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Abstract—Collision avoidance is crucial for autonomous
navigation systems. Many studies have addressed obstacle
avoidance for single unicycles and car-like vehicles in on-road
conditions. In this work, we extend the scope to generalised
N-trailer vehicles, comprising a single active segment pulling
multiple trailers. Unlike approaches that treat obstacles as
hard constraints, we model them as soft constraints using
Gaussian functions. This method maintains the convexity of
the search space, reducing computational demands. However,
the regions occupied by obstacles remain feasible. Thus, the
Gaussian function’s amplitudes need to be carefully chosen
to discourage navigation through these areas. Moreover,
closed-loop stability is guaranteed by generating auxiliary
references when the nominal path is occluded. The efficacy
of this approach is demonstrated through simulated and
field experiments with a tractor pulling two trailers. These
experiments show the method’s capability to navigate around
obstacles efficiently while maintaining computational efficiency,
validating its practical applicability. Videos of the experiments
and the implemented algorithms are available at https:
/lusmcl-my.sharepoint.com/:f:/g/personal/nestor_deniz_usm_cl/

EtU54g1NesINhD8V7dAeu20B0umnQad4FKiMIzThkTAXYvg?e=
swEXwg. Despite the success in real-time implementation, more
research is needed to address the open questions discussed at
the end of this article.

Note to Practitioners—This work focuses on implementing ob-
stacle avoidance for a kind of vehicles widely used in agriculture,
mining, luggage transportation, and industry. A LiDAR Velodyne
VLP16, configured with its lowest rotation speed for denser point
clouds, is used to scan the environment. Proper attachment of the
LiDAR to the tractor’s body minimises vibration and azimuth
movements, ensuring accurate obstacle detection. Obstacles are
modelled as Gaussian functions to maintain the convexity and
optimise computational efficiency. The Gaussian function’s ampli-
tude should be set high enough to effectively avoid collision when
density of obstacle is high. The framework uses a control horizon
N. and a prediction horizon /N, beyond the control to anticipate
obstacle’s position. However, a large prediction horizons N, is
not advised when the the model of the dynamic of the obstacles
is not accurate.

Index Terms—N-Trailers vehicles; Obstacle avoidance; Nonlin-
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Fig. 1: General scheme representing the proposed framework. The Global Path Planner Module generates a path free of
obstacles. The environment is scanned with a LiDAR in search of objects that occlude or may occlude the path in the near
future. The Local Path Planner Module generates an auxiliary and reachable reference when the nominal path is occluded.
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I. INTRODUCTION

-TRAILER or chained vehicles are a popular choice in
Ntransportation due to their versatility, allowing them to
transport variable payloads using a single tractor. According
to the hitching type, the N-trailer vehicle is classified into
Standard N-Trailer (SNT), non-Standard N-Trailer (nSNT),
and Generalised N-Trailer (GNT) vehicles [?], with GNT
being the most flexible configuration. Figure 1 shows a chained
vehicle together with the scheme of the proposed framework.

The use of chained vehicles finds multiple applications in
diverse environments, such as airports, agricultural, industrial,
and mining. These environments are structured environments,
and usually, the vehicle has to follow a predefined path
or trajectory. Achieving accurate path-following of chained
vehicles is challenging, especially when the guided vehicle is
the last trailer and the path is highly curved. Compensation for
the negative effect of the path curvature during the turning of
the trailers by using an observer-based proportional-integral-
derivative (PID) controller is proposed in [?]. A controller
consisting of four control loops is presented in [?], where each
loop addresses different challenges commonly encountered
when controlling N-trailer vehicles, such as tracking errors,
model uncertainties, unmeasured states, external disturbances,
nonlinear effects and saturation of the actuators.

Accurate control of N-trailer vehicles is a challenging
task and it becomes stronger when obstacles are prone to
appear during the travel. Therefore, obstacle avoidance is of
paramount importance to achieve safe autonomous navigation.
The vehicle has to avoid any possible static and dynamic
obstacles while it deviates as minimum as possible from the
predefined path. Obstacle avoidance for grounded and aerial
vehicles, a combination of both, as well as multiple vehicles,
have been addressed in the literature. However, the case of
chained vehicles with an arbitrary number of passive trailers
has received less attention.

To fill this gap, in this work, we introduce a novel Non-
linear Model Predictive Path-Following Controller (NMPPFC)
designed for Generalised N-Trailer vehicles operating in struc-
tured environments where static and dynamic obstacles are
prone to appear. The vehicle’s vector state takes into ac-
count the coordinates in the plane of every segment within
the chain to easily compute the distance to obstacles. The
environment is scanned with the help of a LiDAR to find
possible obstacles that may occlude the path. This method
differentiates itself from others, such as the Artificial Potential
Field (APF) method, by incorporating a predictive model
that anticipates the future positions of dynamic obstacles and
adjusts the vehicle’s path accordingly. The NMPPFC leverages
optimisation techniques to maintain stability and feasibility
while navigating complex environments with both static and
dynamic obstacles by properly designing the objective func-
tion. Additionally, the use of a Local Path Planner Module
aims to avoid being trapped in local minima, a common issue
in APF methods in complex environments.

The key contributions of this work can be summarised as
follows: i) obstacles are modelled as Gaussian functions that

enter the NMPPFC optimisation problem, remaining convex
the search space for the optimisation solver, ii) multiple static
and dynamic obstacles can be handled within the NMPPFC
formulation where future position of dynamic obstacles is
predicted, iii) stability and recursive feasibility are analysed
for the NMPPFC by a condition that is linked to the vehicle’s
controllability property, iv) several simulated and field experi-
ments demonstrated the effectiveness of the proposed method
and its real-time applicability.

The remainder of this article is structured as follows:
Section II reviews related work on the different methods
and techniques developed for obstacle avoidance in differ-
ent scenarios. In Section III, we specify the model of the
Generalised N-trailer vehicle and elaborate on the problem of
obstacle avoidance for this kind of vehicle. Section IV presents
a comparative analysis of our formulation under different
scenarios of simulated and field experiments. In Section V,
some questions that remain open in this article are discussed.
Finally, Section V shows the conclusions of our work and
our future research plan regarding obstacle avoidance of GNT
vehicles.

II. RELATED WORKS

This section reviews previous research on obstacle avoid-
ance of different kinds of vehicles, as well as the methods
and strategies used for achieving safe autonomous navigation
in different scenarios.

A. Environment sensing

Measuring and estimating the vehicle’s state, together with
sensing the environment play a key role in detecting and
avoiding obstacles effectively. The authors in [?] propose an
exploration system based on LiDAR for the state estimation
of Unmanned Aerial Vehicles (UAV) which is capable of
exploring and detecting obstacles and objects. The system
couples the vehicle’s inertial odometry to the LiDAR, making
it capable of adapting to its surroundings. In [?], a method for
accurately classifying dynamic objects using low-resolution
point clouds is presented. The authors use ensemble learning
to perform feature-level fusion on multiple networks to exploit
their different expression capabilities and by the use of long
short-term memory, the dynamic obstacles are classified. Fol-
lowing, in [?], the authors address the problem of constructing
navigable space from sparse noisy point clouds. The method
incrementally seeds and creates local convex regions free of
obstacles along the robot’s trajectory. Through a map point
regulation process, a dense version of the point cloud is
reconstructed. In [?], an autonomous navigation pipeline using
Open Street Map (OSM) information for global planning is
presented. To avoid the flaw of local low-accuracy of the OSM,
the authors develop a LiDAR-based naive Valley Path (NVP),
that exploits the concept of valley areas to infer the local path
furthest from obstacles.



B. Handling occlusion

Occlusion presents significant challenges in the field of
autonomous navigation, particularly for vehicles operating in
off-road conditions. Occlusion occurs when an object in the
environment blocks the sensors’ line of sight, preventing the
detection of other objects or obstacles behind it. This is a well-
studied issue in urban and on-road conditions, where occluded
objects are typically vehicles, pedestrians, or infrastructure
elements [?], [?]. Various techniques have been developed
to address occlusion in these scenarios, including the use
of multiple sensor modalities [?], predictive modelling [?],
and advanced algorithms for real-time object detection and
tracking [?].

However, the problem of occlusion in off-road, agricultural,
mining and industrial environments remains less mature. In
these settings, occlusion can be caused by natural elements
such as vegetation, terrain irregularities, and other static
and dynamic obstacles. These environments introduce unique
challenges due to the variability and complexity of natural
landscapes, which can obscure not only small obstacles but
also large machinery or other vehicles. Current research in
this area has begun to explore the integration of sensor fusion,
machine learning techniques, and predictive algorithms to
improve the navigation capabilities of autonomous vehicles
in off-road conditions in the presence of occlusion [?], [?].
Despite these advances, there is still a considerable need for
robust solutions that can ensure safe and efficient operation in
the diverse and dynamic conditions typical of off-road settings.

C. Strategies for evading obstacles

Among the most common techniques used for navigation
and obstacle avoidance, one can find in the literature Artificial
Potential Field (APF), fuzzy and machine learning techniques,
and, model-based methods. The authors in [?] develop a
dynamic APF path-planning technique for UAV for following
ground-moving targets while avoiding unknown dynamic ob-
stacles. Following, a prediction stage to the APF is introduced
in [?] to bypass obstacles and to prevent the generation of
unsmooth and oscillating motions in Autonomous Ground
Vehicles (AGV). Moreover, by adding virtual obstacles which
generate repulsive force in critical areas, local minimums can
be avoided.

The obstacle avoidance of multiple AGVs is addressed
in [?]. The authors proposed a unified framework that inte-
grates trajectory planning and motion optimisation based on
a spatio-temporal safety corridor, which guarantees collision
avoidance and trajectory smoothness. Moreover, path planning
and obstacle avoidance for multiple AGVs in changing envi-
ronments taking into account path length, number of AGVs
and time constraints is proposed in [?]. The method relies
on deformable virtual leader-follower formation to enable
AGVs to adapt their configuration based on both planned
and real-time data. The use of Voronoi cells is contemplated
in [?] to achieve collision avoidance of decentralised and
communication-free multi-robot formations that accounts for

both localisation and sensing uncertainties. The case of dis-
tributed leader-follower control problem for networked hetero-
geneous Unmanned Aerial Vehicle-Unmanned Ground Vehicle
(UAV-UGYV) is developed in [?]. The strategy is developed for
unknown environments where is required to keep the vehicle’s
formation, obstacle avoidance, inter-robot collision avoidance
and reliable robot communications.

Other common techniques for obstacle avoidance include
machine-learning methods, as in [?], where a deep determin-
istic policy gradient (DDPG) approach to realise path planning
and obstacle avoidance is presented. A LiDAR is used to
measure the distance to obstacles, while an odometer measures
the mileage. This information is then used to train the DDPG
method and used with a UGV to reach the goal with fewer
steps in comparison with a Deep Q-network algorithm. A Deep
Reinforcement Learning (DRL) for the autonomous navigation
of UGVs in mapless conditions is presented in [?]. The method
fuses information from a LiDAR, target position and current
UGV’s speed to compute the output. The APF and DRL
methods are combined in [?] to achieve path planning for
UAVs tracking grounded targets while avoiding obstacles. The
authors formulate a reward function based on line of sight
and APF to guide the behaviour of the UAV and achieve the
tracking of the target, while a penalty term of action takes the
trajectory smoothly.

D. Model predictive in obstacle avoidance

Model-based techniques, such as Model Predictive Con-
troller (MPC) have also been widely used to achieve obstacle
avoidance in autonomous navigation in different contexts.
Real-time obstacle avoidance and safe navigation of AGVs
are reported in [?]. It combines selective MPC with APF and
particle swarm optimisation, and by defining multiple sets of
weight coefficients within the MPC, the method is able to
choose between safe or fast paths. A Hybrid MPC is reported
in [?] to enhance the path-planning of UGVs by combining
stochastic dynamic programming (SDP), hybrid MPC and
Dijkstra-based pseudo priority queues, where obstacles are
avoided by including hard constraints on the MPC formulation.

Obstacle avoidance of small ground vehicles, called Micro
Ground Vehicles (MGV) using MPC is addressed in [?]. The
authors propose trajectory generation for obstacle avoidance
by successive convexification considering the shape of the
vehicle. Obstacles are evaded by including constraints that
are state-triggered. Trajectory planning and tracking for UGV
in a dynamic uncertain environment is presented in [?]. The
artificial fish swarm algorithm is used to connect the start
and the destination global trajectory, while the unforeseen
obstacles are handled by a trial-based forward search algorithm
based on the Markov chain in the local trajectory planner,
which is tracked by a multiconstrained MPC (MMPC).

A Nonlinear MPC (NMPC) fault tolerant control scheme
for omnidirectional mobile robots is presented in [?]. The
NMPC is employed to explore the actuation redundancy of
the omnidirectional robot, while obstacle avoidance is handled
by including constraints on the NMPC formulation. A control



strategy with obstacle avoidance capabilities for a Wing-In-
Ground-Effect (WIG) vehicle is presented in [?]. The WIG
is controlled in different scenarios which include obstacle
avoidance, using different control strategies such as NMPC
and PID, LQR and Adaptive LQR on a feedback linearisation.
Obstacle avoidance and lateral stability of UGVs in high-
speed conditions using NMPC are addressed in [?]. The
visibility graph method is used to plan the global path that
avoids collision with static obstacles, while NMPC is used
to optimise the path and conduct second path planning that
considers both lateral stability and moving obstacles, where
their uncertain trajectory are assumed to be described by
multivariate Gaussian distribution where a polynomial fitting
is utilised to predict the moving trajectories.

An NMPC approach that simultaneously provides an opti-
mising solution for both, path-following and obstacle avoid-
ance tasks in a single optimisation problem is presented in [?].
The obstacle avoidance is fulfilled by introducing additional
terms in the value functional of the NMPC formulation rather
than imposing state constraints. However, only static obstacles
are considered. Following MPC strategies, the authors in [?]
present a steering control MPC-based for obstacle avoidance
of UGVs. The method transforms the constraint of the front-
wheel-steering angle to lateral acceleration when the path-
planning controller reconfigures the path to avoid obstacles.
The obstacle avoidance path is generated online by an optimal
path reconfiguration based on the direct collocation method.
Regarding chained vehicles, in [?], an autonomous driving
system for a tractor-trailer considering the articulation angle
of a semi-trailer truck on a narrow road was presented. Based
on MPC, the vehicle’s behaviour is forecast and collision
detection is detected by using the separate axis theorem, whose
results are reflected in the MPC constraints.

Path planning and trajectory tracking of unmanned ground
and aerial vehicles, a combination of both, and multiple active
ground vehicles with obstacle avoidance using MPC have
received attention from the researchers. Moreover, obstacles
are usually traduced to constraints within the MPC formulation
at expense of losing the convexity of the search space. In
addition, controlling vehicles with more than one trailer and
no obstacles has also received some attention [?], [?], [?],
[?]. However, the problem of obstacle avoidance of chained
vehicles with only one active segment and an arbitrary number
of passive trailers seems to need more attention.

III. PROBLEM FORMULATION
A. Preliminaries and kinematics of N-trailers vehicles

In GNT wvehicles, the active segment pulls an arbi-
trary number N, of passive trailers connected by pas-
sive rotary joints. The system’s vector state is ¢ =
(Bits 00,6505, %04, Yo, Tit, Yine)” for i € Zp,n,). such that
q: € Q C R*Me+3, The joint angle between the segments 5 — 1
and 7 are denoted as f3;;, 6 is the tractor’s attitude, while
the attitude of the ¢ — ¢h trailer is denoted as 6; ;, such that
Bit=0;—1+—0;+, and th = w;—1,t — w; ¢ The coordinates
of the tractor in the plane are (xo ¢, Yo,¢), Whereas (z; ¢, i ¢)
denote the coordinates of the i — th segment. The vector

Pit = (Tits Yips 0ix)", with i € Zjg v, is the pose of the
i — th segment. In the sequel, it will be useful to define the
projection operator that takes the vector state ¢; and gives back
the pose of the i — th segment, as follows: proj,(g;) = pi,;.
With a slight abuse of notation, we will take the projection over
the set Q as proj;(Q) = (&; x V; x ©;) The control actions
are the steering rate wyp ¢ and velocity vg; of the tractor, such
that the control vector is u; = (wo ¢, vo,) "

The kinematic model of the chained vehicle is well-known
in the literature. It can be expressed succinctly as ¢z =
G(qt)us. Readers interested in the model can refer to [?] for
a detailed explanation. The output 7; is then given by:

re = hq) = (Brs - BNyt 00,05 - On, it (D

T
L0ty Y0,t5 oy TNy, ts yNt,t)

where h : R" — R"r, is the output function. Note that
not necessarily n, = ng, i.e., possibly not all states are
measured. However, we assume that at least the joint angles
and the attitude and coordinates of the tractor are available
for measurement. Thus, the system of a GNT vehicle can be
described by the following equations:

Gt = G(Qt)ut @)
Tt = h(Qt)

B. Problem statement and motivation

The objective of this work is to design a framework for
autonomous generalised N-trailer vehicles to follow a pre-
determined path while avoiding collisions with static and
dynamic obstacles that could appear during the travel. The
path-following task entails closely following a reference point
that traces a curve, which in this case belongs to the 3-
dimensional x —y — 6 space. These references are generated by
a Global Path Planner Module (GPPM) and could be generated
by using the equation of the path (when available) or in a
sampled data fashion.

In this work, obstacles will be modelled as soft con-
straints that will take part within the objective function of
the predictive controller. Specifically, Gaussian functions are
employed to represent obstacles due to their continuous and
infinitely differentiable nature, posing no issues when solving
the optimisation problem. The function’s radius, besides the
obstacle’s size, includes the vehicle’s physical dimensions and
safety margins (s,,). Special attention is given to choosing
the Gaussian amplitude to strongly discourage navigation near
obstacles. Since the reference could be occluded and not
reachable from the current vehicle’s position in the presence
of obstacles, a Local Path Planner Module (LPPM) generates
auxiliary reachable references for the N-trailer vehicle until
the original references of the original path become reachable
again.



l ‘ Variable Meaning ‘ ‘
t continuous time variable
k discrete time variable
Bi,t 1 — 1-th joint angle at time ¢
0;.¢ attitude of the i-th segment
Tt x coordinate of the i-th segment
Yi,t y coordinate of the i-th segment
N¢ number of trailers or passive segments
N length of the control horizon
Np length of the prediction horizon
wo, ¢ tractor’s angular velocity
v0,t tractor’s linear velocity
Ut control vector
qt vector of state
Tt vector of vehicle’s output measurements
G continuous time vehicle’s model
g discrete-time vehicle’s model
Pzyo(Ve,t) reference generator function
Ie reference
Te auxiliary reachable reference
Ye,t parameter of the reference generator function
ot vel. at which references are generated
Gt vel. at which ref. are gen. during occlusion
Os,m static obstacle
Od,m dynamic obstacle
Ami function modelling the m-th static obstacle
Am amplitude of the m-th static obstacle
Pm radius of the m-th static obstacle
Dyt function modelling the [-th dynamic obstacle
! amp. of the m-th dynamic obstacle
Pl radius of the [-th dynamic obstacle
TeyYe, @y b, Pk parameters of the elliptical equation
Jo(qx, u) nominal cost of the NMPPFC
Pn—k coefficients of the nominal cost
J(qx,u,mn) cost of the NMPPFC to be minimised
Qg neighbourhood of the reference
ij\z],; up to N, steps controllable set
Og total number of static obstacles
Oq total number of dynamic obstacles
A mean deviation
n mean computational time
v distance to obstacle
v control effort

TABLE I: Summary of the main variables involved un the
proposed framework and their meaning.

C. Global Path Planner Module

Given our primary emphasis on following a predefined path,
we will assume that it is a parameterised curve P(v.:) : ® —
3 given by:

’P(’yc,t) = {I‘C S %3 I = pmyﬂ('yc,t)} 3)

where puyo(ve:) : R — R3, are the reference coordinates
and attitude, such that payo (Ye,1) = ((Ve,t), Y(Ver), 0 (Yerr))”
is generated by the Global Path Planner Module (GPPM).
The parameter ~y.; is the path parameter, whose dynamics
is governed by a virtual input oy, such that ., = o, with
oy > 0, as in [?]. Hence, the GPPM assigns a reference
Ic = Payo(7Ye,) by integrating 4., = o,. When the line of
sight between the guided segment and the target is occluded,
the GPPM reduces the value of o; to ; > 0. It makes
the reference to moving slower along the path, imitating
the human driver’s behaviour when the path is occluded by
pedestrians or other vehicles or objects. In addition, alternative
references are generated in these situations by a Local Path
Planner Module (LPPM), which will be introduced later.

D. Static obstacles

In order to achieve safe autonomous navigation, the environ-
ment need to be scanned in search for obstacles. In this work,
we consider an obstacle any object surpassing a predetermined
volume that blocks the predefined path of the vehicle. Indepen-
dently of the obstacle’s shape, it will be outer approximated by
a circumference of radius r. Then, the m — th static obstacle
can be characterised by its coordinates (., ¥,,) in the plane
and its radius 7, such that Og., = (T, Ym, Tm). As
reviewed in Section II, a common strategy used in the literature
to avoid obstacles within an MPC framework is to incorporate
the constraint (z — )% + (y — ym)? — r2, > 0 which
causes the loss of the convexity of the search space of the
optimisation problem. In this work, detected static obstacles
are incorporated into the objective function as an additional
stage cost. Specifically, these obstacles enter the objective
function as Gaussian functions centred at their coordinates
(Zm, Ym)- These additional stage cost terms are modelled as
follows:

A= A e (e mi—ym)?) 4)

where A,, is the amplitude of the m — th Gaussian function
modelling the m — th obstacle, p,, is the obstacle’s radius
plus the vehicle’s size and a safety margin (Sy,), (Zm, Ym) are
the coordinates of the m — th obstacle, and, (x;¢,y;¢) are
the coordinates of the ¢ — th segment of the chained vehicle,
with ¢ € Zg n,). In this formulation, the point (z,,ym)
and its vicinity remain feasible zones for the optimisation
problem. However, close navigation to this zone is discouraged
whenever A,, ; incurs a higher cost when compared to other
stage costs ingredients within the prediction window, which
will be introduced later. In such cases, an appropriate value
for A,, can be determined to ensure that no other stage cost
within the prediction window exceeds A, ;.

E. Dynamic obstacles

Dynamics obstacles are all those obstacles whose positions
change over time. A key aspect of achieving safe autonomous
navigation in the presence of dynamic obstacles is the ability
to predict the future position of the moving obstacle. Several
strategies have been developed for predicting the trajectory
of vehicles and pedestrians in autonomous driving in in-
road conditions [?]. However, N-trailer vehicles are mainly
used in off-road conditions, such as agricultural, mining and
industrial environments. In this work, we will use a parametric
equation to model all those moving obstacles. Among all
possible choices, we will use an elliptical equation to model
the dynamic obstacles, since it can describe rectilinear and non
rectilinear movements with just a few parameters, avoiding in-
creasing the computational burden excessively. The following
Assumption states the validity of the model chosen for the
dynamic obstacles.

Assumption 1. All moving obstacles can be described by
an elliptical equation, at least for a short period no longer than



N, T, seconds, where N, is the prediction horizon length (to
be introduced later), and 7T (s) is the sampling time.

The equation describing the movement of any dynamic ob-
stacle is found by minimising the following objective function:
1 3 (l’k - xc)2 (yk B yc)2
g gy (P g

2
1)+
k=1 “

(zk — (zc +acos(r)® + (Y — (ye + bSin(@k)))2(5)
where an amount N, of the most recent measurements of
the position (xg, yx) of the obstacle are considered, x.,
Ye, @ and b are the parameters of the ellipse, and oy is
the phase of the obstacle within the elliptical curve which
allows determining the direction of the movement and future
position of the moving obstacles. The parameters and phase are
found by minimising Eq. (5) within the following constrained
optimisation problem:

N,

min Ja
a,bxe,ye.p (6)
st{ Ap<Ap<Ap

where Ap = ¢ — @p_1, and Ap and Ay are the lower
and upper bounds, respectively, for the rate of change of
the phase, whose value should be fixed as a function of
the maximum allowable obstacle’s speed. Every time the last
measured position of the obstacle is no longer well explained
by the current ellipse’s equation, formulation given by Eq.
(6) is solved again using the last N, measurements of the
position of the obstacle. Then, the dynamic obstacles can be
represented as follows:

=5 (@ie—21,0)*+ (Wi e—vi,e)?) (7)

D= Ae’i

where z;; = z.+acos(pr+Apt) and y; , = y.+bsin(pr+
Agpt) represent the time-varying coordinates of the moving
obstacles.

FE. Detecting occlusion

Every time the GPPM updates the reference, it is verified
if the line of sight connecting the guided segment p; ; (with
t € Z,n, corresponding to that index of the segment
being guided) to r. is free of obstacles. The segment of line
connecting p; ; to r. can be written as follows:

Tr; =
Yi =

where ¢ € Rjg1). The distance function J, is defined as
follows:

Tip + (@(ver) — 2it)C
Vit + (W(Vert) — ¥it)C

To = \/(3% - xQ)Q + (yi - yg)z —To — dim(pi,t) ()

with dim(p;+) = width;/2 + lenpj(pit)/2 + Sm, Where
lenpoi(pi¢) is the length of the i — th segment projected
onto the direction toward the obstacle, and o is the index
over the static and dynamic obstacles. Then, the function 7,

is minimised within the following constrained optimisation
problem:
min 7,
‘ ©)
S.t. { 0<¢<1

Then, for Jy < 0, the target is occluded.

G. Nonlinear model predictive path-following controller
(NMPPFC)

Let us assume that references generated by Eq. (3) are meant
to be followed by the ¢ — th segment of the vehicle, i.e., the
goal is to steer p; ¢ to r.. Then, to achieve path-following of
the ¢ — th segment of the generalised N-trailer vehicle while
collision of the whole chain with static and dynamic obstacles
is avoided, we propose the minimisation of the following
objective function:

tk+Tc+Tp Nie Os Oa
Fi= [ (4P =10) + 0D D0 S A+ 1) drs
tk i=0 m=1 [=1
Vf(qtk+Tc+Tp)

(10
where Og and O, denote the number of static and dynamic
obstacles, respectively. The values of T, and 7T}, are the control
and prediction window lengths, respectively, with T, > 0.
When solving the problem given by Eq. (10), the optimisation
variables u, are only computed for 7 € R, ¢, +7., With
Ur = Uty 11, VT € Rty 41, 1, +T.4+1,)- HOWever, the vehicle’s
state and obstacle positions are forecast beyond ¢ + T.. It
allows predicting the position of the obstacles over a long
time horizon without incurring a high computational cost. The
functions ¢, = 0, ¢, = 0, together with A,,; and ®;,,,
constitute the so-called stage costs, whilst V(g 17.47,)
is the term known as cost-to-go. The function ¢, penalises
deviations of p; ; respect to the reference r., while /,, penalises
large values of the velocities wp; and v, minimising in
this way the control energy. The objective function given
by Eq. (10) is minimised within the following constrained
optimisation problem:

min J
4r = G(qr)u'ra
us up <, (11)
s.t. u < <,

_g+65§ ﬁi,rgg—5ﬂ7
qr € Q, qu+T.4T, € Qfsur €U

where the constraints u < u, < Tand ¢ < 4, < @ impose
limits on the velocities and accelerations, while Q and U are
the sets where states and controls are assumed to belong to, re-
spectively. The terminal constraint g, 41,47, € Qy, together
with the cost-to-go, introduced in Eq. (10) are designed to
achieve the stability of the closed-loop system. The constraint
—7/2+05 < B+ < m/2—0d5 limit the joint angles in order to
avoid the jackknife effect, especially in backward manoeuvres.
The parameter dg > 0 is a tighten factor since |3; ;| can exceed
/2 due to noise and disturbances. By solving the formulation



given by Eq. (11), the sequence of controls uy, ;, y7.] is
obtained.

H. Discrete-time NMPPFC

In order to effectively deploy and solve the constrained
optimisation problem given by Eq. (11), it is necessary to
discretise the nonlinear continuous-time model. The controller
is implemented in a sampled-data fashion, following the ap-
proach described in [?]. The control input u, is considered to
be sampled and applied to a zero-order holder, maintaining a
constant value throughout the sampling interval. Specifically,
u, is set as uy for all 7 belonging to the interval [tg, tg41],
where tj, and ;1 represent consecutive sampling times and
k takes values from 1 to N, + N, where N, and N, are the
control and prediction window lengths, respectively. Among
the available discretisation methods, this work employs the
multiple shooting technique, which is a numerical method used
to solve initial value problems (IVP) over a finite time horizon.
At each shooting point, the state variables and their derivatives
are approximated using a numerical method, such as Euler’s
method or the Runge-Kutta method. The discrete-time version
of the objective function given by Eq. (10) is as follows:

k+N.+N, Nty Os Ogq4
J::Z(éq(pi,n — 1)+l (un)-i-z Z Z Aj,i“l‘(bl,i,n)pnfk
n=k+1 =0 j=1 =1
Jo(gr, )

(12)
where the cost function J(gx, u,n) (referred to as J in Eq. (12)
for the sake of space) results from weighing the cost Jo (g, u)
with coefficients p;, where n = n — k, which are introduced
for stability purposes, as will be further explained later. The
optimisation problem to be solved at every sampling time is
the following:

min
Ulk,k+Nc—1]

J(qr, u,n)

qn = g(q”—la un—l) 5
u< up—1 <7, o (13)
s.t. Au < Up_1 — Up_o < Au,
—5+t03< Bin <5 — 0,
am €9, u; el

where n € Zpy1,k4n.), G is a fourth-order Runge-Kutta
(RK4) system’s integrator, and Au and Aw are the bounds
for the rate of change of the controls. Solving the prob-
lem given by Eq. (13) provides a sequence of controls
w = [Ug,Ugt1,--.,Ukt+nN,]. The control law to be applied
is defined as K(gx) = ug, as usual in the model predictive
literature. It means that only the first element of the sequence
wu is applied to the system while the others are discarded. At
the next sampling time, the vehicle’s current state is updated
and the whole sequence wu is computed again, closing the loop
with the system.

1. Stability of the NMPPFC

The stability and recursive feasibility of the problem given
by Eq. (13) are guaranteed by designing the coefficients p;
following the method described in [?]. In addition, this method
consists of replacing the classical terminal invariant set Qy
from Eq. (11) with two simpler sets: the inner and outer sets
Q; and Qp, respectively. For the sake of completeness, before
proceeding let us define the Up-To-N.-Steps Controllable Set
Q (see Definition 1, page 3 of [?]):

Deﬁnltlon 1 (Up-To-N.-Steps Controllable Set Q%i )

Given the system of Eq. (2), the horizon length N, and the
inner set Q; C N3, we say that Q%’C C Q is the up-to-N,-
steps controllable set to 2y provided that if ¢ € Qfl\lfi , then
there exists a sequence of control inputs u = (u, ..., Ugtn—1)
€ U™ for some n € Zp y,) for which proj;(qrin) € Q5 and
{Qka- - Qk+n— 1} SHOUS

Remark 1. Note that the set Q denotes all possible initial
states gy of the vehicle given by Eq (2) such that proj,(qr) =
pi,k can be driven inside the set 27 in at most [V, steps.

In [?], Q; is not necessarily the same as {2p. In fact,
Q; = Qo entails that these sets are an invariant space for the
closed-loop system, and this is exactly the condition which
is relaxed in [?]. However, in this work, the sets ; = Qp,
since G(q¢)u; = 0 for u; = [0,0]T, according to Eq. (2),
or ¢ = G(qx,[0,0]T), for the discrete-time case (i.e., once
the set €27 has been reached, the pose p; j can stay inside by
applying no controls. Then, the outer set can be as small as the
inner set). Since {2y = Qo in our case, they will be referred
to as ) for simplicity. Moreover, it will be defined as a box
set centred at the reference r. = pyyo(7ec,x). as follows:

z\ < z—2(Yer) < T) (m)
Q= (y] y< y Y(ver) < Yo (m) (14
0) 6< 0—0(ver) < 6) (rad)

where z, T, y, ¥, 6 and 6 determine the volume of

the set €. Note moreover that since Poyo(Vet) =

(@(Vet)s Y(Vert) 0(ver))T is time-varying, the set 2y, is time-

varying too, in contrast to the inner and outer sets defined in

[?], which are time-invariant. Then, assuming that ¢ € Q%’“

and whenever the coefficients p;; are designed as follows (see
cVne Z[LNC] if pjr € Q,

[?D:
Pr . .
{ 1+@Rm—-1)r) ifpii¢Q

where ¢ > 0 and r € [0, 1) are such that ¢ N.Jo_,. < rJo,,
with:

15)

Jo.. = inf J ,u),
Omin ol o(qk,w)
J0pan sup  Jo(qk, )

qr € Qp,u €U

Then, practical stability and recursive feasibility are guaran-
teed during the path-following in the presence of obstacles
when the generalised N-trailer vehicle is controlled by solving
at each sampling time the problem given by Eq. (13) .

Remark 2. It is worth noting the following key aspects: i)
The number of trailers is not involved in the former analysis, as



well as the geometrical configuration of the vehicle. However,
they are embedded into the set ij\z,’z . As the number of trailers
increases and the geometry varies, the manoeuvrability is
compromised (see [?], [?]), entailing smaller sets Q%’Z for
a fixed N, Q and a growing number of trailers. In Section
Experiments and Results, we compute numerically these sets.
ii) The set Q%’z can be enlarged by increasing N.. However,
the real-time applicability could be compromised due to an
increase in the computational burden required to solve the
problem given by Eq. (13). iii) Since the set 2 is time-
varying, it is difficult to guarantee that r. € proj,( %’“)
Vk > 0, especially when the current reference r. is occluded
by obstacles or the vehicle is forced to implement an evasive
manoeuvre to avoid collision with dynamic obstacles, moving
away proj;(qx) = pi.r from r.. Then, for the cases where r. ¢
proji(Q%’Z ), we propose the use of a local planner module that
generates an auxiliary reference T, such that T, € proji(QSK,’Z),
where , is computed replacing r. = payg(7ex) With T, in
Eq. (14), i.e., it keeps its volume but is now centred at T..

J. Local path planner module

When the reference r. is occluded by static or dynamic
obstacles, or when the vehicle implements manoeuvres to
evade obstacles such that proj;(gx) = p;,x moves away from
r. such thatr, ¢ Q%’Z, the Local Path Planner Module (LPPM)
is in charge of generating an alternative reference T, inside
the set proji(Q%’z). To generate the auxiliary reference 7., the
following objective function: J = 1|, —T.|? is defined, which
is minimised within the following constrained optimisation
problem:

min J

Te

f. € proj;(Q¥),

st ;= xigp+ (T —xik)C,
vi = Yik+ Ur —Yik)C
Tik < (@ —xi)® + (i — Yik)? V¢ € Ryo g

(16)
where, the constraint T, € proji(Q%’z) force the reference to
be inside the set proji(Q?,’Z), entailing that 7. can be reached
from proj;(gx). The constraints 77, < (z — z;x)* + (y —
y;k)> Vt € R guarantee that the segments of the line
connecting the i —th element of the chained vehicle to the new
reference, i.e., p; i T is not passing through the j—th obstacle.
Note that this is a heuristic rule, and further analysis involving
the manoeuvrability of the N-trailer vehicle is required, which
is a challenging task due to the variable number of trailers and
geometry.

Remark 3. Note that the problem given by Eq. (16)
introduces hard constraints. However, this problem is only
solved when r. ¢ proj,( 53,’;) In addition, any sub optimal

solution fulfilling the constraints would be useful.

Figure 2 aims to illustrate the interaction between the differ-
ent components of the proposed framework and the equations
involved in each stage. Moreover, Figure 3 shows the detailed
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Fig. 2: General diagram showing the interaction between the
different functional blocks of the proposed diagram.
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Fig. 3: Reference selector logic. It is in charge of selecting a
reachable reference to the NMPPFC.

functioning of the reference selector block. Once the reference
is selected, it is passed to the NMMPPFC, which, together with
the current vehicle’s state (provided by the Moving Horizon
Estimator), computes the velocities to be applied to the N-
trailer vehicle. Finally, Algorithm 1 summarises the steps
involved in solving the NMPPFC framework.



Fig.

4: Different sets QSJ\Z,’Z (cyan) computed for N, = 15, £, (red) defined according to Eq. (17) and centred at the origin,

Aw = —0.6 (rad/s*), Aw = 0.6 (rad/s*) Av = —0.3 (m/s*) and Av = 0.3 (m/s?) (left), Aw = —1.2 (rad/s®), Aw = 1.2
(rad/s®) Av = —0.6 (m/s?) and Av = 0.6 (m/s?) (centre), and Aw = —6 (rad/s?), Aw = 6 (rad/s?) Av = —3 (m/s?) and

Av = 3 (m/s2) (right).

Algorithm 1: NMPPFC framework Algorithm

Input : T, G, o4, 61, A, Al Sm, Ney, Np, U, Q,
QN

1 while p; ;! (reach end of the path) do

2 STEP 1: Update measurements

3 STEP 2: call MHE

4 STEP 3: Update obstacles list

5 for i=1 to O4 do

6 if ! (is ellipse Eq. a good model) then

7 L | STEP 4: Update ellipse Eq.

8 Reference Selector:

STEP 5: call GPPM

10 STEP 6: call Occlusion Detector

11 if ref is occluded V is not reachable then
12 | STEP 7 call LPPM

13 STEP 8: call Update reference

14 STEP 9: call Update current vehicle’s state
15 STEP 10: call NMPPFC

16 STEP 11: Apply velocities to the vehicle

IV. EXPERIMENTS AND RESULTS

In this section, we validate the proposed framework through
a combination of simulated and field experiments. In simulated
experiments, the scenario includes obstacle navigation with a
tractor pulling a maximum of 3 passive trailers, and encoun-
tering several static and dynamic obstacles during the path-
following task. In addition, we compare our method against a
method from the state of the art. Specifically, we implemented
the strategy published in [?], where the authors proposed a
model-based approach for unmanned ground vehicles in the
presence of disturbances and dynamic obstacles.

Additionally, field experiments are conducted with a tractor
pulling 2 passive trailers in a generalised configuration. These
experiments challenge the system to navigate different paths
when static and dynamic obstacles obstruct the nominal path.
A LiDAR scans the surrounding environment for obstacle
detection. The NMPPFC is implemented using a sampled-

data approach, following the methodology outlined in [?].
The discretisation technique employed is the multiple shooting
method. Furthermore, the state variables and their derivatives
are approximated using a fourth-order Runge-Kutta (RK4)
numerical method.

A. Stability sets

Before conducting the experiments, the sets (2 and Q%’Z
from Definition 1 have to be defined for a given N.. In
addition, the Eq. (15) needs to be solved to properly weigh
the cost function to guarantee stability according to [?]. We
design the set {25 as a box set such that:

T 025 < z—x(Yer) < 0.25) (m)
Qp = y|:—-025< y—y(yer) < 0.255 (m)
0 To <

0—0(ver) < {5 ) (rad)
)

Then, for each vehicle’s configuration and control constraints,
the set Q%’i is computed numerically once off-line. A grid
of initial conditions qo is generated. Then, all those starting
points from which proj;(go) can be steered to €2 in at most
N, steps shape the set @ N)Z (see [?] for more details). The set
of controls U is also designed as a box set, as follows:

-2< wo,k < 2 ) (rad/s)
oY e (wo,k) :Aw e Aw | (rad/s?)
vor) —1< Vo < 1 (m/s)
Av < R0kl < Ay (m/s?)
(18)

The values of +£2 (rad/s) and +1 (m/s) are taken from the
manual of the vehicle used in this work as a tractor, while
the accelerations need to be carefully selected to achieve a set
Q%’z as large as possible for given N, and 2 and at the same
time achieve smooth manoeuvres. Figure 4 shows the set ()
(red) and Q%’i (cyan) for N, = 15 and different values of Aw,
Aw, Av and Av, plotted using the multi-parametric toolbox
[?]. The largest set Q%’; is obtained when the accelerations are
set at their maximum values, reported in the vehicle manual.
The stage-costs functions are chosen to be quadratic such

that gq(pi,n —1.) = (pzn - rc)TQ(pi,n —1¢), bu(un) =



ul Ru,, with Q = diag(1, 10, 10) and R = diag(0.05, 0.1)
such that @, R > 0. In addition, the amplitude of the Gaussian
functions for the static and dynamic obstacles are 60 and 100,
respectively. To the obstacle size, half of the largest segment’s
size plus a safety margin s, = 0.1 (m), totalling 0.64 (m) is
added. Then, once the sets €, and U/ have been defined, the
values of Jo_,, and Jo, needed to find the sequence p,_j can
be computed. It gives the following values: Jo , = 0.707 and
Jo,. = 7.847. Choosing » = 0.1 in Eq. (15) and N, = 25
gives ¢ = 3.603 x 1074,

B. Simulations Study

In the following, we perform simulated experiments with
different configurations of number of passive trailers and
static and dynamic obstacles. In addition, we compare the
proposed method (NMPPFC) against the one published in
[?] (FNMPPC), using the kinematic model of the N-trailer
vehicle. The experiments consist of following the Lemniscate
of Bernoulli, which is an co-shape curve with different values
of curvatures. The parametric equation of the path is as
follows:

\/372(:05(%7 )
T(Ye,t) = m (m)
Y(Yer) = \/@cos(vc,t) sin(ve,t) @)

(e + 1

for 7., € [0, 2n]. The experiments aim to evaluate the
performance in terms of the mean deviation of the guided
segment to the nominal path (A), the computational burden
(n) and the control effort (¥), which are metrics of interest
commonly evaluated in the literature of model-based path-
following controllers. In addition, we compute the minimum
distance between the vehicle’s segments to the obstacles (V) to
evaluate the collision avoidance performance. The geometrical
configuration of the chained vehicle is Ly, = 0.342 (m),
Ly, = 0 (m), Ly = 1.08 (m) and Ly = 0.78, which is a
generalised configuration. The controls are constrained to the
box-set I given by Eq. (18), with Aw = —6 (rad/s?), Aw =6
(rad/s?), Av = —3 (m/s?) and Av = 3 (m/s?). Both methods
are configured with the same constraints, stage-cost matrices
and control window length N, = 25 and the sampling-time
is Ty = 0.05 (s), as in [?]. In addition, the proposed method
(NMPPFC) uses a prediction horizon N, = 25.

Twelve different conditions are evaluated, which consist of
a tractor pulling 1, 2 and 3 passive trailers. For each number
of trailers, 1, 2, 4 and 6 static (O,;) and dynamic (Og,;)
obstacles, appearing both simultaneously, are considered. The
static obstacles are configured as follows (x,y,radius) (m):
Os1 = (10.1, 8.1,,0.15) (m), O;2 = (8,8,,0.15) (m),
Os,3 = (6,4,,0.25) (m), O54 = (4, 4, ,0.25) (m), Os5 =
(2,0.5,,0.35) (m) and Oz = (0, 4, ,0.15) (m). The dy-
namic obstacles behave according to the following dynamics:

zp = 3+ 4cos(m+0.0675kTs) (m)
Og1 = yi = 54 3sin(m 4 0.0675 k Ty), 0.2) (m)
rt = 0.2 (m)

32 12 4
2 = \ﬁcos( /) L e (m)
sin(t1-2 +7/4)2 + 1
1.2 (412
Ogo= g2 = \/128cos.(t + 7/4)sin(t'? 4+ 7/4) 45 (m)
sin(t12 +7/4)2 + 1
r?2= 0.2 (m)
t= —(0.015kT}) (s)

3 = 5+ 6cos(m+0.0675kT;) (m)
Oas=1< wp= 4.8 (m)

r® = 0.35 (m)

zt = 7 (m)
Og4 = yp = 5+ 3sin(r +0.0675kTs) (m)

r*= 0.1 (m)

) = 9+ 1.5cos(m + 0.08%Ts) (m)
Oas={ y?= 4+ L5sin(r+0.08kT,) (m)

r® = 0.05 (m)

28 = 2+ 1.5cos(m —0.08%Ts) (m)
Oup = yS = 6+ 1.5sin(r — 0.08%kTy) (m)

6 =

0.05 (m)

Note that the obstacle O4 2 = moves along the co-shape path
in the opposite direction of the vehicle. Though all obstacles
are accelerated (their velocity change over time), the obstacle
Og4,2 = moves with a speed that increases over time.

Finally, the metrics used to compare the performance are
computed as follows:

K

1 .
A :g kz::lmln (|pi,k - pmy@(’Yc,K)') , VK € Z[LK] (m),

1 K
n=7 ;Tk ®),

V =min (d(pix, Os,5), d(pik, Oq,)) (m)
Vk € Zp k)t € ZonNgsJ € Lol € 21,04

(\ [ (rad/s)? + (m/s)2>

where the function d(p; x, O), with O = (z, y,radius), = and
y are the coordinates of the obstacle at time k, is defined as
follows:

K

_ 2 2
v K E :wo,k + V5
=1

d(pix, O) 12\/(%1@ —2)? + (Yi.x — y)? — radius — dim(p; 1)

with dim(p;x) = width;/2 + lenpwi(pi,x)/2 + sm, where
lenproj (s, i) is the length of the ¢ — th segment projected onto
the direction toward the obstacle and sy, is the safety margin,
which is chosen to 0.1 (m). Note that d(p; x,O) < 0 entails
a collision.

Figure 6 summarises the performance of both methods. The
horizontal axe denotes the trial’s configuration: 1-3: 1 static
and dynamic obstacles with a tractor pulling 1, 2 and 3 trailers,
4-6: 2 static and dynamic obstacles with a tractor pulling 1, 2
and 3 trailers, 7-9: 4 static and dynamic obstacles with a tractor
pulling 1, 2 and 3 trailers, and 10-12: 6 static and dynamic
obstacles with a tractor pulling 1, 2 and 3 trailers.
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Fig. 5: Collision against a dynamic obstacle (grey obstacles)
during trial 12.

Figure 6-left summarises the mean deviation of the guided
segment (the tractor) with respect to the nominal path. The
proposed method (NMPPFC) presents a higher deviation in
general. In addition, the deviation seems to increase with the
number of trailers and the number of obstacles. The second
picture from left to right in Figure 6 depicts the minimum
distance between the segments (tractor and trailers) and the
obstacles. The competitor method fails to avoid collision with
the obstacles on almost all the trials, while the proposed
method only fails in the most challenging conditions where
the total number of obstacles is 12.

The third (from left to right) bar plot in Figure 6 shows
the mean control effort per sampling step. The competitor
method requires less control effort. In those trials where the
proposed method succeed in evading obstacles, the control
effort exhibits a clear pattern as a function of the number
of trailers and obstacles. Figure 6-right summarise the mean
normalised time required for both methods in computing the
velocities to be applied to the vehicle. The proposed method
requires much lower time in computing the velocities, even
when it is using the prediction horizon N, = 25. Moreover,
the mean time required for the competitor method is extremely
high for some of the trials.

Figure 5 shows the most challenging situation where the
vehicle navigates among 12 obstacles and a collision occurs.
Green and Gray circumferences represent the static and dy-
namic obstacles, respectively. The proposed method is not
capable of avoiding this collision with its current configura-
tion. However, choosing N, = 35, N, = 65, increasing the
amplitude of the Gaussian functions to 100 for both, static
and dynamic obstacles, and increasing the safe margin from
0.1 (m) to 0.3 (m), the vehicle succeeds in avoiding collision
with the 6 static and 6 dynamic obstacles at the cost of an

increased mean deviation with respect to the nominal path.
Figures 7-left and 7-right summarise the new values of A (m)
and V (m) for this new configuration.

C. Field Experiments

1) Hardware and software implementation: The proposed
framework, given by Eq. (13), was implemented with CasADi
[?] on Matlab+ROS (Robot Operating System). The algo-
rithms run on a PC Dell Latitude 5430 Rugged with 16
GB of RAM and an 11-th Gen Intel Core i7 with Ubuntu
18.04. The vehicle available for experiments is composed of a
Clearpath Husky A200 and 2 passive trailers, where only one
has carriage capacity. The vehicle and its sensors are shown
in Figure 8.

The proposed framework runs on the computer numbered
as 2 in Figure 8. All available sensors are connected through
the USB port with the help of a hub, and they are accessed
and read using ROS on Matlab. The framework computes the
velocities wo ; and vy, which are considered to be sampled
and applied to a zero-order holder, maintaining a constant
value throughout the sampling interval. The velocities are sent
to the Husky A200 tractor over the USB port using ROS
commands. The internal computer of this vehicle transforms
the velocities into torques to be applied to the wheels. The ge-
ometrical configuration of the chained vehicle is Ly, = 0.342
(m), Ly, =0 (m), L; = 1.08 (m) and Ly = 0.78.

2) Estate estimation: Furthermore, some of the vehicle’s
states are not measured, such as the position of the trailers,
which is essential to effectively implement collision avoidance.
Therefore, a Moving Horizon Estimator (MHE) is used to
estimate the trailer’s position and filter the measured states’
noise. The measured states, together with the vehicle’s model,
are used within the MHE to estimate the whole system’s state,
which is then fed to the NMPPFC (see [?], [?] for more details
on MHE).

3) Obstacle detection: The environment is scanned with
the help of a Lidar Velodyne VLP16. It is connected to the
Ethernet port of the computer. The Lidar is configured with
its minimum rotational speed to obtain a denser point cloud.
The data is read using standard Matlab commands. Point
cloud processing involves floor elimination and segmentation
by density and volume. Once the detected objects have been
isolated, their positions are computed as the midpoint of their
minimum and maximum values on x and ¥, and their size is
taken as the radius of their outer circumference.

Experiment Number 1: The initial experiments involve
following a straight line segment with a length of 25 (m).
Two static obstacles are located on the path, such that O, ; =
(5.7, 6.15,0.5) (m) and O, = (18.5, 6.5, 0.6) (m). The
objective function is designed again to be quadratic. Devia-
tions of p;, respect to r. are penalised with the following
matrix: Q = 5I5(n11)x2(Nn+1), the control energy tends to be
minimised through the matrix R = diag(0.35, 0.05). Figure 9
shows the estimated vehicle’s position over 5 trials of the field
experiment.
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Fig. 6: From left to right: mean deviation (A) of the guided segment with respect to the nominal path for the proposed
(green) and the competitor (red); minimum distance between the vehicle’s segments and both, static and dynamic obstacles
(V) (negative values indicate collision); mean control effort per sampling instant (¥), and, mean normalised time (1) required

for both methods to solve the control problems.
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Fig. 7: Mean deviation (A) with respect to the nominal path
(left) and minimum distance to the obstacles (V) with the new
configuration.

Fig. 8: Generalised N-trailer vehicle used during the filed
experiments with N = 2. The G2T vehicle is equipped
with the following: 1) Swift Duro GPS (not used during the
experiments); 2) PC Dell Latitude 5430 with Ubunbtu 18.04,
Matlab 2023 and the Robot Operating System (ROS) 18.04; 3)
Navcom SF-3040 RTK GPS; 4) Intel Realsense Depth Camera
435 (not used during the experiments): 5) Unitree Gol legged
robot used as dynamic obstacle; 6) LiDAR Velodyne VLP16;
7) Vectornav VN200 GNSS-Aided Inertial Navigation System;
8) Encoder for measuring 31 ,;; 9) Encoder for measuring 3 ;.

Experiment Number 2: The second experiment involves
following the path given by the following parametric equation:

{ 2(Yer) = asin(yes) + 6 (m)
y(’YC,t):

. (19
7.55in(7e.¢)? cos(Ye,) + 4.5 (m)

for 4., € [0, 7] and a is a parameter that determines how far
the path spans through the z axis. Four different scenarios are
considered in this second field experiment: i) a nominal path
with ¢ = 5 and one static obstacle O, 1 = (10.9, 4.25) (m), ii)
a = 7.5 and one static obstacle O ; = (11.35, 4.25) (m), iii)
a = 7.5 and O, 1(11.35, 4.25) (m) and O 2(7.5, 2.25) (m),
and, iv) a = 7.5 and two static obstacles O, 1 = (11.35, 4.25)
(m) and O, 2 = (9.32, 2.44) (m).

Figure 10-A illustrates the vehicle’s performance over 2
trials of the field experiments i). The path, given by Eq. (19),
exhibits a larger curvature for the case of a = 5. Throughout
the traversal of the path, the proposed framework successfully
guided the vehicle backwards to evade the obstacle and
minimise deviation from the nominal path. In Figure 11-
A, both the computed and measured linear velocity profiles
for one trial are presented. Following the obstacle evasion
with a backward manoeuvre, the vehicle concludes the path
with a forward manoeuvre. Importantly, the joint angles never
exceeded +7/2, effectively avoiding the Jackknife effect. The
constraints —7/2 + dg < fj1,9)+ < 7/2 — 0p in formulation
given by Eq. (13) were set with g = 20 x 7/180 (rad).

Figure 10-B shows the field experiments during scenario
ii). During this scenario, the vehicle evades the obstacle with
forward manoeuvres. The tractor’s speed is positive throughout
the journey, expect for a brief period when it moves backwards
to implement a correcting manoeuvre, as shown in Figure 11-
B for 1 trial. In scenario iii), which involves an additional
obstacle, the vehicle successfully navigated, avoiding both
obstacles and reaching the path’s end. Figure 10-C illustrates
the performance over 2 trials of field experiments in scenario
iii), while Figure 11-C displays the linear velocity profile
for one trial. Notably, the vehicle executes a brief backward
manoeuvre during an off-tracking correction, as depicted.
In scenario iv), one of the static obstacles was relocated
in proximity to the nominal path. The vehicle successfully
avoided the obstacles. Again, the manoeuvre to evade the
second obstacle led to a higher deviation from the nominal
path, as depicted in Figure 10-D.

Experiment Number 3: The third field experiment involves
traversing a straight line segment with a length of 25 (m).
One static and one dynamic obstacle are incorporated: O, ; =
(18.5, 6.5) (m) while the dynamic obstacle does not follows
a predefined movement. To ensure a safe interaction with
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Fig. 9: Field Experiment 1: The path is a segment of a line approximately 25 (m) in length. Two static obstacles, depicted in
red, are situated in the vicinity. The light blue circles indicate the size of the obstacles plus the safety margin (s, ).
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Fig. 10: Field Experiment 2: In Fig. A, the trajectory is shaped with a = 5 using Eq. (19), and the obstacle is positioned
at (10.9, 4.25) (m). The curvature is higher compared to Figs. B-D, where the vehicle successfully avoided the obstacle by
moving backwards. Fig. B illustrates the trajectory shaped with a = 7.5, with the obstacle relocated to (11.35, 4.25) (m) Figs.
C and D display trajectories shaped with a = 7.5, and obstacles at (11.35, 4.25) (m) and (7.5, 2.25) (m), and, (11.35, 4.25)
(m) and (9.32, 2.44) (m), respectively. In all figures, the estimated positions of the tractor, first trailer, and second trailer are
represented by yellow, blue, and red lines, respectively.
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Fig. 11: Linear velocity profiles for one trial of Field Experiment 2 are depicted in Figs. A-D. Each figure corresponds to a
different trial shown in Figure 10, with Fig. A corresponding to one trial from Figure 10-A, Fig. B to Figure 10-B, and so
forth. In all these figures, the green line represents the velocity computed by the formulation in Eq. (11), while the red line

represents the measured linear velocity.

the dynamic obstacle, a legged robot Unitree Gol (refer
to Figure 8) was manually controlled with a joystick to
move in proximity to the vehicle as it follows the nominal
path. Figure 12 displays the results of 5 trials in this field
experiment, featuring 1 static obstacle and 1 dynamic obstacle.
The figure illustrates the temporal evolution of the vehicle and
the dynamic obstacle. The scatter plot in Figure 13 shows the
evolution of the position of the tractor (yellow), first trailer
(blue), last trailer (red) and the moving obstacle (green), where
the vehicle successfully evades the dynamic obstacle.

V. DISCUSSION

Although we successfully implemented autonomous naviga-
tion of generalised N-trailer vehicles in the presence of static
and dynamic obstacles, further improvement and research are
required.

The Global Path Planner Module (GPPM) generates a free-
of-obstacles nominal trajectory, while the Local Path Planner
Module (LPPM) generates an auxiliary reference when the
original one is outside the set proji(Q%’z ). Further research
is needed to establish the conditions under which the LPPM,
once activated, will return to standby mode and transfer control
back to the GPPM. While the use of an LPPM guarantees the



Fig. 12: Field Experiment 3 involves both static and dynamic
obstacles. The dynamic obstacle is a legged robot controlled
with a joystick. The series of five trials is presented from
top to bottom, where the legged robot is directed to traverse
various regions. In each Figure, the vehicle and obstacles are
plotted for each sampling instance. Due to the vehicle and
dynamic obstacle traversing the same coordinates at different
time instants, an apparent intersection is depicted.
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Fig. 13: Scatter plot of the position of the tractor (yellow),
first trailer (blue) and last trailer (red) of the vehicle and
the dynamic obstacle (green) for the fifth trial of experiment
number 3.

stability of the closed-loop system, it is crucial that it remains
active only for a short period, ensuring the auxiliary reference
converges in finite time to the original one.

The constraints involved in the optimisation problem given
by Eq. (16), are derived from heuristic rules. The mechanism
for generating auxiliary references should be closely related
to the manoeuvrability of the chained vehicle, necessitating

further research, especially for large values of N;.

Regarding the predictive controller, accuracy and perfor-
mance can be improved by using the dynamic model of the
vehicle instead of the kinematic model employed in this work.
Additionally, incorporating skid-slip and external disturbances
into the model is essential to address challenges encountered
in rough terrains, such as those in agricultural and mining
environments.

In terms of obstacle handling, our current implementation
can manage a limited number of simultaneous obstacles.
For efficient real-time implementation, the structure of the
optimisation problem to be solved at each sampling time must
remain time-invariant. Therefore, handling an arbitrary and
potentially large number of simultaneous static and dynamic
obstacles, along with ensuring efficient real-time implementa-
tion, requires further investigation.

The use of Gaussian functions was demonstrated to be
efficient in avoiding collisions with obstacles. However, the
use of more peaky functions, such as loss functions, may allow
for navigating closer to obstacles without increasing the risk of
collision. In addition, how to include non-convex constraints
without loose the benefits of solving an optimisation problem
on a convex space deserves further investigation.

VI. CONCLUSIONS AND FUTURE WORKS

In this study, we presented a novel Nonlinear Model Predic-
tive Path-Following Controller (NMPPFC) tailored for gener-
alised N-trailer vehicles navigating amidst dynamic obstacles.
We characterised detected obstacles as Gaussian functions,
with their radii determined by adding the vehicle dimensions
and a safety margin to the obstacle size. The careful choice of
the Gaussian amplitude is essential, as the regions occupied
by these functions remain feasible for the NMPPFC.

Our approach has been validated through a series of simu-
lated and field experiments, demonstrating its efficacy in obsta-
cle avoidance in challenging scenarios with up to 12 obstacles.
Additionally, our approach alleviates the computational burden
compared to a state-of-the-art method that handles obstacles
as hard constraints. The performance in collision avoidance is
also superior to our method in comparison with the competitor.

Future endeavours will involve addressing the issues dis-
cussed in the previous section, such as the explicit inclusion
of the vehicle’s manoeuvrability and enhancing the accuracy
of our model by substituting the kinematic vehicle model with
a dynamic counterpart. We will also explore incorporating
skid-slip and external disturbances into the model to improve
performance in rough terrains. Furthermore, we aim to refine
the Local Path Planner Module (LPPM) activation/deactivation
conditions and investigate more efficient obstacle-handling
techniques to support a larger number of simultaneous ob-
stacles. Finally, obstacle detection can be improved by incor-
porating a point cloud processing technique from the state-of-
the-art.
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