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Abstract

Weeding robots are expected to decrease herbicide use on conventional farms and
reduce manual labor on organic farms. A multi-objective linear programming model
was used to compare the economic, environmental, and social performance of robotic
and non-robotic weed control in conventional and organic sugar beet (Beta vulgaris
L.) production in Bavaria, Germany. On the conventional farm, the weeding robot
generated a mean gross return of €58,612 year~!' compared to €57,728 year~! when
using herbicide spraying. However, the mean return on total costs for the weeding
robot was negative (€~2750 year~!) and substantially lower than the €8663 year~!
achieved with herbicide spraying. In organic farming, this technology was more
profitable than non-robotic mechanical weeding, generating a mean gross return of
€73,098 year~! and a mean return on total costs of €10,373 year—!. The correspond-
ing figures for non-robotic mechanical weeding were € 59,176 and €7,577 year~!.
The carbon emission intensity of sugar beet was comparable between weed con-
trol strategies on the conventional farm and marginally lower for robotic weeding
on the organic farm. On both farms, autonomous mechanical weeding used more
skilled labor due to routine supervision, field-to-field transport, and human inter-
vention requirements. Higher skilled labor time with robotics negatively affected
farmers’ work-life balance. Investment cost, supervision and human intervention
requirements, technology specialization, and logistics of field operations were iden-
tified as the main barriers to adoption of the tested weeding robot. These barriers
should be prioritized when developing future autonomous farm equipment.

Abbreviations: AWU, agricultural work unit; BaySL Digital, Bavarian Special Digital Agriculture Program; CAP, Common Agricultural Policy; CEI,
carbon emission intensity; CFT, cool farm tool; EU, European Union; FD20, FarmDroid FD20; HFH-MOLP, Hands-Free Hectare multi-objective linear
programming; ROLLMRT, return on operator labor, land, management and risk taking; SO, standard output.
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Plain Language Summary

This is the first study simultaneously considering economic, environmental, and
social implications of autonomous mechanical weeding. It compares autonomous
mechanical weeding with uniform herbicide spraying in conventional farming and
non-robotic mechanical weeding in organic farming. The comparison uses farm
profitability, carbon emission intensity of sugar beet production, and family labor
productivity for typical Bavarian farms. Results show that the tested technology has
a higher profitability than non-robotic mechanical weeding in organic sugar beet
farming but a lower profitability than herbicide spraying in conventional farming.
Robotic weeding has a lower beet carbon emission intensity on the organic farm,
but not on the conventional farm. Family labor time increases with robotic mechani-
cal weeding on both farms. The analysis identifies barriers to adopting autonomous

mechanical weeding that are relevant to farmers, researchers, technology developers,

and policymakers.

1 | INTRODUCTION

Weed control practices in agriculture are confronted by chal-
lenges such as growing herbicide resistance, a declining
availability of herbicide active ingredients, labor shortages,
frequent market shocks, environmental impact of herbicide
use, and a growing demand for food and ecosystem services
(Lytridis & Pachidis, 2024; Marchand, 2023; Shang et al.,
2023). These lead to conflicts among different farm-level and
societal goals. In conventional farming, weeds are usually
managed with herbicide spraying because of its low cost and
moderate labor requirements (Griffin & Lowenberg-DeBoer,
2017). Howeyver, this practice harms off-target species, con-
taminates the environment, and poses threats to farm workers
and food consumers (Jacquet et al., 2022; Machleb et al.,
2020; Pandey et al., 2021). On the other hand, organic farm-
ing relies on energy- and labor-intensive methods because
conventional herbicides are not allowed. This results in high
fuel consumption, soil erosion risk, seasonal labor availability
issues, and excessive workloads for farm operators (EURO-
STAT, 2024, Fishkis et al., 2024; Uehleke et al., 2024).
Innovative weed control technology is expected to enable a
transition to sustainable farming while mitigating these chal-
lenges (European Commission, 2021; Finger, 2023; Khanna
et al., 2022).

Crop robots relying on various weed control strategies
have been commercialized in recent years (Future Farm-
ing, 2025). Lytridis and Pachidis (2024) divide autonomous
weeding technologies into chemical and non-chemical meth-
ods, with the former including targeted herbicide spraying
and the latter being most frequently represented by mechan-
ical and laser weeding systems. These technologies mainly
identify weeding areas through machine vision, though

other approaches such as crop geo-referencing also exist
(Lytridis & Pachidis, 2024). In Europe, a widely used
weeding robot is the FarmDroid FD20 (FD20) manufac-
tured by FarmDroid ApS (Figure 1A) (Future Farming,
2025).

The FD20 is a solar-powered machine able to
autonomously sow fine-seed crops such as sugar beet (Beta
vulgaris L.) and conduct mechanical weeding (FarmDroid,
2025). It relies on real-time kinematic global navigation
satellite systems to guide operations throughout the season,
including weed detection. It is equipped with six 6-L seed
tanks and is capable of placing crop seeds with an accuracy
of 8 mm (FarmDroid, 2025) (Figure 1B). In autonomous
mechanical weeding mode, it uses weeding hoes for shallow
cultivation in the inter-row area (Figure 1C), weeding knives
moving in and out of crop rows to control weeds in the
intra-row area (Figure 1D), and weed-cutting discs sliding
on each side of the row for weeding the close-to-crop area
(Figure 1E) (FarmDroid, 2025). The FD20 has also recently
been equipped with an optional spot-spraying installation
capable of producing spray spots of 7 cm X 7 cm, specifi-
cally designed for conventional farmers seeking to reduce
herbicide use (FarmDroid, 2025) (Figure 1F). The FD20 was
first commercialized as a driverless industrial truck certified
under ISO 3691-4:2023 (Lowenberg-DeBoer et al., 2021a).
Among other guidelines, this standard imposes a speed limit
of 0.3 ms™! (1.08 km h~!) (ISO, 2023). Remote supervision
of the FD20 in agricultural fields is now allowed under the
European Union (EU) Machinery Regulation (European
Commission, 2023). However, operational malfunctions
(Maritan et al., 2023), transport among fields (Lowenberg-
DeBoer et al., 2021a), and other factors may result in high
human supervision and intervention requirements.
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FIGURE 1

(A) The FarmDroid FD20 seeding and weeding robot; (B) crop seeding; (C) inter-row weeding hoes; (D) intra-row weeding

knives; (E) close-to-crop weed cutting discs; (F) optional spot-spraying. Images are used courtesy of FarmDroid (2025).

The FD20 and its labor implications in German sugar beet
production have previously been subject of scientific inves-
tigation (e.g., Fishkis et al., 2024; Gerhards et al., 2023;
Rossmadl et al., 2023; Spykman, Kopfinger, et al., 2023;
Spykman, Rossmadl, et al., 2023). However, available anal-
yses have relied on partial budgeting methods and fixed
crop calendars, thus overlooking potential labor management
implications that may result from concurrent sugar beet field
operations or resource competition with other crops. Addi-
tionally, some of the previous FD20 studies assumed a low
number of robotic weeding passes (e.g., three and two passes
per year in Fishkis et al. [2024] and Shang et al. [2023],
respectively, compared to seven passes per year in Talola and
Ekman [2025]). This may have underestimated the labor costs
associated with this technology. Labor costs and management
are of particular importance when considering that labor input
reduction is one of the main drivers for adoption of crop robots
in agriculture (Spykman et al., 2021; Spykman, Kopfinger,
et al., 2023; Tamirat et al., 2023). Therefore, the objective
of this study is to estimate the whole-farm labor implica-
tions of autonomous mechanical weeding. Besides changing
farm labor costs and management, the adoption of technolo-
gies such as the FD20 may also affect crop yields. While
there is consensus that using the FD20 does not reduce sugar
beet yields through mechanical damage (Gerhards et al., 2023;

Kopfinger & Vinzent, 2021), the low operational speeds dur-
ing sowing and weeding may lead to late sugar beet planting
and increased weed competition. This is especially relevant
in regions where field access during sowing and weeding
months is constrained by adverse weather.

From an environmental perspective, adoption of weeding
robots is expected to provide benefits such as the mitigation
of greenhouse gas (GHG) emissions (Lytridis & Pachidis,
2024). Fishkis et al. (2024) found that FD20 mechanical weed
control generated GHG emissions comparable to herbicide
broadcast spraying but lower than non-robotic mechanical
weeding. Pradel et al. (2022) identified field-to-field trans-
port distance thresholds determining whether robotic weeding
in French vineyards reduced GHG emissions. The present
study enriches the discussion of GHG emissions of weeding
robots by also exploring farmer decisions when simultane-
ously considering economic and social priorities along with
environmental outcomes.

This analysis quantifies farmer preferences for the studied
weeding robot or conventional technologies through multi-
criteria analysis. The hypotheses are that (i) the FD20 is less
profitable than herbicide broadcast spraying on the conven-
tional farm but more profitable than non-robotic mechanical
weeding on the organic farm; (ii) treating weeds with the
FD20 leads to a lower carbon emission intensity (CEI) of

85U8017 SUOWWIOD BAIIe.D 3(gedlidde ay) Aq pausenob afe sejole YO ‘8sn JO Sa|NJ 10y AIq1T 8UIUO A8]IA UO (SUO N IPUCD-PUe-SWLBIW0D" A8 1M ARe.q 1 Bul JUO//:Sdny) SUORIPUOD pue sue L 8y 88s *[9202/T0/ET] uo ARiqitauliuo ABim ‘Aisieaiun swepy sedieH Aq 9v202 2 Be/z00T 0T/10p/uoo A8 1M Aelq 1 pul|uo'ssesde//sdny Woiy pepeojumod ‘9 ‘G202 ‘Sra0serT



MARITAN ET AL.

40f16 Agronomy Journal

sugar beet production on both farms; and (iii) the FD20 results
in a lower family labor productivity regardless of produc-
tion standard. The critical evaluation of these hypotheses
aims to inform farmers, researchers, technology developers,
and policymakers about potential trade-offs among economic,
environmental, and social goals and analyze farmer decision-
making implications when adopting autonomous mechanical
weeding.

2 | MATERIALS AND METHODS

2.1 | The Hands-Free Hectare
multi-objective linear programming model

Multi-objective analysis integrates incommensurable assess-
ment criteria in a single framework to provide scoring or
ranking of alternative farm technologies or practices. Such
frameworks are a useful tool to gauge economic, environ-
mental, and social impacts of adopting innovative agricultural
technology. Because the acceptance of these impacts may
differ depending on the orientation of farmers, multiple scor-
ings or rankings should be produced to represent differing
decision-maker profiles. In multi-objective analysis, this is
achieved by applying goal weights to define preferences based
on the level of importance of each impact type.

This study uses the Hands-Free Hectare multi-objective lin-
ear programming (HFH-MOLP) model developed as part of
the Digitalisation for Agroecology project (D4AgEcol, 2025).
This model is an expansion of the single-objective Hands-Free
Hectare linear programming model originally developed by
Preckel et al. (2019) and adapted by Lowenberg-DeBoer et al.
(2021b). It uses the goal-programming approach described
in Hazell and Norton (1986, p. 72) by measuring the devia-
tion from maximization or minimization goals specified for
each criterion. The HFH-MOLP model is run in the General
Algebraic Modeling System (GAMS Development Corpora-
tion, 2023). The HFH-MOLP model code is available in the
Supporting Information.

The assessed farm-level goals are maximum farm gross
return, minimum sugar beet CEI, and maximum family labor
productivity. Three decision-maker typologies are included
in this analysis. A profit-oriented farmer is assumed to
only prioritize maximum farm gross return. Conversely,
the environmentally and socially oriented farmers prioritize
noneconomic goals while ensuring farm business viability.
The environmentally oriented farmer places a weight of 30%
on minimum sugar beet CEI and 70% on maximum farm gross
return. The socially oriented farmer aims to optimize family
labor productivity besides farm gross return and is assumed
to place an importance of 30% and 70% on the social and eco-
nomic goals, respectively. Farmer typologies simultaneously
prioritizing economic, environmental, and social goals are not

included in the analysis because they appear to be uncom-
mon in Europe (Bartkowski et al., 2022). The three goals are
further described below.

The HFH-MOLP model objective function used in this
analysis is as follows:

Gy G, Gy
minG = w, <G_> + w, <1 - G_> + w; <G_) 1)
1 2 3

where G is the loss of farmer utility (or satisfaction) mini-
mized by the model by maximizing the achievement of the
goals prioritized by each decision-maker typology; wy, w,,
and w; are the weights respectively assigned to the economic,
environmental, and social goals; G™;, G », and G5 are vari-
ables quantifying the deviation from the goals; and G, G,,
and G; are the maximum and minimum goal values used to
normalize the achievement of each goal.

2.2 | Scenarios
This analysis models a conventional and an organic farm in
the German federal state of Bavaria. Farm size corresponds to
the Bavarian average of 36.9 ha (StMELF, 2023a), at which
a Bavarian farm has a 63% probability of being a part-time
business (StMELF, 2023b). The produced crops include sugar
beet (Beta vulgaris L.), soybean [Glycine max (L.) Merr.],
winter wheat (Triticum aestivum L.), corn (Zea mays L.), and
spring pea (Pisum sativum L.) plus a winter flower mix cover
crop succeeding winter wheat and spring pea. These crops
are arranged in two rotations typical for the case study region
and characterized by different degrees of diversification. The
modeled scenarios include two conventional and two organic
farming systems relying on different weed control strategies
for sugar beet (Table 1). On the conventional farm (Scenarios
1 and 2), the sugar beet crop is assumed to be of the Con-
viso Smart variety available in Germany since 2023 (LfL,
2022a). This variety is treated with two sprays of the Conviso
ONE herbicide commercialized by Bayer (2022). In Scenario
2, this herbicide is applied through spot-spraying at a reduced
rate per ha and complimented by eight passes of FD20 weed-
ing. In the non-robotic organic scenario (Scenario 3), sugar
beet weed control is conducted with three passes of non-
robotic mechanical weeding complemented by two passes of
manual weeding. In the organic FD20 scenario (Scenario 4),
13 passes of autonomous mechanical weeding are followed
by one pass of low-intensity manual weeding (Kopfinger &
Vinzent, 2021; Spykman, Kopfinger, et al., 2023). Crops other
than sugar beet are treated with herbicides on the conventional
farm and with non-robotic mechanical weeding on the organic
farm.

Each scenario is analyzed for a range of field sizes to assess
the effects of increased FD20 travel distances between fields.

85U8017 SUOWWIOD BAIIe.D 3(gedlidde ay) Aq pausenob afe sejole YO ‘8sn JO Sa|NJ 10y AIq1T 8UIUO A8]IA UO (SUO N IPUCD-PUe-SWLBIW0D" A8 1M ARe.q 1 Bul JUO//:Sdny) SUORIPUOD pue sue L 8y 88s *[9202/T0/ET] uo ARiqitauliuo ABim ‘Aisieaiun swepy sedieH Aq 9v202 2 Be/z00T 0T/10p/uoo A8 1M Aelq 1 pul|uo'ssesde//sdny Woiy pepeojumod ‘9 ‘G202 ‘Sra0serT



MARITAN ET AL.

Agronomy Journal 50f 16

TABLE 1 Overview of weed control strategies across scenarios.
Production
standard Scenario Sugar beet (inter-row area)
Conventional Scenario 1 Herbicide broadcast
Scenario 2 Mechanical weeding
(FarmDroid FD20)
Organic Scenario 3 Mechanical weeding (tractor
implement)
Scenario 4 Mechanical weeding

(FarmDroid FD20)

Fields are assumed to be rectangular, of equal size, and with a
width to length ratio of 1:4 (Jungwirth & Handler, 2022). The
baseline number of fields is estimated from the 1.74-ha mean
field size in Bavaria (Zenger & Friebe, 2015). Because aver-
age field size in Bavaria is increasing (StMELF, 2023a), the
model also tests two larger field sizes. The resulting number
of fields in each scenario is 20, 10 or 5. For consistency, field
size in the text is referred to as number of fields. Because of
the assumed fixed farm size, the number of fields is inversely
related to field size, that is, a larger number of fields is to be
interpreted as a smaller field size and vice versa.

2.3 | Economic goal

The economic goal is expressed as maximum annual farm
gross return. This is calculated as the sum of crop commod-
ity sales and agricultural subsidies received in a year minus
variable costs. For each scenario, the whole-farm plan options
include 24 rotations differentiated by land allocation pattern
and crop sowing and harvest times. Half of the rotations are 4-
year rotations of sugar beet, winter wheat, soybean, and winter
wheat, with the two winter wheat crops being succeeded by
a flower mix cover crop. The second set of rotations are 5-
year rotations producing sugar beet, soybean, corn, spring
pea, and winter wheat. In the 5-year rotations, winter cover
is achieved by planting a flower mix after winter wheat and
spring pea and by leaving stubble in the fields after corn.
The more diverse 5-year crop rotation is eligible for a wider
range of agricultural subsidies but results in higher opera-
tional complexity and a lower area allocated to sugar beet. The
subsidy eligibility of these two rotations under the EU Com-
mon Agricultural Policy (CAP) is described in Table S1. The
crop calendars used in the analysis can be requested from the
authors.

Selling prices (excluding value added tax) and yields for
conventional and organic crops sown and harvested at optimal
times are from the “LfL. Contribution Margins and Calcu-
lation Data” online application (LfL, 2024) (Table 2). Crop
yields are adjusted across rotations for suboptimal sowing
and harvest times and account for lower yields on field head-

Sugar beet (intra-row area)

Herbicide broadcast

Mechanical weeding (tractor implement)
+ manual weeding

Mechanical weeding (FarmDroid FD20)
+ manual weeding (low intensity)

Other crops (both areas)

Herbicide broadcast

Mechanical weeding + spot-spraying
(FarmDroid FD20)

Mechanical weeding (tractor
implement)

lands based on experimental data in Ward et al. (2020). These
yields may be considered conservative, representing all of
Bavaria rather than only regions dominated by sugar beet pro-
duction, which are usually characterized by high quality soil.
Consequently, crops in these regions produce above-average
yields and may lead to higher gross margins than estimated in
the present study, with possible effects also on crop rotation
choices. The optimal sugar beet planting period in Bavaria is
the second half of March (Achilles et al., 2020). Sugar beet
sown late in the first half of April is assumed to yield 10%
less based on expert advice. Sugar beet harvest times occur
from the second half of September to the first half of Novem-
ber. Yield losses for early sugar beet harvest range from 3%
to 9% depending on harvest time (Association of Franconian
Sugar Beet Growers, 2023).

Variable costs include manual weeding labor, fuel con-
sumption, seed, fertilizer, lime, herbicide, fungicide, insec-
ticide, water used in pesticide mixtures, plant growth regu-
lators, hail insurance, and custom-hiring fees for mechanical
cover crop termination, manure spreading, and crop harvest-
ing. Annual manual weeding times are assumed to be 144 h
ha~! in Scenario 3 (72 h ha=! pass™!) (Kopfinger & Vinzent,
2021) and 21.6 h ha~! in Scenario 4 (i.e., 30% of the time
assumed for one pass in Scenario 3) (Spykman, Rossmadl,
et al., 2023). The cost of hiring manual weeding labor is
€15.74 h™! (Achilles et al., 2020, p. 721). Typical for the
region, four seasonal workers are assumed to be available to
conduct manual weeding tasks. This assumption is further
explored via sensitivity testing to assess the extent to which
the FD20 may mitigate the impact of seasonal labor short-
ages. Fuel consumption is estimated with the online calculator
developed by the Agricultural Technology and Construction
Board (KTBL, 2024) and adjusted for field efficiency. The
latter is estimated based on Al-Amin et al. (2023). Fuel con-
sumption incurred during FD20 transport on public roads is
estimated by multiplying the total travel distance by 0.43 L
km~! (Achilles et al., 2020). Fuel price is assumed at €1.62
L~! based on the mean price between 2014 and 2024 in
Germany (Statista, 2024). The other variable costs included
depend on whether the farm is conventional or organic and
are available in Table S2.
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TABLE 2 Crop selling prices (€ ton™') and optimal yields (ton ha™') (LfL, 2024).

Conventional Conventional
Crop crop price crop yield
Sugar beet 47.96 82.23
Soybean 519.63 2.95
Winter wheat 255.78 7.17
Corn 247.98 9.77
Spring pea 269.08 2.60

After optimizing for farm gross return with the HFH-
MOLP model, return on total costs (i.e., including both
variable and fixed costs) is also estimated to assess the impact
of FD20 ownership on farm profitability. This is calculated by
deducting fixed costs from farm gross return and expressed as
return on operator labor, land, management, and risk taking
(ROLLMRT). Fixed costs are provided in Table S3. Annual
machinery costs are quantified for owned equipment based on
initial investment requirements depreciated over the machin-
ery useful lives provided in Achilles et al. (2020). This is
excluding the FD20, whose useful life is assumed to be 10
years (Fishkis et al., 2024; Shang et al., 2023; Spykman, Ross-
madl, et al., 2023). Because reliable useful life data for the
FD20 and similar robots are not yet available, this assump-
tion is further analyzed via sensitivity testing to explore the
economic effect of a shorter useful life as a consequence of
rapid technological change or intensive use of the robot. Based
on personal communication with the FD20 dealer in south-
ern Germany in August 2024, the purchase price of the FD20
is assumed to be €89,000 for the basic robotic system plus
€5,800 for a power bank. The latter is to ensure that the FD20
is able to work for up to 18 h day~! throughout the season. In
Scenario 2, the FD20 is equipped with a spot-spraying system
requiring an additional investment of €9,000. In the FD20 sce-
narios, €4,500 are also needed for purchasing a low-bed trailer
for public road transport. The assumed FD20 investment costs
are further explored in a sensitivity analysis to assess the
effects of purchase subsidy schemes such as the Bavarian Spe-
cial Digital Agriculture Program (BaySL Digital) (StMELF,
2024).

Lastly, sugar beet production costs with allocated oppor-
tunity cost of family labor are calculated to assess the
economic impact of unpaid family labor time. The farm oper-
ator is assumed to be employed off-farm part-time and to
work a maximum of 1,150 h year™! (i.e., 144 person-day
year‘]) (LfL, 2022b) (one person-day = 8 h). An addi-
tional family member is assumed to be available for the same
amount of time for support during peak times. Opportunity
cost of family labor is estimated by multiplying the €21
h~! permanent farm employee wage in Germany (Achilles
et al., 2020, p. 720) by the number of hours worked in
a year plus a 20% additional compensation for market-

Organic crop
price Organic crop yield
90.00 50.31
1019.17 2.65
478.26 3.97
405.96 5.95
562.20 1.99

ing and management (Lowenberg-DeBoer et al., 2021b).
Acquisition and management of seasonal workers as well
as FD20 field setup times are assumed to be remunerated
through this additional compensation. Modeling assumptions
related to labor and machine times are available in Table
S4 for the FD20 and in Table S5 for conventional tractor
implements.

2.4 | Environmental goal

The CEI of sugar beet production is estimated via the cool
farm tool (CFT) (Cool Farm Alliance, 2024a, 2024b) and
expressed in kgCO,eq per ton of sugar beet produced. The
CFT uses Tier 1 and Tier 2 methods developed by the
United Nations Intergovernmental Panel on Climate Change
for a wide range of agricultural outputs (Cool Farm Alliance,
2024b). The CFT accounts for GHG emissions generated by
fertilizer production and use, pesticide use, lime application,
machinery fuel and electricity consumption, and crop residue
production and management. Unlike methodologies such as
life cycle assessments, the CFT does not account for GHGs
emitted during manufacturing of farm equipment. Hence, the
sugar beet CEI values estimated in this study are to be inter-
preted as an underestimation in all scenarios because they
refer to only a part of the crop life cycle. CFT input values
are provided in Table S6. The key differences between FD20
and non-robotic weed control in terms of CEI are a reduced
herbicide use in Scenario 2 and electrification of seeding and
weeding tasks in sugar beet in Scenarios 2 and 4. In Sce-
nario 1, herbicide weed control is performed with two uniform
sprays of Conviso ONE at a rate of 0.5 L ha~! (Bayer, 2022).
In Scenario 2, 90% of this rate is assumed to be saved via
FD20 spot-spraying (Gerhards et al., 2023). Depending on
solar radiation intensity, the FD20 runs on a combination of
self-generated solar power and grid electricity stored in its
power bank. FD20 electricity consumption is calculated in
kWh ha~! by multiplying FD20 machine time per hectare (h
ha!) by its engine power (0.5 kW) (FarmDroid, 2025). The
CEI of FD20 electricity consumption is calculated using CFT
default values for photovoltaic grid electricity, which include
embedded emissions of production.
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2.5 | Social goal

The attribution of a social value to innovative agricultural
technology as a function of farmers’ work-life balance is
inspired by the pioneering work of Dalziel et al. (2018)
on wellbeing economics. Based on the four definitions of
time described in Dalziel and Saunders (2014), farm opera-
tor’s work-life balance is intended as a desirable proportion
between contracted time (i.e., time spent on work activities)
and other time. Because this concept is highly subjective,
the present analysis relies on an indicator for family labor
productivity that, regardless of its absolute value, could be
assumed to be a proxy for improved farm operators’ work—life
balance in the case a weed control strategy generated a rela-
tively higher value. Family labor productivity in sugar beet
is measured using the Sustainable Development Goal indica-
tor 2.3.1 expressed as commodity standard outputs (SOs) per
agricultural work unit (AWU) (UN Statistics Division, 2024).
Commodity SOs and AWUs are respectively expressed in €
ha~! and person-day year~! based on 5-year mean reference
values provided by EUROSTAT for Bavaria (EUROSTAT,
2020a, 2020b). AWUs only account for family labor input
because seasonal worker time does not directly influence the
work-life balance of the farm operator. Labor productivity is
estimated using the following equation:

_( so AWU
lp B (Soref > / <AWUref > (2)

where Ip is the mean family labor productivity per hectare
of sugar beet (SO AWU™! ha~!); SO is sugar beet standard
output calculated by multiplying yield (ton ha~!) by selling
price (€ tonne™!); SO, is the standard output reference value
for sugar beet produced in Bavaria (€2,528.52 ha~!) (EURO-
STAT, 2020a); AWU is the family labor time required to
cultivate 1 ha of sugar beet (person-day ha=!); and AWU
is the annual work unit reference value across all economic
sectors in Germany (225 person-day year~™') (EUROSTAT,
2020b).

3 | RESULTS

3.1 | Farm profitability

Economic returns by scenario and number of fields are pro-
vided in Table 3. Farm gross return is higher in the FD20
scenario on both farm types regardless of number of fields.
On the conventional farm, the FD20 spot-spraying scenario
generates a 1%—2% higher farm gross return compared to
its herbicide broadcast counterpart. The difference gradually
grows with the number of fields, indicating that autonomous
mechanical weeding gains a higher economic advantage
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over conventional herbicide spraying despite increased FD20
transport time. This is also regardless of the 20-field case in
Scenario 2 undergoing late sugar beet planting on a larger
area compared to farms characterized by a lower number of
fields (Table 4). This is because the impact of an increased
number of fields on sugar beet planting times is even more
significant in Scenario 1, resulting in a favorable outcome for
Scenario 2. In conjunction with land allocation implications,
Scenario 2 is characterized by 90% herbicide savings enabled
by spot-spraying and by a reduction of 2%-3% in fuel con-
sumption (Table S7). The latter is the consequence of fuel
savings in sugar beet sowing and weeding operations exceed-
ing the additional fuel required for transporting the FD20
between fields.

On the organic farm, reliance on FD20 mechanical weeding
(Scenario 4) generates gross returns that are 23%—-24% higher
compared to Scenario 3. Like on the conventional farm, an
increased number of fields leads to a higher economic advan-
tage in the scenario adopting the FD20. This is influenced by
fuel savings of 18%—20%, crop rotation allocation, and lower
manual weeding time. Additionally, the sensitivity analysis
shown in Figure S1 indicates that optimal farm gross return in
the FD20 organic scenario is preserved even when only two
seasonal workers are available as compared to the four sea-
sonal workers assumed in the baseline analysis. This is not the
case in the non-robotic mechanical weeding scenario, where
up to 70% of farm gross return is lost.

As shown in Figure 2, Scenario 2 retains the more diverse
five-crop rotations regardless of number of fields, prioritizing
eligibility for the K32 and OR2 payments described in Table
S1. This results in a constant total sugar beet cultivation area
on the conventional farm. On the other hand, the organic farm
allocates sugar beet to different extents depending on number
of fields and weeding strategy. While the five-crop rotations
allocate sugar beet to 20% of the land and receive the OR2
payment besides other agricultural subsidies, the three-crop
rotations allocate a wider area to sugar beet (25%) but are not
eligible for the OR2 payment. Consequently, when the num-
ber of fields is higher, the whole-farm plan favors a reduction
in sugar beet cultivation to enable more diverse crop rotations
eligible for the OR2 payment. Conversely, adopting the FD20
on farms characterized by fewer fields results in more land
being allocated to sugar beet and a lower crop diversification
overall. The organic farm in the 5-field case benefits from
lower manual weeding labor costs, fuel savings, and higher
sugar beet sale revenue, which can compensate for a reduced
OR2 payment.

Although gross return is always higher in the FD20 scenar-
i0s, the cost of this technology negatively affects ROLLMRT
in conventional farming (Table 3). Adopting the FD20 to
replace herbicide spraying on the conventional farm reduces
gross return by 125%-141%, pushing ROLLMRT from a
modest profit to negative. The opposite occurs on the organic
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TABLE 3 Farm gross return (€ year~') and return on operator labor, land, management, and risk taking (ROLLMRT) (€ year™") for a 36.9 ha
Bavarian farm.

Farm gross return (no. of fields) Return on operator labor, land, management and risk taking (no. of fields)
Scenario 20 10 5 20 10 5
Scenario 1 56,825 57,881 58,478 7760 8816 9412
Scenario 2 58,189 58,636 59,011 -3172 -2726 —2351
Scenario 3 58,467 59,345 59,715 6869 7746 8117
Scenario 4 72,439 73,157 73,698 9714 10,432 10,973

TABLE 4 Annual sugar beet cultivation area (ha) by sowing time.

Scenario 1 (no. of fields) Scenario 2 (no. of fields) Scenario 3 (no. of fields) Scenario 4 (no. of fields)
Sowing time 20 10 5 20 10 5 20 10 5 20 10 5
Optimal sowing 4.8 6.5 7.3 4.7 4.8 5.0 6.5 7.4 7.4 4.7 4.8 5.0
Late sowing 2.6 0.9 0.1 2.7 2.6 23 0.9 0.0 0.0 33 4.0 4.0
Total area 7.4 7.4 7.4 7.4 7.4 7.4 74 7.4 7.4 8.0 8.8 9.0
Scenario 1 Scenario 2 Scenario 3 Scenario 4

23.5ha

32.6ha

24.1 ha

20 fields

12.8 ha 13.4 ha

10 fields

36.4 ha 25.2ha,
5 fields
0.5 ha 11.7ha
S-crop rotation, optimal S-crop rotation, late 3-crop rotation, optimal . 3-crop rotation, late
. sugar beet planting D sugar beet planting D sugar beet planting . sugar beet planting

FIGURE 2 Crop rotation allocation by scenario and number of fields. Available land is not allocated to rotations characterized by early sugar

beet harvesting in any of the scenarios.

farm, where ROLLMRT in Scenario 4 is 35%—41% higher TABLE 5 Sugar beet production costs (€ ton~!) with allocated
than in non-robotic mechanical weeding. This indicates that ~ opportunity cost of family labor.

the organic farm can absorb the additional fixed costs result- No. of fields
ing from FD20 adoption. Whole-farm budgets by scenario are St 20 10 5
provided in Tables S7 and S8 for the conventional and organic Scenario 1 341 331 6
farms, respectively. , . . Scenario 2 356 352 349
When opportunity cost of family labor is taken into i

. . Scenario 3 70.7 69.5 69.1

account, adopting the FD20 leads to higher sugar beet produc-
Scenario 4 72.7 73.0 72.7

tion costs on both farms (Table 5). The increases in sugar beet
production costs were 4%—7% on the conventional farm and
3%—5% on the organic farm. The higher sugar beet produc-
tion costs after FD20 adoption are mainly due to the cost of the
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TABLE 6 Mean sugar beet carbon emission intensity (kgCO, eq
ton™!).
No. of fields
Scenario 20 10 5
Scenario 1 36.6 36.1 35.8
Scenario 2 36.3 36.1 35.9
Scenario 3 34.0 33.6 334
Scenario 4 33.0 329 32.7

technology and increased opportunity cost of family labor. On
the organic farm, the savings in manual labor are higher than
the increased opportunity cost of family labor, thus explaining
the smaller sugar beet production cost increases.

The effects of an investment subsidy for the FD20 on farm
competitiveness compared with Scenarios 1 and 3 are shown
in Table S9. These results indicate that, for the conventional
farm, a 40% investment subsidy leads to economically com-
petitive sugar beet production costs only in the 20-field case,
while a subsidy of 50% is required in the 10- and 5-field cases.
On the organic farm, a 30% subsidy is sufficient for the 20-
field case, but a 60% subsidy is required in the 10- and 5-field
cases. For conventional and organic farms characterized by
a lower number of fields, subsidies of 40% are economically
competitive only if the FD20 useful life is longer than the 10
years assumed in this study.

3.2 | CEI of sugar beet production

Sugar beet CEI estimates show comparable results on the con-
ventional farm and a minor CEI reduction on the organic farm
when using the FD20 (Table 6). The CEI in Scenario 2 is
0.9% lower than in Scenario 1 in the 20-field case, but 0.4%
higher in the 5-field case. In the 10-field case, the sugar beet
CEI in Scenarios 1 and 2 are equivalent. This is because of
the much greater extent of late sugar beet planting in Sce-
nario 2 compared to Scenario 1 when the number of fields
is small, leading to sugar beet yield losses and consequently
higher GHG emissions per ton of crop produced at constant
agricultural inputs. Regardless of the number of fields, herbi-
cide use emissions are close to negligible on the conventional
farm. Thus, the 90% herbicide savings in Scenario 2 are not
an important factor for reducing the CEI of sugar beet.

On the organic farm, adoption of the FD20 leads to minor
sugar beet CEI benefits for all field layouts considered. The
20-field case generates the highest CEI reduction (—2.9%).
Like on the conventional farm, the CEI variability across num-
ber of fields results from the interactions between average
sugar beet yield and fuel consumption. However, in this case,
the more substantial fuel savings in the FD20 scenario com-
pensate for the lower sugar beet yields regardless of number of
fields. This is because of the higher fuel consumption of non-

TABLE 7 Mean family labor productivity in sugar beet
production (SO AWU~! ha™').

No. of fields

Scenario 20 10 5

Scenario 1 716 743 774
Scenario 2 136 145 152
Scenario 3 466 487 510
Scenario 4 106 112 117

robotic mechanical weeding compared to herbicide spraying
on the conventional farm.

CElIs of sugar beet production by emission component are
shown in Table S10. The main contributor to sugar beet CEI
is emissions from crop residue due to the high global warm-
ing potential of N,O. The second most important component
is fertilizer production and use on the conventional farm and
fuel consumption on the organic farm. The CEI contribu-
tion associated with photovoltaic electricity used by the FD20
and emissions from plant protection products are close to
negligible.

3.3 | Family labor productivity

Family labor productivity per ha of sugar beet is lower
when adopting the FD20 regardless of production standard
and number of fields (Table 7). In the FD20 spot-spraying
scenario, family labor productivity decreases by 80%—81%
compared to herbicide broadcast spraying. Using the FD20
in Scenario 2 requires 2.22-2.46 person-day ha~! for sugar
beet depending on the number of fields, while Scenario 1 only
absorbs 0.45-0.47 person-day ha~!. This increase is mainly
due to the additional false sowing pass required to prepare the
seedbed before FD20 sowing and the eight weeding passes in
Scenario 2 compared to only two passes of herbicide broad-
cast spraying in Scenario 1. Besides, conventional equipment
travels at a substantially higher speed than the FD20 during
sowing and weeding.

On the organic farm, labor productivity values drop to a
slightly lower extent in the FD20 scenario (—=77%). In this
case, family labor time in sugar beet is 0.79-0.84 person-
day ha™! in the non-robotic mechanical weeding scenario
and 3.26-3.63 person-day ha~! in the FD20 organic scenario
depending on number of fields. In Scenario 3, the majority
of labor input per ha is allocated to hired manual weeding
(18 person-day ha!). In Scenario 4, only 2.7 person-day ha™"
are needed for hired manual weeding, but substantially higher
family labor time is required for FD20 tasks. These include
13 FD20 weeding passes compared to the three mechanical
weeding passes in Scenario 3. Total labor input in sugar beet
is lower in Scenario 4 because the time savings in hired man-
ual weeding exceed the additional family labor to manage
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TABLE 8 Overview of scenario utility percentages for the production-oriented farmers, environmentally, and socially oriented farmers.
Production-oriented (no. of fields) Environmentally oriented (no. of fields) Socially oriented (no. of fields)
Scenario 20 10 5 20 10 5 20 10 5
Scenario 1 98% 99% 99% 71% 72% 72% 97% 99% 99%
Scenario 2 100% 100% 100% 73% 73% 73% 76% 76% 76%
Scenario 3 81% 81% 81% 59% 59% 59% 86% 87% 87%
Scenario 4 100% 100% 100% 73% 73% 73% 77% 77% 77%
160.0 9359 358 is partially compensated by the increased farm gross returns;
= i:gg ‘ hence, the utility loss of the socially oriented farmer on the
2 100.0 organic farm is approximately half of that on the conventional
g ;‘gg Slo 535 539 farm. The number of fields does not affect preferences for any
E 400 A ——— of the farmer typologies considered.
20.0

0 35 34 33
woas s gpged o d B

FLFIFLFLTSLSSTLETLSSLSS (&\&
N i N i N N ) '\? O i)

B Family labor 1 Hired manual weeding labor

FIGURE 3 Total labor times for sugar beet cultivation.

the FD20. However, hired manual weeding labor time does
not affect the family labor productivity indicator; hence, the
outcome of the social goal is also negative in Scenario 4. Total
labor times for sugar beet cultivation are provided in Figure 3.

3.4 | Utility by farmer typology

Farmer utilities for the tested weed control strategies are pro-
vided in Table 8. Preferences between non-robotic and FD20
weed control in sugar beet are comparable for production-
and environmentally oriented farmers on the conventional
farm, though FD20 scenarios generate slightly higher utili-
ties because of a greater gross return and a lower sugar beet
CEI in most cases. Conversely, production- and environmen-
tally oriented farmers obtain substantially greater utility when
adopting the FD20 on the organic farm. In this case, the
FD20 is strongly preferred because of the improved economic
performance enabled by fuel and manual weeding savings
in Scenario 4. For the environmentally oriented farmer, the
minor sugar beet CEI benefits are not an important factor
as indicated by the lower utility achieved compared to the
production-oriented farmer. Socially oriented farmers prefer
non-robotic weeding on both farms when their objective is
measured in terms of family labor productivity. Significant
utility differences occur for the socially oriented farmer on
the conventional farm because of a much lower labor produc-
tivity of sugar beet when relying on the FD20 system. On the
other hand, the lower family labor productivity in Scenario 4

4 | DISCUSSION

This study hypothesized that FD20 use in sugar beet would
generate a lower profit on a conventional farm but a higher
profit on an organic farm. When fixed costs are excluded,
this hypothesis is rejected because FD20 adoption generates
a higher gross return on both farm types, especially when
the farm is characterized by a high number of fields. This
contradicts the finding by Jungwirth and Handler (2022) that
farms with larger fields would be more likely to adopt crop
robots. Rather, in the present analysis, longer travel distances
increased variable costs to a relatively higher degree on the
farm using non-robotic weeding, thus favoring adoption of
crop robots on farms with smaller fields. However, if tech-
nology costs are taken into account, the results support the
first study hypothesis because of substantially lower and neg-
ative returns on total costs on the conventional farm, but not
on the organic farm. This is a barrier to FD20 adoption in
conventional farming that will be difficult to mitigate con-
sidering the dependency of average-sized Bavarian farms on
CAP payments (see Table S7). If autonomous mechanical
weeding of sugar beet was incorporated in a more multifunc-
tional technology, it could enable conventional farmers to save
on herbicides and fuel without substantially increasing annual
machinery costs. Alternatively, the period of active utilization
of the FD20 in a year could be expanded by deploying it in
suitable winter crops (e.g., Gerhards et al., 2023) or through
shared ownership (Jorissen et al., 2025; Spykman et al., 2021).

On the organic farm, FD20 adoption could produce eco-
nomic benefits even if the technology was only used in sugar
beet and assumed to be fully owned. This finding is in line
with Shang et al. (2023), who showed that organic farms
are able to absorb a higher maximum acquisition value of
weeding robots compared to conventional farms. Neverthe-
less, both conventional and organic farms would be penalized
by higher sugar beet production costs, which could be reduced
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through investment subsidies such as the 40% of FD20 own-
ership offered through the BaySL Digital program in Bavaria
(Spykman & Gabriel, 2023). However, it must be noted that
the specific subsidy amount to make the FD20 as compet-
itive as conventional weed control would depends on the
FD20 useful life (Table S9). At the assumed useful life of
10 years, subsidies higher than 40% of FD20 ownership costs
may be required depending on farm layout. Considering that
the useful life of the FD20 may be shorter than what has
been assumed in this study due to technical obsolescence and
potentially more intensive use, investment subsidies may not
be sufficiently effective from an economic perspective. Col-
lecting reliable data on the useful life of the FD20 and other
weeding robots is a research gap requiring further attention
for appropriate tailoring of such subsidies in the future.

An important factor negatively affecting sugar beet pro-
duction costs and family labor productivity is the increase in
farm operator labor time in the field. These findings identify
another important barrier to FD20 adoption, especially for
socially oriented farmers and conventional farms. However,
it is important to highlight that the adoption of autonomous
mechanical weeding not only increases family labor time, but
also changes what is being done during that additional time.
Depending on farmers’ preferences, crop robot supervision
may be a more pleasant task than hiring and managing manual
weeding labor. This could be an advantage for certain farmer
profiles which the family labor productivity indicator used in
this study did not capture. Besides, on the organic farm, the
assumption that FD20 weeding requires a total of 13 passes is
based on recommendations by the FD20 dealer in Germany,
but farmers may choose to give up some weeding passes. This
may especially be the case for farms characterized by a high
number of fields seeking to minimize field-to-field transport.
However, reducing FD20 weeding intensity may lead to lower
weed control efficacy and consequently higher manual weed-
ing costs or yield losses when manual labor is unavailable. As
one of the sensitivity analyses indicated, an intensive use of
the FD20 in conditions of seasonal labor scarcity may provide
significant gross return benefits. Therefore, socially oriented
farmers may prefer to trade-off their time and conduct inten-
sive FD20 weeding to retain higher gross returns when manual
labor is scarce.

The second hypothesis of this study was that adopting the
FD20 would lead to lower sugar beet CEIs on both farms.
Results indicate that the potential for lower GHG emissions
per ton of sugar beet produced may depend on the number
of fields, and that CEI reductions may be close to negligible
even when they are achieved. The degree of late sugar beet
planting as a result of machine time bottlenecks during sowing
was a more important factor than herbicide and fuel savings in
Scenario 2. These findings are in contrast with Fishkis et al.
(2024), who estimated that using the FD20 combined with
spot-spraying in conventional sugar beet generated 5% lower

GHG emissions than uniform herbicide spraying. Besides,
neither the present study nor Fishkis et al. (2024) accounted
for emissions of GHGs stored in soil resulting from mechani-
cal weeding action. Therefore, the CEI of sugar beet managed
with FD20 spot-spraying might be even higher than estimated.
On the organic farm, despite a considerable portion of sugar
beet being planted late, the FD20 led to sugar beet CEI reduc-
tions regardless of the number of fields because it replaced
energy-intensive non-robotic mechanical weeding. On both
farms, however, a large portion of GHGs emitted from sugar
beet farming originated from crop residue and fertilizer use, as
also highlighted in Trimpler et al. (2016). Thus, non-herbicide
weed control is not a sensible lever for GHG emission and CEI
reductions.

CEl is only one of the available indicators to assess the envi-
ronmental impact of weed control. An example that could be
considered in future research is the effect of robotic weeding
on crop biodiversity. On the organic farm, sugar beet area allo-
cation was constant in Scenario 3 but increased with a lower
number of fields in Scenario 4 (Table 4). This finding aligns
with previous claims that technologies developed for a limited
range of crops such as the FD20 may have a negative impact
on in-field biodiversity by encouraging crop intensification
and farm specialization (Lioutas et al., 2021). However, this
study adds that this may depend on structural and farm man-
agement factors such as the spatial distribution of fields and
production standard. The conventional farm modeled in this
study, for example, adopted a crop rotation that was equally
diverse in Scenarios 1 and 2, thus showing no tendency to
reduce crop biodiversity. Additional environmental indicators
to be tested may include the effect of FD20 use on soil phys-
ical properties (e.g., Bruciené et al., 2022, 2025) or reduced
soil compaction as a consequence of lower equipment weight
(e.g., Lagnelov et al., 2023). Given that purchase subsidies
with taxpayer money such as the BaySL Digital would require
the generation of public goods by the subsidized technol-
ogy, impact evaluation for the FD20 and other innovations
related to a wide range of environmental indicators should be
explored.

Crop robots are often expected to provide benefits such
as increased profitability, improved environmental outcomes,
and reduced labor inputs (Campi et al., 2024; Spykman et al.,
2021; Tamirat et al., 2023). In this analysis, the first and sec-
ond benefits depended on production standard, farm layout,
and whether economic performance accounted for fixed costs,
while the third benefit was true for hired manual workers in
organic farming but not for family labor on any of the farms.
On the conventional farm, the main barriers were technology
cost, low operational speeds, and technology specialization,
which made it difficult to compete with labor- and cost-
efficient weed control strategies such as herbicide broadcast
spraying. By adopting the FD20, socially oriented farmers
managing a conventional farm would face a 393%-426%
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increase in family labor time in the field as well as substan-
tial losses of return on total costs. On organic farms, the
FD20 provided some economic and environmental benefits,
though socially oriented farmers would also be challenged
by increased family labor input. An important finding is that
the relative economic performance of conventional versus
organic farming measured as return on total costs was inverted
after FD20 adoption, thus making the latter more attractive to
production-oriented farmers. This may encourage the conver-
sion of conventional farmers to organic agriculture, especially
considering the mitigation effects that FD20 adoption has on
seasonal labor shortages for manual weeding.

These results are tailored to Bavarian farms and may
only be representative of other European regions character-
ized by comparable agricultural practices, farm structures,
crop prices, and production costs. Moreover, the FD20
and autonomous mechanical weeding are only one of the
potential solutions to improve the profitability and environ-
mental impact of weed control. Further research is needed
to conduct multi-criteria comparisons across the range of
available weeding technologies. Other approaches such as
targeted herbicide spraying via machine vision as well as
nonchemical methods including electric, laser, and ther-
mal weeding are also commercially available and require
further investigation (Future Farming, 2025; Lytridis &
Pachidis, 2024; Vijayakumar et al., 2023; Wei et al., 2010).
Nevertheless, some of the implications identified for the
FD20 system may also apply to other weeding robots.
For example, smaller self-propelled equipment operated in
swarms could optimize machine downtime and overcome
speed constraints when sufficiently reliable. Alternatively,
retrofit kits could be used to convert conventional tractors
to autonomous machinery that would utilize common imple-
ments without the need to invest in specialized weeding
robots.

This analysis has two major limitations. First, the CEI
indicator did not consider FD20 manufacturing emissions
(e.g., Fishkis et al., 2024; Pradel et al., 2022). While the
material composition of modern tractors may not substan-
tially differ from that of specialized weeding robots (e.g., see
Pradel et al., 2022), tractor ownership is still required in sugar
beet managed with the FD20. Therefore, FD20 manufactur-
ing emissions should be considered in future research, which
could possibly negate the CEI benefits encountered in some
of the scenarios assessed in this study. Second, the HFH-
MOLP model does not currently incorporate weed ecology
parameters. Weed species, infestation intensity, and spatial
distribution are important variables in determining the effi-
cacy, economic performance, and environmental impact of
practices such as mechanical weeding (Slaughter et al., 2008;
Yu et al., 2024). For example, because weed infestations tend
to be distributed non-uniformly, nonselective FD20 mechan-
ical weed control may become particularly disadvantageous

in conditions of low weed infestation or high in-field spatial
variability (Slaughter et al., 2008). However, studies assessing
robotic weed management via economic-environmental mod-
els accounting for weed population dynamics often focus on a
single weed species and one herbicide active substance (e.g.,
Yu et al., 2024). This is because modeling weed population
dynamics, herbicide resistance development, and interac-
tions with mechanical weed control requires a vast amount
of localized data (Yu et al., 2024). Consequently, focusing
on individual weed species and herbicides while relying on
highly localized data would make results less representative
of wider farm categories.

S | CONCLUSIONS

This multi-criteria analysis modeled a conventional and an
organic general cropping farm located in Bavaria, Germany.
Economic, environmental, and social implications of adopt-
ing the FD20 weeding robot were investigated by quantifying
gross return and return on total costs, sugar beet produc-
tion costs, sugar beet CEI, and family labor productivity.
The use of autonomous mechanical weeding was compared
to conventional herbicide broadcast spraying and non-robotic
mechanical weeding for a range of farm layouts and for three
representative decision-maker typologies.

Results showed that FD20 adoption in conventional farm-
ing would be more profitable than conventional herbicide
spraying thanks to herbicide and fuel savings, but not if fixed
costs were taken into account due to high FD20 investment
requirements. Additionally, using the FD20 led to a substan-
tial increase in family labor input and to higher sugar beet
production costs.

On the organic farm, the FD20 was more profitable than
non-robotic weeding also after accounting for fixed costs
because of considerable savings in manual weeding labor and
fuel consumption. These cost reductions compensated for the
high ownership cost of the FD20 system. However, a substan-
tial increase in family labor input was also encountered on
the organic farm, thus leading to higher sugar beet production
costs compared to non-robotic mechanical weeding.

On both farms, CEI benefits were relatively slim and lower
than what has been estimated in other studies. An increased
travel distance during field operation was not an important
factor affecting GHG emissions per ton of sugar beet produced
while deploying the FD20. Rather, more frequent late sugar
beet planting as a result of machine time bottlenecks during
sowing in the FD20 scenarios was an important contributor.
This research also pointed to the need to explore a wider range
of environmental indicators, especially considering that tech-
nologies such as the FD20 are being partially subsidized with
taxpayer money and should therefore be proven effective in
generating public goods.
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The variability in economic, environmental, and social per-
formance of the FD20 compared to conventional weed control
led to different farmer preferences depending on their personal
orientation. At its current development stage, the FD20 is
more desirable for production- and environmentally oriented
farmers and in organic rather than in conventional agriculture.
On the other hand, socially oriented farmers who measure
their goal by family labor productivity should consider adopt-
ing technologies that can travel faster and require less frequent
human intervention or retain current conventional practice.

The main barriers to FD20 adoption identified were the
high technology cost when the FD20 was used as a specialized
crop robot focused on a single crop and individually owned
by the farmer; a lack of consistent and substantial benefits for
farmers seeking to reduce GHG emissions per ton of crop pro-
duced; and the considerably higher family labor input required
to supervise the FD20. With the entry into force of the EU
Machinery Regulation, it will be essential to collect empiri-
cal data to corroborate these findings and mitigate adoption
barriers through schemes favoring multi-purpose equipment,
shared ownership, or alternative business models, as well as
environmentally friendly, efficient, and reliable technology.
Future comparison among multiple innovative weed control
technologies will also be important to encourage technol-
ogy developers to compete in the direction of sustainable
farming.

The findings of this multi-criteria analysis are applicable
to Bavaria and other European regions characterized by com-
parable agricultural practices, farm structures, crop prices,
and input costs. For other regions of the world where regu-
lation is less stringent or where labor has a lower opportunity
cost, other adoption barriers may be more relevant. Like-
wise, larger and less diverse European farms may achieve
economies of scale sufficient to compensate for the high cost
of the FD20 and specialized weeding technology in general.
However, based on the results of the present analysis, it can
be concluded that factors such as multifunctionality, relia-
bility, and logistics of field operation are important aspects
to consider for farmers adopting weeding robots and other
autonomous equipment.
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