Mapping potato plant density variation using aerial imagery and deep learning techniques for precision agriculture

Mhango, J.K., Harris, E., Green, R. and Monaghan, J.M. (2021) Mapping potato plant density variation using aerial imagery and deep learning techniques for precision agriculture. Remote Sensing, 13 (14).

[img]
Preview
Text
Mapping potato plant UPLOAD 2.pdf - Published Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview

Abstract

In potato (Solanum tuberosum) production, the number of tubers harvested and their sizes are related to the plant population. Field maps of the spatial variation in plant density can therefore provide a decision support tool for spatially variable harvest timing to optimize tuber sizes by allowing densely populated management zones more tuber-bulking time. Computer vision has been proposed to enumerate plant numbers using images from unmanned aerial vehicles (UAV) but inaccurate predictions in images of merged canopies remains a challenge. Some research has been done on individual potato plant bounding box prediction but there is currently no information on the spatial structure of plant density that these models may reveal and its relationship with potato yield quality attributes. In this study, the Faster Region-based Convolutional Neural Network (FRCNN) framework was used to produce a plant detection model and estimate plant densities across a UAV orthomosaic. Using aerial images of 2 mm ground sampling distance (GSD) collected from potatoes at 40 days after planting, the FRCNN model was trained to an average precision (aP) of 0.78 on unseen testing data. The model was then used to generate predictions on quadrants imposed on orthorectified rasters captured at 14 and 18 days after emergence. After spatially interpolating the plant densities, the resultant surfaces were highly correlated to manually-determined plant density (R2 = 0.80). Further correlations were observed with tuber number (r = 0.54 at Butter Hill; r = 0.53 at Horse Foxhole), marketable tuber weight per plant (r = −0.57 at Buttery Hill; r = −0.56 at Horse Foxhole) and the normalized difference vegetation index (r = 0.61). These results show that accurate two-dimensional maps of plant density can be constructed from UAV imagery with high correlation to important yield components, despite the loss of accuracy of FRCNN models in partially merged canopies.

Item Type: Article
Keywords: potatoes, UAV, deep learning, satellite, precision agriculture
Divisions: Agriculture and Environment (from 1.08.20)
Depositing User: Mrs Rachael Giles
Date Deposited: 03 Aug 2021 14:22
Last Modified: 03 Aug 2021 14:22
URI: https://hau.repository.guildhe.ac.uk/id/eprint/17726

Actions (login required)

Edit Item Edit Item