiment (8.9 A), and the mean of the experimental duration (8.9
B).

Figure 8.9: A: The number of machinery passes (ha−1 year−1) for each year of the
experiment, B: The mean number of machinery passes (ha−1) for the experimental
duration (n = 3). Error bars signify standard error.

When the theoretical machinery operation time was considered, the CON treat-
ment needed significantly more machinery operational time ha−1 to manage than the
CA treatment (β = 0.82, SE = 0.1, Z = 8.2, p = <.0001). In 2022, the theoretical
machinery operation time ha−1 was 0.7 hours ha−1 in the CA treatment and 1.54
hours ha−1 in the CON treatment. This trend continued in 2023, where the theoreti-
cal machinery operation time ha−1 was 0.98 hours ha−1 in the CA treatment and 1.61
hours ha−1 in the CON treatment. In 2025, there were again similar results, with
the CON treatment theoretically requiring 1.47 hours ha−1 to manage, in comparison
to the CA treatment, which theoretically required 1.1 hours ha−1. The theoretical
machinery operation time ha−1 for both experimental treatments is presented in Fig-
ure 8.10 for each year of the experiment (8.10 A), and the mean of the experimental
duration (8.10 B).

CA was found to significantly reduce theoretical diesel consumption (l ha−1 year−1)
in this study in comparison to the CON treatment (β = -0.01, SE = 0.004, Z = -2.32,
p = 0.03). During 2022, the CA treatments’ theoretical diesel consumption was 70.5
l ha−1, compared to the 121.7 l ha−1 used in the CON treatment. In 2023, the diesel
consumption in both treatments was higher, 80.6 l ha−1 in the CA treatment, and 128
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Figure 8.10: A: The theoretical number of machinery hours needed to manage the
system ha−1 year−1 for each year of the experiment, B: The theoretical mean number
of machinery hours needed to manage the system ha−1 year−1 for the experimental
duration (n = 3). Error bars signify standard error.

l ha−1 in the CON treatment. During the final year of the experiment, a similar trend
in the theoretical diesel consumption was observed, with the CA treatment using 68.5
l ha−1, compared to the CON treatment, which theoretically used 109.7 l ha−1. The
theoretical machinery diesel consumption l ha−1 for both experimental treatments is
presented in Figure 8.11 for each year of the experiment (8.11 A), and the mean of
the experimental duration (8.11 B).

Figure 8.11: A: The theoretical fuel consumption of the treatment operations (litres
ha−1) for each year of the experiment, B: The theoretical mean fuel consumption of
the treatment operations (litres ha−1) for the experimental duration (n = 3). Error
bars signify standard error. Fuel consumption data for individual operations was
sourced from the AGRIBALYSE database (Colomb et al., 2014).
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8.3.3 Revenue

Crop revenue data (£ ha−1) was assessed for normality and homogeneity of variances
using the methodology outlined in section 3.10, and normality visualisation is dis-
played in Appendix D. The generalised linear mixed effects model used to assess the
difference in system revenue (£ ha−1) found no statistical differences between the CA
and CON treatments (β = 150, SE = 154, Z = 0.97, p = 0.33). Although there was
no statistical difference found between system revenues, the CON treatment produced
a higher mean revenue in all years of the experiment. In 2022, the CON treatments
mean revenue was £1820 ha−1 in comparison to £1571 ha−1 in the CA treatment. In
2023, the CON mean revenue was £2261 ha−1, and £1786 ha−1 in the CA treatment.
The CON treatment total revenue was supplemented by an additional straw revenue
of £178 ha−1. In 2024, the mean total revenue was similar for both treatments, with
the CON treatment having a marginally higher mean revenue of £872 ha−1, com-
pared to £850 ha−1 in the CA treatment. The total grain, straw, and gross revenue
(£ ha−1) for both experimental treatments is presented below in Figures 8.12, 8.13,
and 8.14.

Figure 8.12: A: Grain revenue (£ ha−1 year−1), B: Mean grain revenue (£ ha−1) for
the experimental duration (n = 3). Error bars signify standard error.
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Figure 8.13: A: Straw revenue (£ ha−1 year−1), B: Mean straw revenue (£ ha−1) for
the experimental duration (n = 3). Error bars signify standard error.

Figure 8.14: A: Gross revenue (£ ha−1 year−1), B: Mean gross revenue (£ ha−1) for
the experimental duration (n = 3). Error bars signify standard error.

8.3.4 Net Profit Margin

For the CON treatment (n = 15), the mean net profit margin was 7.52% (SD =
61.54%, SE = 15.89%). In comparison, the CA treatment (n = 15) had a mean net
profit margin of 15.04% (SD = 40.86%, SE = 10.55%). However, the generalised
linear mixed effects model used to assess the difference in net profit margin (%) found
no statistical differences between the CA and CON treatments (β = -66.4, SE = 209,
Z = -0.32, p = 0.75). In the CON treatment, the net profit margin was high and
positive in 2022, with a mean of 41.5% (SD = 7.84, SE = 3.51; 95%), and slightly
lower in 2023 at 37.6% (SD = 1.68, SE = 0.75). However, in 2024, the mean net
profit margin for the CON treatment dropped markedly to –56.5% (SD = 74.2, SE

= 33.2). Similarly, the CA treatment exhibited a high positive net profit margin in
2022, with a mean of 44.8% (SD = 10.1, SE = 4.50), and a modest decline in 2023
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to 34.8% (SD = 9.84, SE = 4.40). In contrast, the CA treatment also showed a
negative net profit margin in 2024, with a mean of –34.5% (SD = 31.4, SE = 14.0).
The data on the gross margin for each experimental treatment year−1 is presented
below in Figure 8.15 A, and the total gross margin treatment−1 is presented in Figure
8.15 B.

Figure 8.15: A: System net profit margin (% year−1) (n = 5) B: Mean system net
profit margin (% year−1) for the experimental duration (n = 3). Error bars signify
standard error.

8.3.5 Gross Margin

Data on the gross margin (£ ha−1) was assessed for normality and homogeneity of
variances using the methodology outlined in Chapter 3, and normality visualisation
is displayed in Appendix D. The mean gross margin of £428.8 ha−1 year−1 (SD =
675.8, SE = 174.5) for the CON treatment (n = 15) for the experimental duration
was slightly higher than the CA treatment (n = 15) mean gross margin of £385
ha−1 year−1 (SD = 521.5, SE = 134.7). However, the generalised linear mixed
effects model used to assess the difference in system gross margin (£ ha−1) found no
statistical differences between the CA and CON treatments (β = 27.5, SE = 268, Z

= 0.1, p = 0.92).
During 2022, the gross margin for both treatments for the crop of spring beans

was similar, £770 ha−1 for the CON treatment (n = 5) and £758.8 ha−1 for the CA
treatment (n = 5). However, during the winter wheat crop in 2023, larger differences
in the gross margins of the experimental treatments were observed. Here, the CA
treatment (n = 5) recorded a gross margin of £642.1 ha−1, compared to the CON
treatment (n = 5) which had a gross margin of £850.3 ha−1. During the cropping
year of 2024, both experimental treatments recorded negative gross margins, the CA
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treatment (n = 5) had a gross margin of £-243.42 ha−1 and the CON treatment (n
= 5) had a lower gross margin of £-345.78 ha−1. The data on the gross margin for
each experimental treatment year−1 is presented in Figure 8.16 A, and the total gross
margin treatment−1 is presented in Figure 8.16 B.

Figure 8.16: A: System gross margin (£ ha−1) for each year of the experiment (n
= 5) B: Mean system gross margin (£ ha−1) for the experimental duration (n = 3).
Error bars signify standard error.

8.3.6 Markov Chain Monte Carlo Simulation
8.3.6.1 Yield simulation

The results of the MCMC algorithm deployed to simulate crop yield indicate that
winter wheat is projected to be the highest-yielding crop in both treatments across
the simulation period. The CA treatment simulation estimated a mean yield of 8.91
t ha−1 (SD = 0.27, SE = 0.008) in year one, rising to 9.08 t ha−1 (SD = 0.65, SE

= 0.02) in year 6, a 1.9% increase in yield. The CON treatment had a mean yield
of 8.9 t ha−1 (SD = 0.26, SE = 0.005) and a similar yield (+ 0.2%) of 8.91 t ha−1

(SD = 0.66, SE = 0.01) in year 6. Both treatments were predicted to have similar
yield variability throughout the simulated experimental period. Winter barley was
predicted to be the second-highest-yielding crop in the simulation. The CA treatment
had a mean yield of 7.58 t ha−1 (SD = 0.23, SE = 0.007) in the first year, which
was predicted to rise by 1.9% by year six to a mean yield of 7.73 t ha−1 (SD = 0.58,
SE = 0.018). The CON treatment was predicted to yield a mean of 7.6 t ha−1 (SD

= 0.22, SE = 0.004) in the first year of the simulation, rising slightly by 0.1% to
7.61 t ha−1 (SD = 0.56, SE = 0.01) by year six. The spring barley crop in the CA
treatment followed a similar simulated distribution, however, with a reduced yield in

235



comparison to the winter barley simulated crop yield. The lowest-yielding crops were
oilseed rape, feed peas, and winter beans. The mean oilseed rape yield was 3.4 t ha−1

(SD = 0.1, SE = 0.003) in year one of the CA simulation, rising by 1.9% to 3.46 t
ha−1 (SD = 0.24, SE = 0.007) in year six. The CON mean yield was 3.39 t ha−1

(SD = 0.1, SE = 0.002) with a mild increase in yield (+ 0.08%) in year six of 3.4 t
ha−1 (SD = 0.25, SE = 0.006). The feed peas crop in the CA treatment had a mean
yield of 3.12 t ha−1 (SD = 0.09, SE = 0.002), rising by 2.34% to 3.19 t ha−1 (SD =
0.24, SE = 0.007) in year six.

The climate-driven yield shock simulation reduced mean crop yield in the CON
treatment by 0.22 t ha−1 (-2.48%), compared to a mean yield reduction of 0.09 t ha−1

(-1.02%) in the CA treatment. The simulated winter barley mean yield was reduced
by 0.19 t ha−1 (-2.53%) in the CON treatment, and 0.08 t ha−1 (-1.01%) in the CA
treatment. Oilseed rape mean yield was reduced by 0.09 t ha−1 (-2.52%) in the CON
treatment and by 0.03 t ha−1 (-0.96%) in the CA treatment. In the CA treatment,
the mean reduction in yield were 0.06 t ha−1 (-1%) in the spring barley yield, 0.04 t
ha−1 (-1%) in the winter beans, and 0.03 t ha−1 (-1.08%) in the feed peas. Data for
the simulated yield with the simulated climate-driven yield reductions is presented in
Figure 8.17 below.
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Figure 8.17: A: The simulated crop yield (t ha−1) with induced climate-driven yield
shocks introduced for the six year period for each experimental treatment. B: His-
tograms of the simulated simulated crop yield (t ha−1) with induced climate-driven
yield shocks introduced for each experimental treatment. Data sourced from Su et al.
(2021) and AHDB (2022).

8.3.6.2 Revenue simulation

The results from the MCMC simulation of revenue projections across different crops
indicate that winter wheat is projected to generate the highest revenue in both the
CA and CON treatments over the 6-year period.

In the CA treatment, the mean revenue for winter wheat in year one was estimated
at £1,722 ha−1 (SD = 183, SE = 5.80), which is expected to rise by 20.5% to £2,074
ha−1 (SD = 561, SE = 17.7) by year six. Similarly, the CON treatment estimated a
mean revenue for winter wheat of £1,699 ha−1 (SD = 192, SE = 4.30) in year one,
which is expected to increase by 15.7% to £1,966 ha−1 (SD = 534, SE = 11.9) by
year six. Both treatments show similar trends in revenue increase, with CA showing
a slightly higher rate of growth.

In contrast, winter barley, the second-highest yielding crop, was projected to gen-
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erate an average revenue of £1,082 ha−1 (SD = 119, SE = 3.75) in the first year for
CA, with a steady increase of 20.3% by year six, reaching £1,302 ha−1 (SD = 351, SE

= 11.1). In the CON treatment, the mean revenue for winter barley was £1,078 ha−1

(SD = 123, SE = 2.74) in year one, which is expected to increase by 16.1% to £1,252
ha−1 (SD = 335, SE = 7.49) by year six. The CA treatment shows greater revenue
variability compared to the CON treatment, reflecting the higher unpredictability of
winter barley yields.

For oilseed rape, the CA treatment estimates a mean revenue of £1,102 ha−1 (SD

= 119, SE = 3.77) in year one, with a 20.0% increase to £1,322 ha−1 (SD = 341, SE

= 10.8) by year six. The CON treatment projects a slightly lower revenue of £1,095
ha−1 (SD = 127, SE = 2.84) in the first year, which increases by 15.3% to £1,263
ha−1 (SD = 345, SE = 7.72) by year six. Revenue projections for oilseed rape are
fairly stable across both treatments, with CA showing a more notable upward trend
over the years.

Feed peas show similar trends in both treatments, with the CA treatment having
a mean revenue of £653 ha−1 (SD = 70.9, SE = 2.24) in year one, which increases
gradually by 17.1% to £764 ha−1 (SD = 205, SE = 6.49) by year six. The CON
treatment shows a similar pattern, with a mean revenue of £670 ha−1 (SD = 75.4,
SE = 2.85) in year one, rising by 18.3% to £792 ha−1 (SD = 213, SE = 7.80) by
year six. However, feed peas display greater variability in revenue compared to other
crops, particularly in the CA treatment.

Spring barley was predicted to be a relatively high-revenue crop, particularly under
the CA treatment. The mean revenue in year one was £894 ha−1 (SD = 99.3, SE

= 3.14), with a steady increase of 20.2% to £1,074 ha−1 (SD = 278, SE = 8.78) by
year six. In the CON treatment, spring barley starts at a mean revenue of £894 ha−1

(SD = 99.3, SE = 3.14) in year one, which increases by 14.4% to £1,074 ha−1 (SD

= 278, SE = 8.78) by year six. Revenue for spring barley is relatively stable, with
minimal fluctuations in the CON treatment, while the CA treatment shows a more
significant increase over time.

Winter beans show moderate revenue projections. In the CA treatment, the mean
revenue starts at £647 ha−1 (SD = 68.7, SE = 2.17) in year one, and increases by
20.3% to £778 ha−1 (SD = 194, SE = 6.15) by year six. In the CON treatment, the
mean revenue starts at £647 ha−1 (SD = 68.7, SE = 2.17) in year one, increasing
slightly by 18.7% to £765 ha−1 (SD = 194, SE = 6.49) by year six. Winter beans
exhibit relatively consistent revenue over time, with more modest changes compared
to other crops.
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Figure 8.18: A: The simulated crop revenue (£ ha−1) for the six year period for each
experimental treatment. B: Histograms of the simulated crop revenue (£ ha−1) for
each experimental treatment. Data sourced from Su et al. (2021) and AHDB (2022).

8.3.6.3 Expenditure simulation

The MCMC simulation results for crop expenditure indicate that winter wheat consis-
tently incurs the highest costs across both CA and CON treatments over the six-year
period.

In the CA treatment, the mean expenditure for winter wheat in year one was
estimated at £1,018 ha−1 (SD = 52.0, SE = 1.65), increasing by 19.2% to £1,214
ha−1 (SD = 140, SE = 4.42) by year six. The CON treatment, however, had higher
expenditure levels, starting at £1,272 ha−1 (SD = 63.6, SE = 1.42) in year one and
rising by 18.7% to £1,510 ha−1 (SD = 174, SE = 3.88) in year six. The expenditure
difference between treatments remains consistent over time, with the CON system
requiring approximately 20-25% higher costs compared to CA.

For winter barley, the CA treatment started with an expenditure of £849 ha−1

(SD = 43.0, SE = 1.36) in year one, rising to £1,002 ha−1 (SD = 121, SE = 3.84)
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by year six, reflecting an 18.0% increase. The CON treatment had a higher initial
expenditure at £1,058 ha−1 (SD = 52.8, SE = 1.18), which grew by 19.3% to £1,262
ha−1 (SD = 151, SE = 3.39) by year six. These results indicate that expenditure
growth trends are similar between treatments, but costs in the CON system remain
consistently higher.

Oilseed rape followed a similar pattern, with the CA treatment incurring £952
ha−1 (SD = 46.6, SE = 1.47) in year one, increasing by 19.0% to £1,133 ha−1 (SD

= 133, SE = 4.20) by year six. The CON treatment exhibited a significantly higher
expenditure profile, starting at £1,190 ha−1 (SD = 61.0, SE = 1.36) in year one and
increasing by 18.8% to £1,414 ha−1 (SD = 173, SE = 3.87) by year six. The CON
treatment incurred 20-25% higher costs than CA throughout the simulation.

For spring barley, the CA treatment estimated an initial expenditure of £866 ha−1

(SD = 43.0, SE = 1.36) in year one, increasing by 18.8% to £1,029 ha−1 (SD = 123,
SE = 3.90) by year six. No expenditure data were available for spring barley in the
CON treatment.

Winter beans showed relatively lower expenditure compared to other crops. The
CA treatment started at £743 ha−1 (SD = 37.5, SE = 1.18) in year one and increased
by 19.1% to £885 ha−1 (SD = 107, SE = 3.38) in year six. No data were available
for winter beans in the CON treatment.

Finally, feed peas exhibited the lowest expenditure among all crops, with the CA
treatment starting at £800 ha−1 (SD = 40.6, SE = 1.28) in year one and increasing
by 18.6% to £949 ha−1 (SD = 112, SE = 3.54) in year six. Again, no expenditure
data were available for the CON treatment.

Overall, the results highlight that CON systems consistently exhibit higher ex-
penditure than CA systems across all crops, with differences ranging from 15-25%.
Additionally, winter wheat and oilseed rape incur the highest expenditures, while feed
peas and winter beans are the least costly to cultivate in both treatments.
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Figure 8.19: A: The simulated crop expenditure (£ ha−1) for the six year period
for each experimental treatment. B: Histograms of the simulated crop expenditure
(£ ha−1) for each experimental treatment. Data sourced from Su et al. (2021) and
AHDB (2022).

Gross Margin simulation

The results of the MCMC simulations for gross margin indicate that winter wheat
is projected to be the most profitable crop across both treatments throughout the
simulation period. In the CA treatment, the mean gross margin was estimated at
£695 ha−1 (SD = 191, SE = 6.03) in year one, increasing to £810 ha−1 (SD = 518,
SE = 16.4) by year six, representing a 16.5% rise. The CON treatment had a lower
starting mean gross margin of £425 ha−1 (SD = 203, SE = 4.53) in year one,
increasing by 5.2% to £447 ha−1 (SD = 547, SE = 12.2) in year six. Winter barley
was projected to have the second-highest gross margin within the CA treatment, with
a mean of £236 ha−1 (SD = 127, SE = 4.01) in year one, rising by 24.2% to £293
ha−1 (SD = 361, SE = 11.4) by year six. However, in the CON treatment, winter
barley gross margin was lower, starting at £16.3 ha−1 (SD = 139, SE = 3.10) and
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declining to -£23.3 ha−1 (SD = 360, SE = 8.06) by year six.
Oilseed rape exhibited contrasting profitability trends between treatments. In the

CA treatment, the gross margin increased from £143 ha−1 (SD = 128, SE = 4.04)
in year one to £188 ha−1 (SD = 370, SE = 11.7) in year six. Conversely, the CON
treatment showed a negative gross margin for oilseed rape throughout the simulation,
starting at -£90.5 ha−1 (SD = 138, SE = 3.08) in year one and declining further
to -£154 ha−1 (SD = 376, SE = 8.40) in year six. Similarly, winter beans and
feed peas had consistently negative gross margins in both treatments, with more
pronounced losses over time. In the CA treatment, winter beans started at -£99.9
ha−1 (SD = 77.1, SE = 2.44) and declined to -£114 ha−1 (SD = 214, SE = 6.78)
by year six. Feed peas showed a greater reduction, from -£153 ha−1 (SD = 80.5,
SE = 2.55) to -£188 ha−1 (SD = 221, SE = 7.00).

Figure 8.20: A: The simulated gross margin (£ ha−1) for the six year period for each
experimental treatment. B: Histograms of the simulated gross margin (£ ha−1) for
each experimental treatment. Data sourced from Su et al. (2021) and AHDB (2022).

242



Figure 8.21: A: The simulated gross margin (£ ha−1) for the six year period for each
experimental treatment. The dashed line signifies the mean simulated cumulative
gross margin and the dotted lines represent the 90% confidence interval bounds for
the cumulative gross margin B: A bar plot of the mean simulated gross margin (£
ha−1) for each experimental treatment. Error bars signify the standard error of the
mean. Data sourced from Su et al. (2021) and AHDB (2022).

Sensitivity Analysis

The Pearson correlation coefficient analysis identified the strongest correlated vari-
able with the simulated gross margin was crop yield for both treatments. The CA
treatment gross margin was more strongly correlated with crop yield (ρ = 0.66) in
comparison to the CON treatment (ρ = 0.52). The price of the crop commodity (£
t−1) was mildly positively correlated with gross margin for the CA treatment (ρ =
0.28), however in the CON treatment this was not the case with a ρ of 0.06, indicating
no linear correlation with the simulated gross margin (£ ha−1). When the correlation
of the severity factor of the simulated climate shock and the simulated gross margin
was assessed, it found that the correlation was stronger in the CON treatment (ρ =
0.25), than in the CA treatment. The results of the Pearson correlation coefficient
analysis is shown below in Table 8.2 and presented in Figure 8.22.

The sensitivity analysis using the differential effect measure method quantified how
variations in key inputs influenced gross margin outcomes under each management
system. In the CA system, the sensitivity metrics were £804 ha−1 for Yield, £682
ha−1 for Price, and £716 ha−1 for the Climate Shock Severity Factor. In comparison,
the CON system exhibited very similar sensitivity to Yield (£805 ha−1) but a lower
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Table 8.2: Pearson correlation coefficients between gross margin and key variables
(Yield, Price, and Climate Shock Factor) by system. The pairwise correlations com-
puted separately for each cropping system.

System Yield (ρ) Price (ρ) Climate Shock Severity Factor (ρ)

Conservation 0.66 0.28 0.10
Conventional 0.52 0.06 0.25

sensitivity to Price (£622 ha−1) and a higher sensitivity to the Climate Shock Severity
Factor (£807 ha−1). The sensitivity analysis using the differential effect measure
method is presented below in Figure 8.22.
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Figure 8.22: The Pearson correlation coefficients (ρ) between crop yield (t ha−1) (A),
price (£ t−1) (B), and the severity factor of the climate shock (D) to the simulated
gross margin (£ ha−1). Raw data sourced from Su et al. (2021) and AHDB (2022).

8.4 Discussion

This discussion section explores the key economic outcomes of the study, focusing
on expenditure, revenue, gross margin, and risk under CA compared to CON. The
findings are evaluated against the stated hypotheses, with reference to relevant lit-
erature and the broader context of agricultural decision-making. Attention is given
to the practical and agronomic implications for farmers, including considerations of
transition costs, management complexity, and vulnerability to external shocks such as
market fluctuations and climate variability. This section aims to situate the study’s
results within current research and highlight their relevance for both practice and
policy.
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8.4.1 Expenditure

This section addresses the tests of the following hypotheses (H ):

• H1: CA reduces crop production expenditure in comparison to CON.

• H2: CA reduces the quantity of machinery operation passes ha−1 required in
comparison to CON.

Throughout this study, there was significantly higher expenditure in the CON
treatment. Therefore, these results support the hypothesis H1: CA reduces crop pro-
duction expenditure in comparison to CON. This result concurs with previous studies,
where CA is also found to reduce expenditure (Kumara et al., 2020; Lorenzetti and
Fiorini, 2024). Typically, this is attributed to reductions in operational expenditure,
due to no use of tillage in CA, which is an expensive operation for farmers, account-
ing for 19% of the total operational expenditure in the CON treatment in this study.
However, in this study, a reduction in crop expenditure as well as operational expen-
diture was identified. This was attributed to the differing approaches to the agronomy
of the treatments, where the CA treatment used significantly less fertiliser than the
CON treatment (Figure 6.6). Reduction of inputs is a goal that many farmers prac-
tising CA are trying to achieve to create a more resilient soil system and to reduce
expenditure (Impey, 2022a). However, as previously discussed in Chapter 6, reduc-
tion of inputs, especially fertilisers, in the early stages of the transition to CA can be
a complicated balance to reduce inputs without significantly reducing productivity
and revenue.

The reduction in operational expenditure observed in this study was linked to the
NT approach of the CA treatment and the reduction of the number of machinery
passes ha−1 to manage the crop in all years. This study highlights the potential of
CA to reduce the amount of theoretical diesel consumption ha−1. The price volatility
of fuel has been of serious concern for farmers in the UK in recent years, following
numerous global issues which have affected the supply and demand of fuel (Clark,
2022). For example, the average price for on-farm red (un-taxed) diesel in 2021 was
£65.64 l−1; however, following the Russian invasion of Ukraine in 2022, the average
price of red diesel rose to £104.27 in the UK (Clark, 2022; AHDB, 2025). This study
also identified significantly less machinery operational time required ha−1 to manage
the CA treatment. This result is in line with previous research and understanding on
the subject (Kassam et al., 2014a; Morris et al., 2010), and will be of appeal to certain
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farmers who are looking to reduce the amount of time spent operating machinery on
their farms and reduce expenditure on labour.

This study uses standardised costings for all machinery operations performed by
agricultural contractors, which include fuel costs, labour, insurance, depreciation,
and other costs relating to machinery ownership (NAAC, 2022). Therefore, the ini-
tial costings of farmers making the transition to CA may be very different in reality
to these figures, as this may require the purchase of new machinery and changes to
farm management operations. This study only evaluates the economic comparisons
of crop management between the experimental treatments, and therefore cannot con-
clude the initial startup cost to the farmer to begin the transition to CA. This is
an important consideration for future research, as some previous research suggests
that the initial expenditure needed to begin the transition to CA can be significant
(Knowler and Bradshaw, 2007; FAO, 2001). The initial costs of the transition are a
barrier to adoption for many farmers who do not have the financial capital to invest in
new machinery, and who are adverse to the financial risks of undertaking changes to
their cropping system (Kassam et al., 2014b). This has led to calls for governmental
financial support for farmers undertaking the transition to CA to lessen the financial
risk of the change (Kassam et al., 2014b; McNairn and Mitchell, 1992). Financial sup-
port can take a variety of forms, such as tax credits on equipment, machine rentals,
cost-sharing programmes and direct subsidies (Knowler and Bradshaw, 2007). With-
out financial support for the transition, Pannell et al. (2014) recommends that CA is
implemented in large, well-resourced farms which can afford longer time horizons to
account for the initial costs of the transition (Lorenzetti and Fiorini, 2024).

8.4.2 Revenue

The analysis of crop revenue (£ ha−1) over the experimental period revealed no
statistically significant differences between the CA and CON systems, as indicated
by the generalised linear mixed effects model (β = 150, SE = 154, Z = 0.97, p = 0.33).
Despite this, the descriptive data showed a consistent trend of higher mean revenues
under the CON treatment across all years. This pattern was most pronounced in
2023, where the CON system generated £2261 ha−1 compared to £1786 ha−1 under
CA, a difference of £475 ha−1. In 2022, the gap was smaller (£1820 vs. £1571 ha−1),
and by 2024, revenues between the two systems converged (£872 vs. £850 ha−1),
suggesting potential year-to-year variability influencing economic outcomes.

One notable contributor to the higher CON revenue was the inclusion of straw
sales, adding £178 ha−1 in 2023. This highlights the importance of considering not
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only grain yield but also by-product revenues when evaluating the economic perfor-
mance of different agricultural systems. The straw market can provide a meaningful
revenue stream in systems where straw is baled and sold rather than incorporated or
retained for soil cover, as is often the case in CA.

The absence of statistical significance may reflect high within-treatment variability
or limited replication, reducing the power to detect treatment effects. Furthermore,
the relatively small absolute differences in some years (e.g., 2024) suggest that over
the long term, system-level revenues might be more similar than initially apparent,
particularly when external factors such as weather, market prices, and input costs
fluctuate.

8.4.3 Gross Margin

This section addresses the test of the following hypothesis (H ):

• H3: CA has no significant effect on the gross margin of the system compared to
CON.

The gross margin results indicate that the mean gross margin over the experimen-
tal period was slightly higher for the CON treatment (£428.8 ha−1 year−1) compared
to the CA treatment (£385 ha−1 year−1). However, statistical analysis using a gen-
eralised linear mixed effects model found no significant difference between the two
treatments (p = 0.92), suggesting that neither system consistently outperforms the
other in terms of gross margin under the given experimental conditions. Therefore,
the results from this study support the hypothesis H3: CA has no significant effect
on the gross margin of the system compared to CON.

While the overall gross margins between treatments did not significantly differ,
notable variations were observed in specific cropping years. In 2022, both treatments
performed similarly during the spring bean crop, with gross margins of £770 ha−1

for the CON treatment and £758.8 ha−1 for the CA treatment. This similarity in-
dicates that spring beans may yield comparable economic returns regardless of the
management system employed, which concurs with the results from the global meta-
analysis by Pittelkow et al. (2015) where they find that NT yields of legumes are not
affected by the tillage system in use. In contrast, more pronounced differences were
evident during the winter wheat crop of 2023, where the CON treatment achieved
a higher gross margin (£850.3 ha−1) compared to the CA treatment (£642.1 ha−1).
This result highlights that the CON system may have an advantage under specific
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crop management scenarios, possibly related to the higher N fertiliser usage during
the cropping year and the increased yield of the wheat crop in the CON treatment
(Figure 6.15). In 2024, both treatments recorded negative gross margins, with the CA
treatment returning a loss of £243.42 ha−1 and the CON treatment a loss of £345.78
ha−1. The negative returns for both systems suggest that external factors, such as
market prices or the unfavourable climatic conditions experienced in the autumn (Fig-
ure 3.2), may have outweighed the economic benefits of either management system.
This result underscores the vulnerability of both systems to adverse external condi-
tions, highlighting the importance of risk management strategies and diversification
for farmers.

Overall, the lack of statistically significant differences between treatments suggests
that both CA and CON practices can achieve comparable gross margins over time.
However, variability between cropping years points to the influence of specific crop
responses and external factors on profitability. These findings emphasise the need
for adaptive management and continuous monitoring to optimise economic outcomes
under variable conditions.

8.4.4 Markov Chain Monte Carlo Simulation

The MCMC simulation approach employed in this study enabled the assessment of
price and climate risk under different scenarios, generating different cost scenarios,
and enabling a better understanding of the risks, rather than relying on single es-
timates or simple averages (Amorim et al., 2024). This provides insights into the
stability and predictability of crop profitability under varying economic conditions.
The methodology integrates climate shocks into the simulation model by incorpo-
rating both probability and severity components. The approach accounts for the
increasing likelihood of climate shocks over time and the differential impact of these
shocks on CON and CA systems. By dynamically modifying yield and revenue, the
model enables an analysis of the economic consequences of climate variability under
different agricultural management strategies.

In summary, the MCMC simulation suggests that winter wheat and spring barley
are the highest-yielding crops, with winter wheat showing the most pronounced rev-
enue increase in the CA treatment. Oilseed rape and feed peas show relatively stable
revenue projections, with slight increases in CA. Winter barley, winter beans, and
oilseed rape all show varying degrees of stability and slight fluctuations in revenue
across the simulation years. Both treatments exhibit differences in revenue variability,
with the CA treatment showing higher variability across most crops. These results
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indicate that while both systems are similarly responsive to changes in yield, the
CON system appears to be more affected by extreme shock events, whereas the CA
system shows a slightly greater sensitivity to price variations. This information can
be used to inform risk management and decision-making strategies by highlighting
which factors most influence gross margin outcomes under each treatment.

The simulation results indicate that winter wheat consistently emerges as the most
profitable crop across both CA and CON treatments, with the CA treatment showing
a more pronounced gross margin increase (16.5%) compared to the CON treatment
(5.2%) over the six years. Winter barley also performs well under CA practices,
with a notable increase of 24.2% in gross margin, while its profitability declines un-
der CON management, reaching negative values by year six. Oilseed rape exhibits
contrasting trends, with CA practices showing modest gross margin improvements,
whereas CON practices result in persistent negative margins. Winter beans and feed
peas consistently yield negative gross margins regardless of treatment, with losses
intensifying over time, suggesting these crops may be economically unviable within
the agricultural, market, and climatic contexts modelled in this study.

Overall, gross margin predictions indicate that CA generally supports higher prof-
itability and demonstrates resilience to economic variability. The results suggest
that crop selection is crucial to maintaining economic viability, as some crops are
more suited to the transition to CA, as yield reductions are less common (Pittelkow
et al., 2015). These insights can guide decision-making strategies for farmers and
agronomists aimed at balancing profitability and risk during the transition to CA,
particularly in the context of economic uncertainty, a changing climate, and potential
market fluctuations.

8.5 Conclusion

This study highlights the complexity of economic decision-making in agricultural
systems, demonstrating that while CA can reduce operational and input expenditures,
it did not outperform CON practices in terms of gross margin during this study period.
Although the overall difference between treatments was not statistically significant,
the analysis revealed that the choice of cropping system has important implications
for economic resilience and profitability.

The use of MCMC simulations allowed for the incorporation of risk and variability,
reflecting real-world uncertainties in price and climate conditions for future prediction
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of the entirety of a predicted crop rotation. This approach underscores the impor-
tance of balancing profitability with risk management, particularly when adopting
CA practices. The findings suggest that while CA systems offer potential economic
advantages through reduced expenditure and increased resilience to some external
pressures, however, in some scenarios, they also introduce variability and may not
consistently achieve higher gross margins. Future research should focus on evalu-
ating the long-term economic impacts of CA beyond the experimental time frame
and exploring strategies to mitigate the initial transition costs that pose barriers to
adoption.
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Chapter 9

General Discussion

9.1 Introduction

Conservation Agriculture (CA) is an agricultural system designed to manage agroe-
cosystems for improved and sustained productivity by conserving and enhancing soil
quality and biota (FAO, 2014; Page et al., 2020). Despite widespread promotion and
adoption in various regions globally, the effectiveness and sustainability of CA remain
topics of ongoing debate and investigation (Giller et al., 2015). This study presents
the results of a systems-level case study evaluating CA in the UK. A series of results
is presented to evaluate the effects of CA on the soil physical, chemical and biological
environment, the differences in the general agronomic approach to crop production
and protection and the risk that associated agrochemicals pose to the environment,
soil greenhouse gas emissions, and economic analysis of CA compared to Conventional
Agriculture (CON). This chapter synthesises the findings of this research, discusses
their implications, and discusses how the results align with the existing body of re-
search.

9.2 Research Limitations

This study presents a systems-level case study of CA in the UK. A systems-level
approach offers significant benefits, as it captures the complex interactions between
different components of the agricultural system, including soil management, crop
performance, economic factors, and environmental outcomes (Drinkwater et al., 2016;
Darnhofer et al., 2012; Byerlee et al., 1982). By employing this methodology, the study
can assess not only direct economic impacts but also indirect effects, such as changes
in soil health and agronomic management. In addition, many previous studies collect
economic data from small plot trials, which are less representative of commercial
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field conditions and may be more prone to produce misleading results (Madarász
et al., 2025; Drinkwater et al., 2016; Byerlee et al., 1982). The methodology used in
this study collects economic data at the field scale, which is more representative of
commercial conditions.

However, the systems-level methodology also presents certain drawbacks. One
key limitation is the increased complexity associated with integrating diverse data
sources and accounting for multiple interacting variables, leading to challenges in
data interpretation. Furthermore, systems-level analyses are often context-specific,
meaning that findings may not be easily generalizable to other regions or farming
systems without additional data and contextual adjustments (Darnhofer et al., 2012;
Stefanova et al., 2023). Despite these challenges, the systems-level approach remains
a valuable, and complements existing reductionist traditional research, as it enables
a more comprehensive understanding of how the CA system functions as a whole and
how it is applied in a commercial setting, instead of being reduced to its constituents
(Drinkwater et al., 2016). Future research could expand on this study to assess the
regional differences in the approach and response to CA throughout different regions
of the UK.

One considerable limitation to the analysis of the agronomic approaches for the
treatments used in this study is that different agronomists managed both experimental
treatments. The agronomists may have different opinions and recommendations for
certain scenarios based on their assessments, personal preferences, and knowledge of
local conditions. Therefore, the crop nutrition and protection strategies used in this
study are highly tailored to local conditions and may not be truly representative of
the wider UK, where different soil types, crop rotations, and climatic conditions will
affect the agronomic decisions made. To draw valid conclusions on the agronomic
approaches used in CA practices in the UK, a larger dataset would be required that
encompasses cropping data from across the UK. In addition, this study did not use any
cover crops because of logistical difficulties with agricultural contractors. However,
their use could be an effective methodology for farmers to minimise the risk of yield
penalties during the transition to CA (Pittelkow et al., 2015; Van den Putte et al.,
2010) via improvements to soil structure (Blanco-Canqui and Ruis, 2020; Wilson
et al., 1982).
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9.3 Summary and discussion of key findings

9.3.1 Chapter 4: Application of Soil Proximal Sensors to
Guide the Transition to Conservation Agriculture

Summary of results

1. Neither GRS nor EC scanning alone provides reliable field-scale soil texture
predictions for informing precision agriculture decisions.

2. Soil sensor fusion (combining multiple sensor types) is a promising approach,
but current commercial implementations are not yet robust enough.

Discussion of results

This chapter investigated the potential of two widely used commercial sensors, gamma-
ray spectrometry (GRS) and electrical conductivity (EC), to generate high-resolution
soil texture maps that could inform agronomic decision-making at the field scale and
aid in the planning and application of the transition to CA. The results provide im-
portant insights, but also highlight critical limitations in current sensor performance
and implementation.

The rationale for the use of soil proximal sensors for soil mapping is that they
facilitate the collection of larger amounts of spatial data using cheaper, simpler, and
less laborious techniques than conventional soil sampling and laboratory analysis
(Viscarra Rossel et al., 2011; Schmidinger et al., 2024). However, a key finding of
this study was that neither GRS nor EC scanning provided sufficiently accurate pre-
dictions of soil texture to replace or substantially supplement physical soil sampling
(Figure 4.3). GRS was moderately effective in estimating clay content, while EC pre-
dictors showed relative strength in estimating sand and silt fractions. However, the
Random Forest machine learning model revealed that both technologies contributed
complementary, non-redundant information, with variable importance scores show-
ing that each sensor added predictive value depending on the soil property. These
results suggest that multi-sensor approaches, often referred to as “soil sensor fusion,”
hold promise for improving the accuracy of soil texture prediction. This aligns with
previous recommendations in the literature advocating for the integration of multiple
sensor data streams to better capture the complex, site-specific relationships that
drive soil variability (Ji et al., 2019; Vasques et al., 2020; Rhymes et al., 2023; Kok
et al., 2024).
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However, the study also exposed significant limitations in the current commer-
cial application of these technologies. Prediction errors, particularly for sand and
silt content, were high (Table 4.2), and model performance was likely constrained
by the relatively low density of calibration samples. This raises concerns about the
reliability of sensor-derived maps provided to farmers and questions the robustness
of decision-making based solely on these outputs. Notably, the analysis revealed that
even when combining EC and GRS data, the models did not achieve the level of preci-
sion necessary for confident implementation of precision agriculture practices, such as
variable-rate seeding or nutrient management, where inaccuracies can translate into
financial loss or agronomic risk to farmers. This is most likely due to the small train-
ing and test datasets in this study. Therefore, future research could focus on scaling
this methodology up to larger study areas with a more comprehensive dataset.

While CA promises improvements in agricultural resilience and ecological condi-
tions, its successful implementation depends on an accurate understanding of site-
specific soil conditions to tailor management to those areas. Soil maps that fail to
deliver reliable spatial information risk undermining this transition by misinforming
management decisions. For example, Rhymes et al. (2023) found that the commercial
soil mapping services inaccurately predicted soil pH, P, K and Mg on grasslands in
the UK, and therefore these methods were not appropriate for calculating variable
lime and organic/inorganic fertilisers application rates, which could lead to negative
environmental and/or economic implications for farmers. Moreover, the findings re-
inforce that technological solutions must be accompanied by robust validation frame-
works and agronomic support to farmers to ensure they meet the practical needs of
farming systems (Rhymes et al., 2023). In the broader context of sustainable agricul-
ture, the study underscores the need for continued research and development in soil
proximal sensing methodologies, including improving calibration protocols (Rhymes
et al., 2023), enhancing machine learning models (Pätzold et al., 2020), remote sens-
ing (Schmidinger et al., 2024), and standardising commercial services (Rhymes et al.,
2023). Overall, this chapter’s findings illustrate the potential but also the current
limitations of precision agriculture technologies in supporting sustainable farming
transitions.
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9.3.2 Chapter 5: Soil Health and Function Under Conserva-
tion Agriculture

Summary of results

1. CA resulted in a significantly increased soil bulk density compared to the CON
treatment.

2. Weak evidence (β = -0.04, SE = 0.02, Z = -2.33, p = 0.051) of an increase in
total SOC was observed in the CA treatment compared to CON.

3. CA resulted in significantly higher soil nutrient availability compared to the
CON treatment.

4. CA resulted in a significant reduction in soil microarthropod biodiversity in
comparison to the CON treatment.

Discussion of results

This study tested the hypothesis that CA would reduce soil bulk density compared to
CON, due to the reduction of mechanical disturbance and the expected enhancement
of soil structure over time through improved biological activity. However, the results
did not support this hypothesis, as both treatments exhibited an increase in bulk
density over the three years, with CA showing a significantly higher bulk density
than CON (Figure 5.2).

This outcome aligns with previous studies reporting that the initial transition
to CA can lead to short-term increases in bulk density, particularly in the surface
layers (Soane et al., 2012; Pidgeon and Soane, 1977; Li et al., 2020a). However,
this is not found in all studies, for example, the review by Blanco-Canqui and Ruis
(2018) found that NT increased bulk density in 39% of the studies assessed and
increased penetration resistance in 50% of the studies. They found that changes in
soil bulk density were moderately negatively correlated with NT duration, suggesting
that bulk density under NT can be initially higher compared with CON, but as the
implementation duration of NT increases, differences in bulk density between NT and
CON diminish.

In the absence of tillage, natural consolidation processes occur, such as rainfall
(Todisco et al., 2022) and anthropogenic, such as repeated traffic with heavy equip-
ment. Blanco-Canqui and Ruis (2018) suggests that soils under NT can be more
susceptible to compaction in the first few years after the transition to NT compared
to soil managed using CON. The magnitude of these differences decreases with time,
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possibly as soil organic C accumulates and the biological activity associated with CA
systems—particularly the formation of biopores by earthworms begins to reduce soil
bulk density (Yvan et al., 2012), but such improvements typically require long-term
system establishment (Mondal et al., 2019). For example, Pidgeon and Soane (1977)
found NT system increases in soil bulk density for the first three years; however, after
that, no increases in bulk density were identified.

An additional factor influencing the observed increases in bulk density was the
above-average rainfall experienced during the experimental period (Figure 3.2). High
rainfall intensifies surface compaction through raindrop impact, especially when com-
bined with reduced soil cover or insufficient residue retention (Todisco et al., 2022).
This highlights the importance of considering climatic variability when interpreting
short-term soil physical responses to management changes.

Penetration resistance data provided a more nuanced picture, with CA exhibiting
lower resistance in the upper to mid soil layers (10 - 45 cm) but higher resistance at
greater depths (50 - 70 cm) compared to CON (Figure 5.4). This result is similar to
the study by Mondal et al. (2019), who found that even though CA and CON had
similar bulk density, the CA treatment had lower penetration resistance values in the
upper soil layers owing to 14% higher water content. These results suggest that while
CA may begin to improve subsoil conditions over time, surface consolidation and
legacy effects from prior management can still dominate the early years of transition.

Physical soil conditions are a particular consideration for those planning on moving
to CA, as it may pose challenges for crop establishment, root penetration, and water
infiltration during the initial transition years (Logsdon and Karlen, 2004; Blanco-
Canqui and Ruis, 2018). Farmers should carefully consider soil type and implement
complementary practices where possible (Li et al., 2020a). It has generally been
shown that NT management is more difficult on heavy soils (Baker et al., 2006;
Blanco-Canqui and Ruis, 2018; Morrison Jr. et al., 1990) and so this is a potential
limiting factor in the uptake of CA in areas with heavy soils.

Whilst implementing all three of the principles of CA is important to minimise
the risk of yield penalties (Pittelkow et al., 2015; Van den Putte et al., 2010), as
well as soil structural issues, long term use of NT may result in an overall decline
in the functionality of agricultural soils due to stratification of plant nutrients, or
herbicide resistant weed problems (Çelik et al., 2019; Lawrence et al., 2023). Here,
the application of strategic tillage may be a suitable management option to improve
physical soil conditions for crop growth, air and water movement, as shown by Çelik
et al. (2019) and Lawrence et al. (2023).
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Additionally, farmers will want to carefully consider the type of seed drill they
are using. This study discusses the benefits and drawbacks of disc and tine-based
NT drills, and emphasises the benefits for farmers in the UK who are practising CA
to have access to disc and tine-based opener drills. This can greatly improve the
flexibility and success of crop establishment, as in some cases, challenging drilling
conditions cannot be avoided even with improvements to work rate efficiency that are
associated with NT systems.

Overall, the findings indicate that improvements in soil physical properties under
CA are unlikely to emerge rapidly and may initially present as neutral or even negative
trends. This underscores the need for long-term assessment to capture the tempo-
ral dynamics of physical recovery under CA and to distinguish between short-term
transitional effects and the longer-term benefits often reported in the literature.

This study tested the hypothesis that CA increases SOC over time compared to
CON systems. While SOC is often cited as a key indicator of soil health and a central
benefit of CA adoption, the results of this study provide only partial support for this
hypothesis. Across the study period, weak evidence (β = -0.04, SE = 0.02, Z =
-2.33, p = 0.051) of an increase in total SOC was observed in the CA treatment
compared to CON; however, neither treatment showed an increase relative to the
baseline values (Figure 5.5). Both systems exhibited slight declines in SOC over the
three years. This suggests that while CA may slow the rate of C loss, it did not lead
to measurable C sequestration within the time frame of the experiment. This finding
aligns with previous research indicating that SOC accumulation under CA typically
requires long-term commitment, often exceeding a decade, before substantial changes
are detectable. The reduced soil disturbance in CA slows the decomposition of organic
matter by protecting aggregates, yet the system may initially be characterised by an
imbalance between organic matter inputs and mineralisation rates.

The study found significant increases in total N, P, K, and Mg under CA compared
to CON. These results are consistent with results from previous literature, where
NT and residue retention have been found to enhance nutrient pools by decreasing
leaching losses and improving nutrient retention in the surface layers (Li et al., 2007).
Additionally, previous studies have shown that, during early years of CA adoption,
total N may increase while available N can decrease due to slower mineralisation rates
and microbial immobilisation driven by high C inputs (Mukherjee et al., 2024). As this
study did not assess plant-available N or microbial activity, it remains unclear whether
the observed nutrient increases translate into agronomic benefits or improved nutrient

258



cycling efficiency. Overall, the findings provide partial support for the hypothesis that
CA improves soil chemical properties, particularly by enhancing total nutrient pools.

This study set out to test the hypothesis that CA would increase the diversity
and abundance of soil meso and macrofauna, particularly earthworms and micro-
arthropods, compared to CON practices. While the literature often highlights the
potential for CA to benefit soil biodiversity by reducing disturbance, increasing or-
ganic matter inputs, and promoting a beneficial soil habitat, the findings from this
study show that these expected benefits may take time. Across the three years of ex-
perimentation, no significant differences were detected between CA and CON systems
in the abundance of total earthworms, their ecological categories (epigeic, endogeic,
anecic), or juvenile stages. This contrasts with several long-term studies reporting
higher earthworm biomass and activity under NT or RT systems (Baldivieso-Freitas
et al., 2018; Soane et al., 2012; Pelosi et al., 2009). Notably, previous research has
shown that endogeic earthworms may sometimes favour tilled systems due to the
incorporation of organic matter deeper in the soil, whereas anecic and epigeic earth-
worms typically benefit from surface residues and undisturbed conditions (Baldivieso-
Freitas et al., 2018; Pelosi et al., 2009). The absence of treatment differences in this
study may reflect several factors: short experimental duration, low replication, sea-
sonal variability, or the influence of other management practices such as pesticide and
fertiliser regimes.

For soil microarthropods, similar patterns were observed. While groups such
as Chelicerata and Hexapoda showed no significant differences between treatments,
the Myriapoda group was unexpectedly more abundant under CON management.
Myriapoda (e.g., Pauropoda, Symphyla) are characteristic of undisturbed habitats,
and are therefore often sensitive to disturbance (Curry and Momen, 1988; Davis and
Sutton, 1978; Bedano et al., 2006). This result was surprising and suggests a need for
more detailed investigation into within-group dynamics and species-level responses.

Analyses using soil biodiversity indices (QBS-e, QBS-ar) and the Shannon Diver-
sity Index highlight the complex and sometimes counterintuitive patterns observed in
this study. Shannon index biodiversity index values were significantly higher under
CON, contradicting the hypothesis that CA would have higher biological quality and
diversity during the experiment. These findings suggest that tillage may not be the
sole driver of soil biological responses in this system; other interacting factors, such as
chemical inputs, crop rotations, crop health, or the soil physical environment, likely
play substantial roles (Lehman et al., 2015b).
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Principal components analysis (PCA) revealed gradual changes in community
structure between CA and CON throughout the study period, with variance ex-
plained by the first two principal components increasing from approximately 60% to
87% across years. This trend suggests the possibility of emerging treatment effects on
soil biotic communities, but also highlights that soil biodiversity may respond slowly
and require long-term monitoring to detect robust patterns.

Overall, the results did not support the initial hypothesis that CA would result
in significantly higher diversity and abundance of soil microarthropods and earth-
worms in comparison to CON practices. While CA is frequently championed for
its potential to rebuild soil biotic communities and enhance ecological function, this
study reinforces findings from other research that these benefits may require long-
term commitment and favourable management conditions (Henneron et al., 2015).
The observed lack of change or unexpected results underscore the importance of con-
sidering context-specific variables and avoiding assumptions of universal CA benefits.
As Kassam et al. (2022) states; the three interlinked CA principles constitute the
ecological foundation upon which sustainable agriculture can be built with comple-
mentary good agricultural practices. Future research would benefit from longer time
horizons, larger sample sizes, and integrated assessments of microbial, faunal, and
functional diversity, alongside agronomic and environmental variables such as mois-
ture, temperature, and input regimes.

9.3.3 Chapter 6: Agronomy and Crop Productivity Under
Conservation Agriculture

Summary of results

1. No statistically significant differences were observed in the percentage achieved
of the UK average yield between the CON and CA treatments.

2. No significant differences were identified in total pesticide mass applied between
the CA treatment and the CON treatment. However, the CA treatment applied
significantly more herbicides, and the CON treatment applied significantly more
fungicides and insecticides.

3. CA resulted in significantly reduced N fertiliser application; however, no signif-
icant differences were detected in P or K applications.
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4. The pesticide applications in the CA were found to have significantly higher
potential environmental risks in comparison to the CON treatment when as-
sessed with the Danish Pesticide Load Index. The main driver of this was a
significantly higher environmental fate load in the CA treatment in comparison
to the CON treatment. No significant treatment differences were observed for
the ecotoxicity or human health risks of the pesticide agronomic plans.

Discussion of results

This chapter provides an integrated assessment of CA compared to CON over three
years in a UK field context, evaluating agronomic performance, input use, environ-
mental risks, and crop yields. One of the insights from this study is the operational
vulnerability of CA systems at times, particularly under wet and variable UK weather
conditions. The poor establishment and ultimate failure of the oilseed rape under
CA in the third year of the experiment is a challenge widely reported (Allison, 2023).
While CA offers long-term soil health and sustainability benefits, its success is de-
pendent on appropriate machinery, timing, and field conditions. This reinforces the
view that CA is not a simple blueprint solution but rather an adaptive management
system requiring flexibility in agricultural practice (AHDB, 2024). Farmers can be
aided in CA management by access to different types of seed drills and a readiness to
adjust practices in response to local weather and soil conditions.

There is a common perception that CA systems are less reliant on agrochemicals
than the CON system (Kassam et al., 2009). However, the lack of significant differ-
ences in total pesticide mass usage between CA and the CON system in this study
suggests that CA is not inherently more or less reliant on agrochemicals compared to
CON. The usage rate and types of chemistry of pesticides are likely to be related to
the changing agro-ecological conditions as the systems develop, as well as the cultural
influences of the farmer or agronomist. Therefore, future research should prioritise
longer studies which encompass a wider dataset of industry practices.

The increased use of herbicides in CA systems raises concerns regarding environ-
mental risks (Dong et al., 2024; Morris et al., 2010; FAO, 2001). The increased use of
herbicides could be expected to have significantly higher potential risks to the envi-
ronment, as demonstrated by the Danish Pesticide Load Index (Figure 6.12). Farmers
and agronomists interested in reducing inputs of agrochemicals in CA in the UK have
mainly focused on fertiliser and insecticides (Impey, 2022b). However, as the results
of this study demonstrate, more consideration should be given to identifying and
quantifying trade-offs associated with reductions in the mass of herbicide applied and
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crop productivity (Nazarko et al., 2005). This should also be prioritised to enable
maximising the potential benefits of CA on biodiversity, as well as prolonging the effi-
cacy of herbicides by restricting the development of herbicide-resistant strains (Varah
et al., 2024). Considering the diversity of weed problems in CA systems, no single
method of weed control (cultural, mechanical or chemical) typically will provide the
desired level of weed control (Singh et al., 2015). Farmers and agronomists should
aim to utilise integrated weed management (IWM) strategies (Swanton and Weise,
1991; Varah et al., 2024; Farooq and Siddique, 2015; Singh et al., 2015; Riemens et al.,
2022) to reduce herbicide dependency in CA. IWM encompasses a wide variety of weed
management strategies, some of which are already commonplace within CA, such as
a diversified crop rotation (Singh et al., 2015; Nazarko et al., 2005), increasing crop
density (Singh et al., 2015; Nazarko et al., 2005), and use of cover crops (Singh et al.,
2015; Nazarko et al., 2005; Fernando and Shrestha, 2023). However, it is important
that farmers and agronomists adapt their weed management approach in CA to the
local level, which could include identification of the site-specific economic threshold
for weeds, improvements to herbicide application timeliness, mechanical weed control,
planting dates, and cultivar selection (Nazarko et al., 2005; Singh et al., 2015; Der-
rouch et al., 2020). A detailed framework for the planning and design of holistic IWM
strategies is presented by Riemens et al. (2022), which consists of five pillars: diverse
cropping systems, cultivar choice and establishment, field and soil management, direct
control, and monitoring and evaluation (Figure 9.1). This framework aims to manage
and regulate the weed community over the whole cropping system, instead of a sin-
gle season-single crop-single year. They stress that the appropriate IWM approach
should be tailored to the local level, through a participatory approach including all
stakeholders, to tailor the approach based upon the local cropping system and the
macro-ecology of the weed communities.

Despite clear differences in agronomic management and crop inputs, no statisti-
cally significant differences in crop yields were observed between CA and CON treat-
ments over the study period (Figure 6.15). While this aligns with meta-analytic evi-
dence that yield gaps often close over time, particularly when all three CA principles
are implemented (Pittelkow et al., 2015; Su et al., 2021), it also reflects limitations of
experimental scale and statistical power in this study. The small sample size (n = 5)
likely constrained the ability to detect treatment effects, even when agronomically
meaningful differences existed. This echoes a wider challenge in agricultural systems
research, where complex interactions between weather, soil, management, and biolog-
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ical processes generate high variability that can mask underlying trends in short-term
trials.

Figure 9.1: The Integrated Weed Management (IWM) Framework by Riemens et al.
(2022) for the planning and design of holistic IWM strategies that require combi-
nations of individual management tools appropriately selected from each of the five
pillars of IWM: Diverse cropping systems, cultivar choice and establishment, field and
soil management, direct control and the cross-cutting pillar monitoring and evalua-
tion.

9.3.4 Chapter 7: Soil Greenhouse Gas Emissions in Conser-
vation Agriculture

Summary of results

1. CA significantly reduced soil-derived N2O emissions compared to the CON
treatment; however, no differences were detected for CO2 or CH4 emissions.

2. CA did not significantly affect the Global Warming Potential (GWP); however,
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when GWP was considered with crop yield, CA was found to increase the yield-
scaled GWP significantly.

Discussion of results

There is a growing awareness of the importance of managing soil GHG emissions
in the UK, with an effort for the agricultural industry to become net-zero by 2040
(NFU, 2023; HM Government, 2023). Agriculture is one of the only National Commu-
nication Sectors (BEIS, 2023), along with Land Use, Land Use Change and Forestry
(LULUCF), that can sequester C and so has the potential to offset emissions from
the other sectors (Follett, 2001; Page et al., 2020). However, it is currently a major
contributor to GHG emissions, with key GHGs such as N2O largely being produced
in and emitted from the soil (IPCC, 2023; DEFRA, 2022). Previous literature has
shown that the effects of the individual principles of CA on GHG emissions produced
heterogeneous results in comparison to conventional practices (Shakoor et al., 2021;
Valujeva et al., 2022; Abdalla et al., 2016; Dendooven et al., 2012a; Sainju, 2016).
This highlights the influence of other factors, other than the farming system, which
are also key drivers of GHG emissions. For example, Rochette et al. (2008) found
that implementation of NT in a loam soil resulted in similar N2O emissions in NT
and mouldboard ploughed treatments; however, in a heavy clay soil, the N2O emis-
sions in the NT treatment were more than double that of the ploughed treatment.
This result illustrates the influence of soil texture on GHG emissions and how soil
texture interacts with the cropping system to produce different physical, chemical,
and biological conditions in the soil, which affect GHG flux. Therefore, there is a
need for more research on the effects of CA on soil GHG emissions across multiple
soil and climate types, and crop species, as all are known to be significant drivers in
GHG emissions (Abdalla et al., 2016; Shakoor et al., 2021).

One limitation of this study was that the soil GHG flux data were acquired during
one cropping season and not for the entirety of the experiment. The CON system
received some sort of cultivation for all crops planted, which is known to accelerate
SOM microbial decay, releasing C to the atmosphere (Hendrix et al., 1986; Beare et al.,
1994; Page et al., 2020). The CON system also received significantly more N fertiliser
throughout the experiment, which has been shown in this study and others to be the
major driver of N2O emissions (Cosentino et al., 2013; Rees et al., 2013). It could
be hypothesised that the long-term effects of both tillage and higher N fertilisation
would stimulate higher GHG emissions throughout the crop rotation. However, the
short-term nature of the GHG sampling period in this study was not sufficient to test
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that hypothesis. Another significant limitation of the short-term sampling period
used in this study was that the long-term effects of SOC sequestration were not taken
into account in the analysis. The SOC data presented in Section 5.3 identify some
weak evidence (p = 0.051) for an increase in the CA treatment compared to the CON
treatment. Although neither treatments were found to be significantly different from
the baseline measurements, this shows a difference in the rate of SOC loss between the
two treatments. This highlights that the CON treatment has reduced the SOC stock
significantly in comparison to the CA treatment, either in the form of direct soil CO2

emissions, or in the form of crop biomass exported from the field. An improvement
to this study would be to extend the GHG sampling period over a longer duration,
factor in the SOC stock into the GWP calculations. Future research should also take
into account the indirect GHG emissions of crop biomass exported from the field, and
the indirect emissions from machinery operations and crop protection products used
via Life Cycle Assessment (LCA). This is an important consideration in research on
the GWP of CA, as it has been shown in this study and previous research that CA
results in lower usage of machinery, fuel, and some pesticides (Kassam et al., 2009;
Parihar et al., 2018; Ponce et al., 2022; Nalewaja, 2003; Morris et al., 2010).

9.3.5 Chapter 8: Economic Analysis of Conservation Agri-
culture

Summary of results

1. CA was shown to significantly reduce expenditure on machinery operations and
crop applications compared to the CON treatment, whilst not reducing revenue.

2. CA required significantly less operational passes ha−1, significantly less machin-
ery operational time, and significantly less fuel usage, compared to the CON
treatment.

3. There were no statistical differences identified in the gross margin or net profit
margin for both the CA and CON treatments.

Discussion of results

One of the most promising aspects of CA identified in this study is the reduction in
operational costs, fuel usage, and machinery time without significantly compromising
revenue. This makes CA an economically viable option to farmers, particularly in
scenarios where labour or machinery availability is a limiting factor for the specific
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farm business. In this study, CA significantly reduced the amount of time and number
of operational passes needed ha−1, which will save farmers time and allow them
to focus on other parts of their businesses. For example, some estimates put the
labour requirements of CA in the region of 50 - 60% lower than CON practices
(FAO, 2001). On large mechanised farms, this equates to small savings for farmers as
typically labour only accounts for around 10% of the total expenditure ha−1 (FAO,
2001). Despite this, there is a trend towards increased off-farm work or farm business
diversification on farms in the UK, which will make even the relatively small labour
savings under CA attractive to some farmers (FAO, 2001).

In addition, CA reduced the economic risk for farmers, due to the significantly
lower fuel and N fertiliser usage. Both the fuel and fertiliser markets have been
increasingly volatile in recent years (Clark, 2022; AHDB, 2025); therefore, reducing
inputs of both reduces the economic risks associated with volatile market prices for
farm businesses. However, while CA can reduce input and operational costs, it does
not guarantee improvements in gross or net profit margins as shown in this study.

One limitation of the economic analysis of the treatments used in this study is
that, as discussed previously in this chapter, the results are highly specific to the local
area. To extrapolate the conclusions to wider areas of the UK, wider data collection
would be required to capture regional variation in agronomic approach, soil types,
crop rotations, climatic conditions, and local markets. This is particularly important
as the productivity of CA has been shown to produce highly heterogeneous results
dependent on the agro-ecological conditions (Pittelkow et al., 2015; Rockström et al.,
2009; Corbeels et al., 2014; Shakoor et al., 2021; Van den Putte et al., 2010). For
example, Zentner et al. (1991) found that CA required lower expenditure than CON
for fuel, labour, machine repair and machine overhead costs; however, these savings
on expenditure were completely offset by significantly increased herbicide costs.

In this study, all operational expenditure data is standardised from the national
recommended prices for each agricultural machinery operation (NAAC, 2022). Fur-
ther research could simulate different ownership scenarios for machinery operations,
as the majority of farmers in the UK would not use contractors for the entirety of
the cropping operations. This would factor in the initial costs of the transition to
CA, as investment in new machinery will significantly affect the economic outlook
for farmers during those initial transition years. One important aspect not addressed
in the current analysis is the use of Net Present Value (NPV) to assess the long-
term financial viability of CA. NPV is a valuable tool for quantifying the present
value of future cash flows, accounting for the time value of money (Lalani et al.,
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2017). Including NPV analysis in future research would allow for a more compre-
hensive assessment of the economic sustainability of CA and better inform farmers
about the potential long-term benefits and costs associated with transition invest-
ments. Another improvement to this study could have been to run the study for
a longer duration of time, as economic calculations can be significantly influenced
by the yearly variability of the weather during the study period, possibly leading
to erroneous conclusions (Madarász et al., 2025). This is of particular note in this
study, where there was far higher rainfall than average recorded on several occasions
throughout the study (Chapter 3) (Met Office, 2024). This highlights the importance
of conducting long-term studies on CA.

9.3.6 General Discussion

The findings of this study demonstrate that CA presents both opportunities and chal-
lenges for farmers. By recognising both the benefits and limitations of CA, farmers
and agronomists can make informed decisions about integrating these practices into
their farming systems. Overall, CA was shown to have no significant effect on the per-
centage achieved of the UK average yield compared to the CON (Figure 6.15), with a
significant reduction in N fertiliser usage (Figure 5.9). In economic terms, CA signifi-
cantly reduced expenditure, fuel usage, and machinery operational time compared to
CON, whilst returning a similar gross margin across the three-year experiment du-
ration. Typically, the transition to CA is championed by farmers who are aiming to
improve soil health and resilience on their farm and reduce the environmental impacts
of their agricultural practices. However, this study also identified a significant reduc-
tion in soil biodiversity in the CA treatment in comparison to the CON treatment.
The potential benefits of CA to soil biological health are well documented in the
literature (Palm et al., 2014; Li et al., 2018; Page et al., 2020; Oliveira et al., 2024).
Therefore, this highlights that farmers and agronomists need to allow the system to
develop over time before they can expect to see improvements to soil health (Impey,
2022a; Mondal et al., 2019; Cárceles Rodŕıguez et al., 2022; Montgomery, 2021). The
results presented in this study are in line with the five-year study of NT in the UK by
Cooper et al. (2020), who found that NT did not significantly alter the soil’s biologi-
cal, chemical, or physical condition relative to conventional ploughing establishment.
However, they found that NT returned a 13% higher net profit margin during the
experimental period due to savings in operational efficiency and crop yields.
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9.4 Further Research

This study has provided important insights into the agronomic, environmental, and
economic implications of CA under UK conditions. However, several knowledge gaps
and limitations were identified for future research and are discussed in the following
section.

Longer-term studies are needed to assess the cumulative effects of CA on soil
health, GHG emissions, and farm economics. Soil biological indicators, in particular,
may require many years to show significant change following the transition to CA
(Chernov and Zhelezova, 2020). For example, Henneron et al. (2015) found that
CA increased the abundance and biomass of all soil organisms, except predatory
nematodes, after 14 years of CA. Therefore, it could be hypothesised that this study
duration was not long enough to identify significant changes in the abundance of soil
organisms. Thus, long-term experiments which capture inter-annual variability in
weather, cropping systems, and management adaptations would provide more robust
evidence on the resilience and sustainability of CA practices over time. Long-term
field-scale studies of CA are also beneficial as they generate evidence to farmers
that CA can be productive and profitable, aiding in increased uptake of CA in local
communities (Kassam et al., 2022).

This study also observed a significant increase in pesticide environmental load
under CA. This may not be representative of all applications of CA in the UK due
to differences in agronomic practice. Therefore, further investigation should be un-
dertaken on a wider scale in the UK, on different farms and cropping systems. In
addition, further research into integrated weed management (IWM) strategies for
CA is critical (Figure 9.1). Future work should aim to design and evaluate holis-
tic IWM approaches that combine cultural, mechanical, and chemical weed control
methods tailored to local conditions in CA. This could involve participatory research
with farmers, agronomists, and other stakeholders to develop solutions that are both
effective and practical at the farm scale (Kassam et al., 2022).

Regional studies are needed to assess how CA performs across diverse UK agroeco-
logical zones, soil types, and farm systems. The context-specific nature of CA means
that findings from one site cannot be simply extrapolated to others. A network of
regional case studies or on-farm trials would help build a more complete picture of the
opportunities, risks, and adaptations needed for successful CA adoption nationwide.

The economic analysis of CA would benefit from incorporating Net Present Value
(NPV) calculations and scenario analyses to capture the long-term financial implica-
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tions and investment risks associated with the transition. Simulating different ma-
chinery ownership models (e.g., contractor use, machinery sharing, or ownership) and
the capital investment necessary would provide farmers with more realistic estimates
of the financial pathways during and after the transition to CA.

This study could be improved by expanding the assessment of environmental im-
pacts through Life Cycle Assessment (LCA). This would enable a more comprehensive
evaluation of the indirect emissions and resource use associated with CA, including
inputs like fuel, fertiliser, pesticides, and machinery manufacture and maintenance.

Finally, future research should embrace a Farming Systems Research (FSR) ap-
proach, working closely with farmers to identify the key barriers to adoption, the
knowledge gaps in practice, and the economic or management challenges that they
face (Kassam et al., 2022). Understanding the social and cultural parts of CA adop-
tion is as important as agronomic or environmental data for enabling wider uptake.

In summary, future research should prioritise:

1. Long-term and regionally distributed trials.

2. Integration of cover crops.

3. Development of practical IWM solutions.

4. Advanced economic modelling.

5. LCA-based environmental accounting.

6. Participatory, systems-level research with farmers and stakeholders.

Addressing these research needs will be essential to support evidence-based rec-
ommendations for CA adoption and its potential role in transitioning UK agriculture
towards more sustainable and resilient systems.

9.5 Conclusion

This study demonstrates that the transition period of CA has the potential to be
economically similar for farmers in comparison to CON. This result is in line with
many previous studies which report similar findings (Zentner et al., 1991; Kumara
et al., 2020; Lorenzetti and Fiorini, 2024). Yet the question arises: If CA is econom-
ically viable and reduces some economic risk by reductions of inputs and machinery
requirements, why is adoption not higher in the UK? CA is knowledge-intensive and a
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complex system to learn and implement, requiring more planning than tillage-based
systems (Kassam et al., 2009; Vankeerberghen and Stassart, 2016). It cannot be
reduced to a simple standard technology and requires a higher degree of localised
tailoring to achieve the full potential of the system. Future research needs to be
oriented towards solving farmers’ problems that inhibit productivity and collecting
economic data to aid farmers who are keen to transition their farms into CA. Any
environmental benefits from the system cannot be expected to lead masses of farmers,
apart from a committed innovator, to adopt CA (Madarász et al., 2025). Therefore,
future research needs to draw on multi-disciplinary research, such as Farming Systems
Research, to work with all of the stakeholders to collect the economic decision-making
data to help farmers and agronomists manage the transition successfully.
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Appendix A

Soil Data and Code

A.1 Code availability
The code to produce the data analysis in this chapter can be be viewed and cloned from
the following Git repositories:

Soil Biology Code:
https://github.com/jwollins/soil_biology
Soil Physics Code:
https://github.com/jwollins/soil_physics
Soil Chemistry Code:
https://github.com/jwollins/soil_chemistry

A.2 Data availability
The data to produce this chapter will be made available on request from the author. Please
contact:

jcollins@harper-adams.ac.uk

A.3 Data Distributions

Figure A.1: Joint plot displaying the distribution and normality of soil bulk destiny
data (g cm−3). (A) Density plot showing the probability density function. (B)
Histogram to illustrate the frequency distribution across value bins. (C) Q-Q plot
comparing sample quantiles against theoretical quantiles to assess normality.
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Figure A.2: Joint plot displaying the distribution and normality of the penetration
resistance data (MPa). (A) Density plot showing the probability density function.
(B) Histogram to illustrate the frequency distribution across value bins. (C) Q-Q
plot comparing sample quantiles against theoretical quantiles to assess normality.

Figure A.3: Joint plot displaying the distribution and normality of soil total carbon
content data (%). (A) Density plot showing the probability density function. (B)
Histogram to illustrate the frequency distribution across value bins. (C) Q-Q plot
comparing sample quantiles against theoretical quantiles to assess normality.

Figure A.4: Joint plot displaying the distribution and normality of soil total nitrogen
content data (%). (A) Density plot showing the probability density function. (B)
Histogram to illustrate the frequency distribution across value bins. (C) Q-Q plot
comparing sample quantiles against theoretical quantiles to assess normality.
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Figure A.5: Joint plot displaying the distribution and normality of soil available
Phosphorus (Mg l−1). (A) Density plot showing the probability density function.
(B) Histogram to illustrate the frequency distribution across value bins. (C) Q-Q
plot comparing sample quantiles against theoretical quantiles to assess normality.

Figure A.6: Joint plot displaying the distribution and normality of soil available
Potassium (Mg l−1). (A) Density plot showing the probability density function. (B)
Histogram to illustrate the frequency distribution across value bins. (C) Q-Q plot
comparing sample quantiles against theoretical quantiles to assess normality.

Figure A.7: Joint plot displaying the distribution and normality of soil available
Magnesium (Mg l−1). (A) Density plot showing the probability density function.
(B) Histogram to illustrate the frequency distribution across value bins. (C) Q-Q
plot comparing sample quantiles against theoretical quantiles to assess normality.
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Figure A.8: Joint plot displaying the distribution and normality of juvenile earthworm
abundance (m−2). (A) Density plot showing the probability density function. (B)
Histogram to illustrate the frequency distribution across value bins. (C) Q-Q plot
comparing sample quantiles against theoretical quantiles to assess normality.

Figure A.9: Joint plot displaying the distribution and normality of Epigeic earthworm
abundance (m−2). (A) Density plot showing the probability density function. (B)
Histogram to illustrate the frequency distribution across value bins. (C) Q-Q plot
comparing sample quantiles against theoretical quantiles to assess normality.

Figure A.10: Joint plot displaying the distribution and normality of Endogeic earth-
worm abundance (m−2). (A) Density plot showing the probability density function.
(B) Histogram to illustrate the frequency distribution across value bins. (C) Q-Q
plot comparing sample quantiles against theoretical quantiles to assess normality.
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Figure A.11: Joint plot displaying the distribution and normality of Anecic earthworm
abundance (m−2). (A) Density plot showing the probability density function. (B)
Histogram to illustrate the frequency distribution across value bins. (C) Q-Q plot
comparing sample quantiles against theoretical quantiles to assess normality.

Figure A.12: Joint plot displaying the distribution and normality of total earthworm
abundance (m−2). (A) Density plot showing the probability density function. (B)
Histogram to illustrate the frequency distribution across value bins. (C) Q-Q plot
comparing sample quantiles against theoretical quantiles to assess normality.

Figure A.13: Joint plot displaying the distribution and normality of QBS-e morpho-
logical Index Score. (A) Density plot showing the probability density function. (B)
Histogram to illustrate the frequency distribution across value bins. (C) Q-Q plot
comparing sample quantiles against theoretical quantiles to assess normality.
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Figure A.14: Joint plot displaying the distribution and normality of QBS-ar morpho-
logical Index Score. (A) Density plot showing the probability density function. (B)
Histogram to illustrate the frequency distribution across value bins. (C) Q-Q plot
comparing sample quantiles against theoretical quantiles to assess normality.

Figure A.15: Joint plot displaying the distribution and normality of Shannon Biodi-
versity Index Score. (A) Density plot showing the probability density function. (B)
Histogram to illustrate the frequency distribution across value bins. (C) Q-Q plot
comparing sample quantiles against theoretical quantiles to assess normality.
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A.4 Model diagnostics

Figure A.16: Plot of soil textural interpolation variograms. (A) Ordinary kriging sta-
tistical plot for clay soil particle percentage interpolation throughout the experiment
site. (B) Ordinary kriging statistical plot for sand soil particle percentage interpo-
lation throughout the experiment site. (C) Ordinary kriging statistical plot for silt
soil particle percentage interpolation throughout the experiment site. The kriging
prediction is featured in the top left of the individual plots, the kriging spatial stan-
dard error is shown in the top right corner, and the experimental variogram for the
prediction model is shown in the centre of the plot. The model parameters used for
each model prediction are featured within the variogram plot.
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Figure A.17: Combined scree plots for Principal Component Analysis (PCA) of soil
micro arthropod taxonomic group abundance. Each scree plot illustrates the percent-
age of variance explained by each principal component (PC) for the dataset. Analyses
are shown separately for 2022 (A), 2023 (B), and 2024 (C).

Figure A.18: Diagnostic plots for the generalised linear mixed model assessing juvenile
earthworm abundance (m−2). A: Residuals vs. Fitted Values. B: Q-Q plot. C:
Cook’s distance plot.

Figure A.19: Diagnostic plots for the generalised linear mixed model assessing Epigeic
earthworm abundance (m−2). A: Residuals vs. Fitted Values. B: Q-Q plot. C:
Cook’s distance plot.
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Figure A.20: Diagnostic plots for the generalised linear mixed model assessing Endo-
geic earthworm abundance (m−2). A: Residuals vs. Fitted Values. B: Q-Q plot. C:
Cook’s distance plot.

Figure A.21: Diagnostic plots for the generalised linear mixed model assessing Anecic
earthworm abundance (m−2). A: Residuals vs. Fitted Values. B: Q-Q plot. C:
Cook’s distance plot.

Figure A.22: Diagnostic plots for the generalised linear mixed model assessing total
earthworm abundance (m−2). A: Residuals vs. Fitted Values. B: Q-Q plot. C:
Cook’s distance plot.

Figure A.23: Diagnostic plots for the generalised linear mixed model assessing total
Chelicerata abundance (m−2). A: Residuals vs. Fitted Values. B: Q-Q plot. C:
Cook’s distance plot.
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Figure A.24: Diagnostic plots for the generalised linear mixed model assessing total
Hexapoda abundance (m−2). A: Residuals vs. Fitted Values. B: Q-Q plot. C:
Cook’s distance plot.

Figure A.25: Diagnostic plots for the generalised linear mixed model assessing total
Myriapoda abundance (m−2). A: Residuals vs. Fitted Values. B: Q-Q plot. C:
Cook’s distance plot.

Figure A.26: Diagnostic plots for the generalised linear mixed model assessing total
QBS-e score. A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s distance plot.

Figure A.27: Diagnostic plots for the generalised linear mixed model assessing total
QBS-ar score. A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s distance
plot.
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Figure A.28: Diagnostic plots for the generalised linear mixed model assessing Shan-
non Biodiversity Index. A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s
distance plot.
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Appendix B

Agronomy Data and Code

B.1 Code availability
The code to produce the data analysis in this chapter can be viewed and cloned from the
following Git repositories:

General Agronomy Code:
https://github.com/jwollins/agronomy
Pesticide Data Web Scraper:
https://github.com/jwollins/pesticide_info_web_scraper

B.2 Data availability
The data to produce this chapter will be made available on request from the author. Please
contact:

jcollins@harper-adams.ac.uk

B.3 Data Distributions

Figure B.1: Joint plot displaying the distribution and normality of the percentage
of the UK crop yield average (%). (A) Density plot showing the probability density
function. (B) Histogram to illustrate the frequency distribution across value bins.
(C) Q-Q plot comparing sample quantiles against theoretical quantiles to assess nor-
mality.
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Figure B.2: Joint plot displaying the distribution and normality of the crop yield (t
ha−1). (A) Density plot showing the probability density function. (B) Histogram
to illustrate the frequency distribution across value bins. (C) Q-Q plot comparing
sample quantiles against theoretical quantiles to assess normality.

Figure B.3: Joint plot displaying the distribution and normality of fertiliser mass (kg
ha−1). (A) Density plot showing the probability density function. (B) Histogram
to illustrate the frequency distribution across value bins. (C) Q-Q plot comparing
sample quantiles against theoretical quantiles to assess normality.

Figure B.4: Joint plot displaying the distribution and normality of Nitrogen fertiliser
mass (kg ha−1). (A) Density plot showing the probability density function. (B)
Histogram to illustrate the frequency distribution across value bins. (C) Q-Q plot
comparing sample quantiles against theoretical quantiles to assess normality.
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Figure B.5: Joint plot displaying the distribution and normality of Phosphorus fer-
tiliser mass (kg ha−1). (A) Density plot showing the probability density function.
(B) Histogram to illustrate the frequency distribution across value bins. (C) Q-Q
plot comparing sample quantiles against theoretical quantiles to assess normality.

Figure B.6: Joint plot displaying the distribution and normality of Potassium fertiliser
mass (kg ha−1). (A) Density plot showing the probability density function. (B)
Histogram to illustrate the frequency distribution across value bins. (C) Q-Q plot
comparing sample quantiles against theoretical quantiles to assess normality.

Figure B.7: Joint plot displaying the distribution and normality of pesticides mass
(kg ha−1). (A) Density plot showing the probability density function. (B) Histogram
to illustrate the frequency distribution across value bins. (C) Q-Q plot comparing
sample quantiles against theoretical quantiles to assess normality.
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Figure B.8: Joint plot displaying the distribution and normality of fungicide mass (kg
ha−1). (A) Density plot showing the probability density function. (B) Histogram
to illustrate the frequency distribution across value bins. (C) Q-Q plot comparing
sample quantiles against theoretical quantiles to assess normality.

Figure B.9: Joint plot displaying the distribution and normality of herbicide mass (kg
ha−1). (A) Density plot showing the probability density function. (B) Histogram
to illustrate the frequency distribution across value bins. (C) Q-Q plot comparing
sample quantiles against theoretical quantiles to assess normality.

Figure B.10: Joint plot displaying the distribution and normality of insecticide mass
(kg ha−1). (A) Density plot showing the probability density function. (B) Histogram
to illustrate the frequency distribution across value bins. (C) Q-Q plot comparing
sample quantiles against theoretical quantiles to assess normality.
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Figure B.11: Joint plot displaying the distribution and normality of Ecotoxicity PLI.
(A) Density plot showing the probability density function. (B) Histogram to illus-
trate the frequency distribution across value bins. (C) Q-Q plot comparing sample
quantiles against theoretical quantiles to assess normality.

Figure B.12: Joint plot displaying the distribution and normality of Environmental
Fate PLI. (A) Density plot showing the probability density function. (B) Histogram
to illustrate the frequency distribution across value bins. (C) Q-Q plot comparing
sample quantiles against theoretical quantiles to assess normality.

Figure B.13: Joint plot displaying the distribution and normality of Human Health
PLI. (A) Density plot showing the probability density function. (B) Histogram
to illustrate the frequency distribution across value bins. (C) Q-Q plot comparing
sample quantiles against theoretical quantiles to assess normality.
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Figure B.14: Joint plot displaying the distribution and normality of Total PLI. (A)
Density plot showing the probability density function. (B) Histogram to illustrate the
frequency distribution across value bins. (C) Q-Q plot comparing sample quantiles
against theoretical quantiles to assess normality.
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B.4 Model diagnostics

Figure B.15: Plot of crop yield interpolation variograms. A - Ordinary kriging statis-
tical plot for the interpolated spring bean yield in the conventional treatment through-
out the experiment site. B - Ordinary kriging statistical plot for the interpolated
spring bean yield in the conservation treatment throughout the experiment site. C
- Ordinary kriging statistical plot for the interpolated winter wheat yield in the con-
ventional treatment throughout the experiment site. D - Ordinary kriging statistical
plot for the interpolated winter wheat yield in the conservation treatment throughout
the experiment site. The kriging prediction is featured in the top left of the individual
plots, the kriging spatial standard error is shown in the top right corner, and the ex-
perimental variogram for the prediction model is shown in the centre of the plot. The
model parameters used for each model prediction are featured within the variogram
plot.
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Figure B.16: Diagnostic plots for the generalised linear mixed model assessing fer-
tiliser mass (kg ha−1). A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s
distance plot.

Figure B.17: Diagnostic plots for the generalised linear mixed model assessing ni-
trogen fertiliser mass (kg ha−1). A: Residuals vs. Fitted Values. B: Q-Q plot. C:
Cook’s distance plot.

Figure B.18: Diagnostic plots for the generalised linear mixed model assessing Phos-
phorus fertiliser mass (kg ha−1). A: Residuals vs. Fitted Values. B: Q-Q plot. C:
Cook’s distance plot.
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Figure B.19: Diagnostic plots for the generalised linear mixed model assessing Potas-
sium fertiliser mass (kg ha−1). A: Residuals vs. Fitted Values. B: Q-Q plot. C:
Cook’s distance plot.

Figure B.20: Diagnostic plots for the generalised linear mixed model assessing total
pesticide mass (kg ha−1). A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s
distance plot.

Figure B.21: Diagnostic plots for the generalised linear mixed model assessing total
herbicide mass (kg ha−1). A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s
distance plot.
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Figure B.22: Diagnostic plots for the generalised linear mixed model assessing total
fungicide mass (kg ha−1). A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s
distance plot.
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Appendix C

Soil Greenhouse Gas Emissions
Data and Code

C.1 Code availability
The code to produce the data analysis in this chapter can be viewed and cloned from the
following Git repositories:

Soil Greenhouse Gas Flux Code:
https://github.com/jwollins/ghg_flux

C.2 Data availability
The data to produce this chapter will be made available on request from the author. Please
contact:

jcollins@harper-adams.ac.uk

C.3 Data Distributions

Figure C.1: Joint plot displaying the distribution and normality of the soil CO2
emissions. (A) Density plot showing the probability density function for each group.
(B) Histogram with jittered bars to illustrate the frequency distribution across value
bins. (C) Q-Q plot comparing sample quantiles against theoretical quantiles to assess
normality

292

https://github.com/jwollins/ghg_flux
mailto:jcollins@harper-adams.ac.uk


Figure C.2: Joint plot displaying the distribution and normality of the soil N2O
emissions. (A) Density plot showing the probability density function for each group.
(B) Histogram with jittered bars to illustrate the frequency distribution across value
bins. (C) Q-Q plot comparing sample quantiles against theoretical quantiles to assess
normality

Figure C.3: Joint plot displaying the distribution and normality of the soil CH4
emissions. (A) Density plot showing the probability density function for each group.
(B) Histogram with jittered bars to illustrate the frequency distribution across value
bins. (C) Q-Q plot comparing sample quantiles against theoretical quantiles to assess
normality

Figure C.4: Joint plot displaying the distribution and normality of the soil GHG
flux Global Warming Potential. (A) Density plot showing the probability density
function for each group. (B) Histogram with jittered bars to illustrate the frequency
distribution across value bins. (C) Q-Q plot comparing sample quantiles against
theoretical quantiles to assess normality
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Figure C.5: Joint plot displaying the distribution and normality of the soil GHG flux
yield-scaled Global Warming Potential. (A) Density plot showing the probability
density function for each group. (B) Histogram with jittered bars to illustrate the
frequency distribution across value bins. (C) Q-Q plot comparing sample quantiles
against theoretical quantiles to assess normality
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C.4 Model diagnostics

Figure C.6: Diagnostic plots for the generalised linear mixed model assessing soil CO2
flux. A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s distance plot.

Figure C.7: Diagnostic plots for the generalised linear mixed model assessing soil N2O
flux. A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s distance plot.
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Figure C.8: Diagnostic plots for the generalised linear mixed model assessing soil CH4
flux. A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s distance plot.

Figure C.9: Diagnostic plots for the generalised linear mixed model assessing soil
GHG flux Global Warming Potential. A: Residuals vs. Fitted Values. B: Q-Q plot.
C: Cook’s distance plot.

Figure C.10: Diagnostic plots for the generalised linear mixed model assessing soil
GHG flux yield-scale Global Warming Potential. A: Residuals vs. Fitted Values. B:
Q-Q plot. C: Cook’s distance plot.
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Appendix D

Economics Data and Code

D.1 Code availability
The code to produce the data analysis in this chapter can be viewed and cloned from the
following Git repositories:

Economics Code:
https://github.com/jwollins/economics

D.2 Data availability
The data to produce this chapter will be made available on request from the author. Please
contact:

jcollins@harper-adams.ac.uk

D.3 Data Distributions

Figure D.1: Joint plot displaying the distribution and normality of the total revenue
(£ ha−1). (A) Density plot showing the probability density function for each group.
(B) Histogram with jittered bars to illustrate the frequency distribution across value
bins. (C) Q-Q plot comparing sample quantiles against theoretical quantiles to assess
normality
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Figure D.2: Joint plot displaying the distribution and normality of the operational
expenditure (£ ha−1). (A) Density plot showing the probability density function for
each group. (B) Histogram with jittered bars to illustrate the frequency distribu-
tion across value bins. (C) Q-Q plot comparing sample quantiles against theoretical
quantiles to assess normality

Figure D.3: Joint plot displaying the distribution and normality of the application
expenditure (£ ha−1). (A) Density plot showing the probability density function for
each group. (B) Histogram with jittered bars to illustrate the frequency distribu-
tion across value bins. (C) Q-Q plot comparing sample quantiles against theoretical
quantiles to assess normality

Figure D.4: Joint plot displaying the distribution and normality of the total expen-
diture (£ ha−1). (A) Density plot showing the probability density function for each
group. (B) Histogram with jittered bars to illustrate the frequency distribution across
value bins. (C) Q-Q plot comparing sample quantiles against theoretical quantiles
to assess normality
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Figure D.5: Joint plot displaying the distribution and normality of the gross margin
(£ ha−1). (A) Density plot showing the probability density function for each group.
(B) Histogram with jittered bars to illustrate the frequency distribution across value
bins. (C) Q-Q plot comparing sample quantiles against theoretical quantiles to assess
normality

Figure D.6: Joint plot displaying the distribution and normality of the number of
machinery operational passes ha−1. (A) Density plot showing the probability density
function for each group. (B) Histogram with jittered bars to illustrate the frequency
distribution across value bins. (C) Q-Q plot comparing sample quantiles against
theoretical quantiles to assess normality

Figure D.7: Joint plot displaying the distribution and normality of the theoretical
machinery operational time required (hours ha−1). (A) Density plot showing the
probability density function for each group. (B) Histogram with jittered bars to il-
lustrate the frequency distribution across value bins. (C) Q-Q plot comparing sample
quantiles against theoretical quantiles to assess normality
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Figure D.8: Joint plot displaying the distribution and normality of the theoretical
diesel consumption (l ha−1). (A) Density plot showing the probability density func-
tion for each group. (B) Histogram with jittered bars to illustrate the frequency
distribution across value bins. (C) Q-Q plot comparing sample quantiles against
theoretical quantiles to assess normality

Figure D.9: Joint plot displaying the distribution and normality of the net profit
margin (%). (A) Density plot showing the probability density function for each group.
(B) Histogram with jittered bars to illustrate the frequency distribution across value
bins. (C) Q-Q plot comparing sample quantiles against theoretical quantiles to assess
normality
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D.4 Model diagnostics

Figure D.10: Diagnostic plots for the model assessing crop application expenditure
(£ ha−1). A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s distance plot.

Figure D.11: Diagnostic plots for the model assessing machinery operation expendi-
ture (£ ha−1). A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s distance
plot.

Figure D.12: Diagnostic plots for the model assessing total expenditure (£ ha−1). A:
Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s distance plot.
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Figure D.13: Diagnostic plots for the model assessing theoretical diesel consumption
(l ha−1). A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s distance plot.

Figure D.14: Diagnostic plots for the model assessing the quantity of machinery
passes (n ha−1). A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s distance
plot.

Figure D.15: Diagnostic plots for the model assessing the quantity of machinery time
require (hrs ha−1). A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s distance
plot.
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Figure D.16: Diagnostic plots for the model assessing the total revenue (£ ha−1). A:
Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s distance plot.

Figure D.17: Diagnostic plots for the model assessing the gross margin (£ ha−1). A:
Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s distance plot.

Figure D.18: Diagnostic plots for the model assessing the net profit margin (£ ha−1).
A: Residuals vs. Fitted Values. B: Q-Q plot. C: Cook’s distance plot.
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Cárceles Rodŕıguez, B., Durán-Zuazo, V. H., Soriano Rodŕıguez, M., Garćıa-Tejero, I. F.,
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Çelik, İ., Günal, H., Acar, M., Acir, N., Bereket Barut, Z., and Budak, M. (2019). Strategic
tillage may sustain the benefits of long-term no-till in a Vertisol under Mediterranean
climate. Soil and Tillage Research, 185:17–28.

Champely, S., Ekstrom, C., Dalgaard, P., Gill, J., Weibelzahl, S., Anandkumar, A., Ford,
C., Volcic, R., and Rosario, H. D. (2020). Pwr: Basic Functions for Power Analysis.

Chen, H., Li, X., Hu, F., and Shi, W. (2013). Soil nitrous oxide emissions following crop
residue addition: A meta-analysis. Global Change Biology, 19(10):2956–2964.

307



Chernov, T. I. and Zhelezova, A. D. (2020). The Dynamics of Soil Microbial Communities
on Different Timescales: A Review. Eurasian Soil Science, 53(5):643–652.

Cho, J. B., Guinness, J., Kharel, T., Maresma, Á., Czymmek, K. J., van Aardt, J., and
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T., Sturny, W. G., Sá, J. C., and Weiss, K. (2014). Why do we need to standardize
no-tillage research? Soil and Tillage Research, 137(April):16–22.

Derpsch, R. and Friedrich, T. (2009). Global Overview of Conservation Agriculture Adop-
tion . IV World Congress on Conservation Agriculture, pages 1–14.

Derrouch, D., Chauvel, B., Felten, E., and Dessaint, F. (2020). Weed Management in the
Transition to Conservation Agriculture: Farmers’ Response. Agronomy, 10(6):843.

DICKEY-john (2024). GAC 2700-UGMA. https://dickey-john.com/products/moisture-
testers/benchtop/gac-2700-ugma/.

Dodge, Y. (2008). Analysis of Residuals. In The Concise Encyclopedia of Statistics, pages
5–9. Springer, New York, NY.

Doerge, T. A. and Gardner, D. L. (2015). On-Farm Testing Using the Adjacent Strip
Comparison Method. In Proceedings Ofthe Fourth International Conference on Precision
Agriculture., pages 603–609.

Doetterl, S., Van Oost, K., and Six, J. (2012). Towards constraining the magnitude of
global agricultural sediment and soil organic carbon fluxes. Earth Surface Processes and
Landforms, 37(6):642–655.

310



Dong, F., Dodson, L., Nemec Boehm, R., Douglass, C., Ranville, M., and Olver, R. (2024).
The relative importance of herbicide use for conservation tillage adoption by U.S. corn
and soybean producers. PloS One, 19(11):e0311960.

Doran, J. W. (1987). Microbial biomass and mineralizable nitrogen distributions in no-
tillage and plowed soils. Biology and Fertility of Soils, 5(1):68–75.

Doran, J. W. (2002). Soil health and global sustainability: Translating science into practice.
Agriculture, Ecosystems & Environment, 88(2):119–127.

Dordas, C. (2015). Nutrient Management Perspectives in Conservation Agriculture. In
Farooq, M. and Siddique, K. H. M., editors, Conservation Agriculture, pages 79–107.
Springer International Publishing, Cham.

Douglas, M. R. and Tooker, J. F. (2012). Slug (Mollusca: Agriolimacidae, Arionidae)
Ecology and Management in No-Till Field Crops, With an Emphasis on the mid-Atlantic
Region. Journal of Integrated Pest Management, 3(1):C1–C9.
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